Hadronic contributions to $(g-2)_{\mu}$ and lattice QCD

Laurent Lellouch

CPT Marseille

Thanks to Tom Blum for providing material

Labex OCEVU

Motivation

Significant disagreement between experiment and SM: (Davier et al '11, E821 '06, PDG '10)

$$\Delta a_{\mu} \equiv a_{\mu}^{
m exp} - a_{\mu}^{
m SM} = 28.7(8.0) imes 10^{-10}$$
 [3.6 σ]

w/ $(\delta a_{\mu}^{
m SM} = 4.9 imes 10^{-10}) \simeq (\delta a_{\mu}^{
m exp} = 6.3 imes 10^{-10})$

- g-2/EDM & E821 expect $\delta a_{\mu}^{\text{exp}}/4$
 - ⇒ potentially very large signal for BSM physics ...
 - ... but theory has to follow

process	$a_{\mu}^{ m SM} imes 10^{10}$	$\delta a_{\mu}^{ m SM} imes 10^{10}$
QED (leptons)	11658471.809	0.015
HVP (LO)	692.3	4.2
EW	15.4	0.2
HLbyL	10.5	2.6
HVP (NLO)	-9.79	0.09

Motivation

Significant disagreement between experiment and SM: (Davier et al '11, E821 '06, PDG '10)

$$\Delta a_{\mu} \equiv a_{\mu}^{
m exp} - a_{\mu}^{
m SM} = 28.7(8.0) \times 10^{-10}$$
 [3.6 σ]

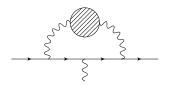
w/ $(\delta a_{\mu}^{
m SM} = 4.9 \times 10^{-10}) \simeq (\delta a_{\mu}^{
m exp} = 6.3 \times 10^{-10})$

- g-2/EDM & E821 expect $\delta a_{\mu}^{\text{exp}}/4$
 - ⇒ potentially very large signal for BSM physics ...
 - ... but theory has to follow

process	$a_{\mu}^{ m SM} imes 10^{10}$	$\delta a_{\mu}^{ m SM} imes 10^{10}$	
QED (leptons)	11658471.809	0.015	
HVP (LO)	692.3	4.2	\Leftarrow
EW	15.4	0.2	
HLbyL	10.5	2.6	\Leftarrow
HVP (NLO)	-9.79	0.09	

- $\Rightarrow \delta a_u^{SM}$ dominated by HVP (LO) and HLbyL
- → both require precise computation of nonperturbative QCD effects
- → opportunity and challenge for lattice QCD (LQCD)

Hadronic contributions: introduction

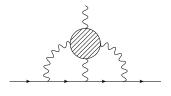


LO hadronic vacuum polarization (HVP) = $O(\alpha^2)$

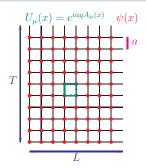
- Obtained from measurement of $e^+e^- \rightarrow \text{hadrons}$ and $\tau \rightarrow \nu_{\tau} + \text{hadrons}$ using dispersion relations
- $\delta a_{\mu}^{\mathrm{HVP,LO}}$: 0.6% (current) ightarrow 0.3% (in 3-5 years)
- ⇒ LQCD not competitive in short term but worth pursuing as cross check and in long term

Hadronic light-by-light (HLbyL) = $O(\alpha^3)$

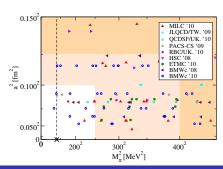
- Cannot be obtained from experiment
- Currently computed with models (χ PT+, MHA, ENJL, AdS-QCD, Schwinger-dyson, . . .)
- ightarrow Glasgow concensus: $10.5(2.6) \times 10^{-10}$ [25%] (Prades et al '09)
 - reasonable, but error is a guesstimate
- LQCD can really help, but very challenging



Lattice QCD on a page



- Lattice gauge theory → mathematically sound definition of NP QCD
- Large but finite # of dof's → evaluate path integral stochastically
- NOT A MODEL: LQCD is QCD when $m_q o m_q^{
 m ph}$, a o 0, $L o \infty$ and stats $o \infty$
- Huge challenge: take these limits w/ fully controlled systematics (in particular $m_{ud} \rightarrow m_{ud}^{ph}$)
- Challenge has been met in last couple of years . . .
- ...for simple quantities (at most 1 hadron in $i \rightarrow f$ state) ...
- ...thanks to important theoretical and algorithmic advances as well as PFlop/s supercomputers



HVP from LQCD

Compute directly in Euclidean spacetime

$$\Pi_{\mu\nu}(q) = \gamma \bigwedge^{\mathbf{q}} \bigvee_{\nu}^{\mathbf{q}} \gamma$$

$$= \int d^4x \, e^{iQ\cdot x} \langle J_{\mu}^{\mathrm{EM}}(x) J_{\nu}^{\mathrm{EM}}(0) \rangle$$

$$= \left(\delta_{\mu\nu} Q^2 - Q_{\mu} Q_{\nu} \right) \Pi(Q^2)$$

Then (Lautrup et al '69, Blum '02)

$$a_{\mu}^{\mathrm{HVP,LO}} = \left(rac{lpha}{\pi}
ight)^2 \int_0^{\infty} dQ^2 \, w(Q^2/m_{\mu}^2) \hat{\Pi}(Q^2)$$

w/ $\hat{\Pi}(Q^2) \equiv \left[\Pi(Q^2) - \Pi(0)\right]$ and $w(Q^2/m_\mu^2)$ known function which heavily weighs $Q^2 \lesssim m_\mu^2$

- ⇒ dominated by very low energies
- ⇒ challenge for lattice

HVP challenges for LQCD

• In $L^3 \times T$, momenta are quantized (e.g. periodic BCs)

$$Q_{\mu}=2\pi\left(n_{0}/T,\cdots,n_{3}/L\right)$$

Even for $T \sim L \lesssim 6 \, \mathrm{fm} \Rightarrow Q_{\mathrm{min}}^2 \gtrsim (200 \, \mathrm{MeV})^2 > m_{\mu}^2$

- \rightarrow fix by using "twisted" BCs (Sachrajda et al '05, Della Morte et al '10)
- Only one calculation of $\Pi_{\mu\nu}(Q)$ has $M_{\pi} \searrow 170$ MeV (Boyle et al '11) \rightarrow fix by using simulations at $M_{\pi}^{\rm ph}$
- No LQCD calculation of $\Pi_{\mu\nu}(Q)$ has reliably evaluated computationally demanding

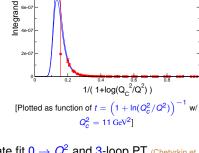
ightarrow SU(3) and Zweig suppressed, but can be $\sim 10\%$ (Della Morte et al '10) of

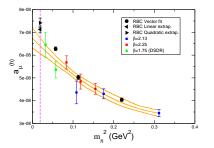
HVP challenges: example

- Boyle et al '11, $a = 0.086 \,\text{fm}$, $M_{\pi} \simeq 290 \,\text{MeV}$, $L^3 \times T = (2.8^3 \times 5.6) \,\text{fm}^4$
- Fit to model

$$\Pi(Q^2) = A + \frac{F_1^2}{Q^2 + M_1^2} + \frac{F_2^2}{Q^2 + M_2^2}$$

- Not much data in relevant region
- ⇒ significant model-dependence
 → reduced in future w/ results at lower Q²
 and new parametrizations (Aubin et al '12)

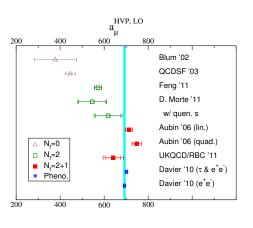




- Integrate fit $0 \to Q_c^2$ and 3-loop PT (Chetyrkin et al '96) w/ $m_u=m_d=0$ and $m_s=m_s^{\rm lat}$ $Q_c^2 \to \infty$
- m_{ud} dependence modeled by quadratic polynomial in M_{π}^2
- ⇒ also some model-dependence
 → reduced in future w/ simulations at M^{ph}_π

8e-07

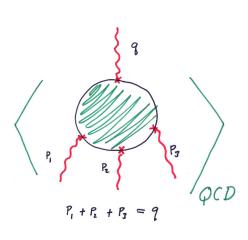
HVP from LQCD: summary



- Only results with N_f = 2 + 1 (or quenched s) should be compared to phenomenology
- No LQCD result has a complete systematic error estimate
- Only Feng et al '11 attempt to estimate quark-disconnected contractions numerically
- ⇒ current LQCD error ≥ 10%

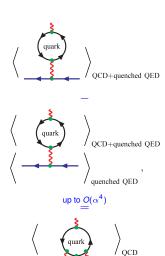
 (Della Morte et al '10)
 - May reduce to few % in 3-5 years
- ⇒ not competitive w/ phenomenology for a while

HLbyL from LQCD: conventional approach



- Correlator of 4 EM currents $\Pi^{\mu\nu\rho\sigma}(q, p_1, p_2)$
- 2 loop momenta & q
- Compute for all possible p₁ & p₂ (O(V₄²)) and up to 256 index combinations . . .
- ... for several q to allow $q \rightarrow 0 \dots$
- ... and for several multiply-disconnected contractions ...
- ... and fit and plug into 2-loop QED integrals!!

HLbyL from LQCD: new approach



Blum et al hep-lat/0509124, PoS LATTICE2008 '08

- Compute and attach "by hand" $\langle J_{\nu}^{\rm EM}(y)J_{\mu}^{\rm EM}(x)\rangle$ to $\langle \mu(p)J_{\alpha}(z)\mu^{\dagger}(p')\rangle$ with γ line $D_{\alpha\nu}(z,y)$
- Integrate over y & z and sum over ν & α
- ightarrow q coupled to g and to quenched γ
- $\rightarrow \mu$ coupled to quenched γ only
- Average over combined gluon & photon configurations
- Subtraction term is product of separate averages of q loop and μ line
- Difference is HLbyL up to $O(\alpha^4)$ corrections
- Gauge configurations identical in both \Rightarrow high correlation should allow isolating $O(\alpha^2)$ -suppressed difference
- Of course, need quark-disconnected contributions

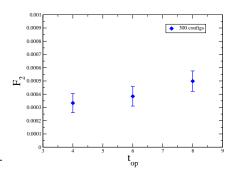
New approach: QED test

Chowdhury, PhD Thesis, U. Conn '09

- Quenched QED on $16^3 \times 32 \times 8$ lattice
- $m_{\mu}/m_e = 40$, e = 1
- Stat. error only

$$F_2(q_{\min}^2) = (3.96 \pm 0.70) \times 10^{-4}$$

- $F_2(q_{\min}^2) = (1.19 \pm 0.32) \times 10^{-4} \text{ on } 24^3$ volume
- ⇒ large finite-V effects
- $(\alpha/\pi)^3 = 1.63 \times 10^{-5}$ which is $\sim 1/10$ LQCD results
- Signal found at q²_{min} in preliminary QCD + QED calculation w/ unphysically large charge and masses
- → very promising, but still a long way to go



Conclusion

- New $(g-2)_{\mu}$ experiments are expected to reduce error by 4
- If central values remain the same and $\delta a_{\mu}^{\rm SM}$ is halved \Rightarrow a 10 σ deviation from the SM!
- Dominant sources of theory uncertainties are $a_{\mu}^{\mathrm{HVP,LO}}$ and a_{μ}^{HLbyL}
- ⇒ LQCD calculations will be very helpful for reducing these uncertainties
 - $\delta a_{\mu}^{\rm HVP,LO}$ using $e^+e^-, au o$ hadrons should be reduced by 1/2 in 3-5 years
 - \rightarrow LQCD can serve as cross-check (and be competitive in long term)
 - It should be possible to reduce $\delta a_{\mu}^{\rm HLbyL}$ by 1/2 in \sim 5 years using LQCD, models and experiment for $\pi\gamma^*\gamma$ (KLOE)
 - → LQCD is vital here
- ⇒ The theory should follow and we all look forward to compare its predictions w/ g-2/EDM and E989 measurements