$(G-2)_{\mu}$ and Supersymmetric Extensions of the Standard Model

Florian Domingo Institut für Theoretische Teilchenphysik - Karlsruhe

2nd Workshop on Muon g-2 and EDM in the LHC Era

May, 25th 2012

Prologue: $(G-2)_{\mu}$ and New Physics

• BNL experiment vs. SM estimates [Davier et al., 2011]:

 $a_{\mu}^{exp.} - a_{\mu}^{SM} = (28.7 \pm 8.0) \cdot 10^{-10} (3.6 \,\sigma, \, e^+ e^-) \;\; ; \;\; (19.5 \pm 8.3) \cdot 10^{-10} (2.4 \,\sigma, \,\tau)$

• Compare with EW contribution in the SM [Czarnecki et al. (2003,2006)]:

$$a_{\mu}^{EW/SM} = (15.4 \pm 0.2) \times 10^{-10}$$

 \rightarrow generate a New-Physics effect of the same order!

• Sensitivity of $(G-2)_{\mu}$ to heavy states of mass *M*, typical coupling g_M :

$$\left(\delta a_{\mu}\right)_{M}\sim \frac{\alpha}{2\pi}\left(\frac{g_{M}}{g_{EW}}\right)^{2}\left(\frac{m_{\mu}}{M}\right)^{2}$$

 \Rightarrow New Physics close to the EW scale?

Introduction: Why a Supersymmetric extension of the SM?

2 Anomalous Magnetic Moment of the muon in the MSSM

3 Anomalous Magnetic Moment of the muon in the NMSSM

Supersymmetry (SUSY) in a nutshell

... A Symmetry!

• *The* symmetry algebra generalizing the Poincaré group to anticommutators:

$$\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\} = 2\sigma^{\mu}_{\alpha\dot{\alpha}}P_{\mu}$$
; $(N = 1 \text{ susy} \to \text{chirality})$

• To define a susy model, work with Supermultiplets (Superfields).

... Relating Fermions and Bosons:

For model building, use N = 1 Supermultiplets:

- Chiral Supermultiplets ("matter") $\rightarrow 1$ Complex Scalar Field (A) + 1 Weyl Spinor (ψ): $\hat{\Phi} \supset \begin{pmatrix} A \\ \psi \end{pmatrix}$; $\hat{\Phi}^+ \supset \begin{pmatrix} A^+ \\ \bar{\psi} \end{pmatrix}$
- Vector Supermultiplets ("gauge") $\rightarrow 1$ Weyl spinor (λ) + 1 Vector Field (A^{μ}): $\hat{V} \supset \begin{pmatrix} \lambda \\ A^{\mu} \end{pmatrix}$

• (...)

Why are SUSY models so interesting?

Supersymmetry has unique properties with respect to renormalization

- "Non-renormalization" theorems:
 - For N = 1 susy, the superpotential receives no quantum corrections;
 - \Rightarrow Only Wave-function renormalization;
 - \Rightarrow Radiative corrections at most logarithmic (under certain conditions).
- At the diagrammatic level:

Cancellations between scalar/pseudoscalar + among superpartner contributions.

In particular: No quadratic divergences for scalar squared masses!

Hierarchy problem of the SM:

• SM as an effective field theory: Higgs mass² quadratically sensitive to heavy new masses $M \gg M_Z$: $(m_H^2)^{SM} \sim (m_H^2)^{SM+M} + C \cdot M^2$ $\rightarrow (m_H^2)^{SM} \sim M_Z^2 \Rightarrow (m_H^2)^{SM+M} \sim -C \cdot M^2$: "Technically unnatural"!

• SUSY as a solution: no quadratic corrections in SUSY \Rightarrow Stabilization of $(m_H^2)^{SM} \sim M_Z^2$ w.r.t. GUT/Planck scales.

\Rightarrow Propose a SUSY version of the SM

Supersymmetric Extensions of the SM

Minimal Supersymmetric Standard Model (MSSM)

- Global SUSY (N=1) + R-Parity + Gauge Group $SU(3)_c \times SU(2)_L \times U(1)_Y$;
- Minimal Supersymmetric matter content for SM particles:
 - Three Families of Lepton/Quark Superfields:
 - \hat{L}_L , \hat{E}_R^c = (leptons+sleptons), \hat{Q}_L , \hat{U}_R^c , \hat{D}_R^c = (quarks+squarks).
 - **2** Two (Higgs+higgsinos) Doublets: \hat{H}_u , \hat{H}_d coupling respectively to *u*-like fields and *d*-like fields; Electroweak Symmetry Breaking \Rightarrow v.e.v.'s v_u , $v_d \rightarrow$ parameter $\tan \beta \equiv \frac{v_u}{v_d}$.
 - 3 (Vector+gaugino) fields for all the gauge groups: \hat{B} , \hat{W}^a , \hat{A}^c .
- Superpotential: $W = \mu \hat{H}_u \cdot \hat{H}_d + Y_u \hat{Q}_L \cdot \hat{H}_u \hat{U}_R^c Y_d \hat{Q}_L \cdot \hat{H}_d \hat{D}_R^c Y_e \hat{L}_L \cdot \hat{H}_d \hat{E}_R^c$
- Soft SUSY Breaking terms...

BONUS:

- * Dark matter (natural WIMP candidate)
- * One-step Gauge-Unification

[Favet (1975)]

μ -problem: a Naturalness Problem of the MSSM

- μ : SUSY parameter \rightarrow Natural Scale: $O(M_{\text{Planck, GUT,...}})$... or Zero!
- LEP Constraints on Chargino masses: $\mu \gtrsim 100 \,\text{GeV}$
- Electroweak Symmetry Breaking needs: $\mu \leq O(TeV)$

Next-to-Minimal Supersymmetric Standard Model (NMSSM)

- Additional Gauge-Singlet superfield \hat{S}
- Superpotential (Z₃ symmetry: scale invariant):

$$W = \frac{\kappa}{3}\hat{S}^3 + \lambda\hat{S}\hat{H}_u.\hat{H}_d + Y_u\hat{Q}_L.\hat{H}_u\hat{U}_R^c - Y_d\hat{Q}_L.\hat{H}_d\hat{D}_R^c - Y_e\hat{L}_L.\hat{H}_d\hat{E}_R^c$$

- v.e.v. $\langle S \rangle = s \qquad \Rightarrow \qquad \mu_{eff} = \lambda s$
- + Soft terms...

۲

- Richer Higgs/Dark matter phenomenology:
 - * additional contributions to the tree-level Higgs mass;
 - * light Higgs scalar circumventing detection at colliders;
 - $\ast \sim 10$ GeV-like pseudoscalars intervening in cascade-Higgs decays and/or Dark matter annihilation;
 - * singlino Dark Matter...

+ Extensions with additional U(1)-gauge-symmetry; + ...

3 Anomalous Magnetic Moment of the muon in the NMSSM

One-Loop Contributions in the MSSM [Martin, Wells (2001)]

Chargino / Sneutrino Loop:

- Dominant contribution;
- Linear dependance on $\tan \beta$;
- Same sign as the SUSY parameter μ : $\mu > 0$ favoured;
- Light chargino/Sneutrino required.

Neutralino / Smuon Loop:

Can be large enough even for low values of $\tan\beta$ when there is a light neutralino ~ bino.

$$\left(\delta a_{\mu}\right)_{1L}^{MSSM} \sim \frac{\alpha}{2\pi} \left(\frac{m_{\mu}}{M_{SUSY}}\right)^2 \tan\beta \operatorname{sign}(\mu M_2)$$

Two-Loop Contributions in the MSSM

Large QED Logarithms: [Degrassi, Giudice (1998)]

$$a_{\mu}^{SUSY} = a_{\mu}^{SUSY\,1L} \left(1 - \frac{4\alpha}{\pi} \ln \frac{M_{SUSY}}{m_{\mu}} \right)$$

SM-like 2L Diagrams: [Heinemeyer et al. (2004)]

2-loop Bosonic Electroweak Diagrams: reproduce the SM value.

Diagrams with a closed SUSY Loop: [Arhrib, Baek (2002), Heinemeyer et al. (2004), Stöckinger (2006)]

Sfermion; chargino diagrams.

Constraints on the MSSM parameter space

- Chargino/Slepton loop tends to be dominant;
- Effect $\propto Y_{\mu} \propto \tan \beta$;
- $\mu > 0$ required;
- Light binos can also have significant effect.

Conclusion: The 3σ deviation can be reproduced provided SUSY particles are sufficiently light / tan β is large.

Consequences of a ~ 125 GeV Higgs?

In a Constrained Model

CMSSM/NUHM: Universality conditions at the GUT scale for the SUSY-breaking terms.

- (G − 2)_µ: light SUSY particles;
- $m_H \sim 125$ GeV: heavy SUSY particles; \Rightarrow Tensions... [Buchmuller et al., 2011]

Model	Minimum	Fit Prob-	$m_{1/2}$	m_0	A_0	$\tan\beta$
	$\chi^2/d.o.f.$	ability	(GeV)	(GeV)	(GeV)	
CMSSM						
pre-Higgs	28.8/22	15%	780	450	-1110	41
$M_h \simeq 125 \text{ GeV}, (g - 2)_{\mu}$	30.6/23	13%	1800	1080	860	48
$M_h \simeq 125$ GeV, no $(g-2)_\mu$	21.0/22	52%	2000	1050	430	46
$M_h\simeq 119~{\rm GeV}$	28.8/23	19%	780	450	-1110	41
NUHM1						
pre-Higgs	26.9/21	17%	730	150	-910	41
$M_h \simeq 125 \text{ GeV}, (g - 2)_\mu$	29.7/22	13%	830	290	660	33
$M_h \simeq 125$ GeV, no $(g-2)_\mu$	20.6/21	48%	2000	1400	2560	47
$M_h\simeq 119~{\rm GeV}$	26.9/22	22%	730	150	-910	41

Table 1

Comparison of the best-fit points found in the CMSSM and NUHM1 pre-Higgs [3] and for the two potential LHC Higgs mass measurements discussed in the test: $M_h \simeq 119$ and 125 GeV. In the latter case, we also quote results if the $(g - 2)_\mu$ constraint is dropped.

In the general case

- $(G-2)_{\mu}$: essentially sensitive to 2nd generation sleptons $(\tilde{\nu}_{\mu}, \tilde{\mu})$;
- Higgs mass: essentially sensitive to 3rd generation squarks (\tilde{T}, \tilde{B}) ;

 \Rightarrow Both constraints are no longer mutually exclusive.

4 Conclusion

Specific NMSSM Contributions: Light Pseudoscalar

Light Pseudoscalars in the NMSSM:

- Higgs Effects negligible in the SM and the MSSM: $m_H \ge 115 \text{ GeV} \implies a_{\mu}^H \le 5.10^{-14}$;
- NMSSM: Pseudoscalars A1 can be very light (~ a few GeV) without violating LEP constraints;
- B-constraints $(B_s \to \mu^+ \mu^-, B \to X_s \mu^+ \mu^-, \Upsilon \to \gamma \tau^+ \tau^-, ...)$ can be avoided too.

Light Pseudoscalars can lead to a non-negligible effect on a_{μ} , specific to the NMSSM.

Light Pseudoscalar contribution to a_{μ} [Krawczyk (2002), Gunion et al. (2006)]

- 1-loop contribution negative / 2-loop contribution positive;
- When $m_{A_1} \ge 3 \text{ GeV}$, 2-loop contribution dominates;
- Proportional to $\tan^2 \beta$;
- Proportional to A₁ coupling to the Standard sector (doublet component).

Effect of the *A*¹ **contribution:**

- Proportional to $\tan^2 \beta$;
- 1-loop contribution negative / 2-loop contribution positive;
- When $m_{A_1} \ge 3 \text{ GeV}$, 2-loop contribution dominates.

Can reach the 2σ level by itself.

 \Rightarrow Alleviates the requirements on the slepton/chargino masses.

Conclusion

- Hint for Physics beyond the SM in $(G-2)_{\mu}$ favours New Physics close to the EW scale.
- Interestingly, SUSY-inspired models seem able to generate an effect of the correct order of magnitude...

... provided sufficiently-light SUSY particles /

 $\tan\beta$ -enhancement.

 \Rightarrow Significant constraints on their parameter spaces!

• New effects beyond MSSM can be relevant.