

The LHC and the detectors

The LHC and the detectors

ATLAS: General purpose large and light

38 countries, 174 institutions, 3000 scientists, 1000 students
7000 tons

Semiconductor tracker

The LHC and the detectors

CMS: General purpose small and heavy

39 countries, 169 institutes, 3170 members including 800 students

The LHC and the detectors

LHCb: one arm forward spectrometer

15 countries, 55 institutes, 804 members

The LHC in 2011

	$2011 /$ Design
Colliding bunches	$1331 / 2808$
Energy/beam	$3.5 / 7 \mathrm{TeV}$
Bunch spacing	$50 / 25 \mathrm{~ns}$
Luminosity	$3.6 \times 1 \mathbf{1 0}^{33} / \mathbf{1 0}^{34} \mathrm{~cm}^{-2} \mathbf{s}^{-1}$

Searches for new physics... are too many to review all in this talk!

To give you an idea, here are some ATLAS-only summary plots of BSM searches, with selected results from SUSY (left) and non-SUSY (right) models...

Searches for new physics

- I will thus focus mainly on what I am most familiar with, that is some SUSY searches
- Here are the links for more results from ATLAS, CMS and LHCb:
https://twiki.cern.ch/twiki/bin/view/AtlasPublic https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults http://lhcb.web.cern.ch/lhcb/Physics-Results/LHCb2012_Winter_Results.html
- There are also many clickable links throughout the talk, to get more information on the searches presented

Inclusive is BsM physics around the corner?

Standard Model backgrounds: tt, W+jets, Z+jets, QCD jets, dibosons...

Other signal/BG discrimination variables

- Azimuthal angle ($\Delta \phi$) between jets and $\mathrm{E}_{\mathrm{T}}^{\text {mis }}$

- Scalar pT sum of objects: $H_{T} \equiv \sum_{i} p_{T}^{\text {jet }, i}+\sum_{i} p_{T}^{\text {lepton }, i}+\sum_{i} p_{T}^{\text {photon }, i}$
- Effective mass: $m_{\text {eff }}=H_{T}+E_{T}^{\text {miss }}$

There are also more complex event variables offering discrimination, for example the razor variable:

Searches for the pair production of two heavy particles, each decaying to an unseen LSP plus jets, using the idea of event hemispheres. All the reconstructed objects in each hemisphere are combined into a single "mega-jet" (-> dijet topology). Introduce a frame R , which is the longitudinally boosted frame that equalizes the magnitude of the two mega-jets 3-momenta and construct the observables:

$$
\begin{array}{c:c}
M_{R}=\sqrt{\left(\left|\vec{p}_{j_{1}}\right|+\left|\vec{p}_{j_{2}}\right|\right)^{2}-\left(p_{z}^{j_{1}}+p_{z}^{j_{2}}\right)^{2}} & \text { Peaks at } \\
M_{T}^{R}=\sqrt{\frac{E_{T}^{m i s s}\left(p_{T}^{j_{1}}+p_{T}^{j_{2}}\right)-\vec{E}_{T}^{m i s s} \cdot\left(\vec{p}_{T}^{j_{1}}+\hat{p}_{T}^{j_{2}}\right)}{2}} & \text { Edge at } M_{\Delta} \\
R=\frac{M_{S}^{2}-M_{\mathrm{LSP}}^{2}}{M_{R}} \quad \begin{array}{l}
\text { Ratio of two estimators of SUSY scale - } \\
\text { describes transverse shape of event }
\end{array}
\end{array}
$$

Razor analysis

CMS-PAS-SUS-12-005

Various signal regions defined in the M_{R} vs R plane, with or without leptons

Exclude up to 1.35 TeV squarks and gluinos for $m_{\text {gluino }} \sim \mathrm{m}_{\text {squark }}$

Jets + missing ET

ATLAS-CONF-2012-033

Requirement	Channel					
	2 jet	2 jet (soft)	3 jet	4 jet	5 jet	6 jet
$E^{\text {miss }}[\mathrm{GeV}]>$	160					
$\Delta \phi\left(\text { jet, } E_{T}^{\text {miss }}\right)_{\min }>$	0.4(i = 1, 2, (3))			$0.4(i=1,2,(3)), 0.2\left(p_{T}>40 \mathrm{GeV}\right.$ jets)		
$E_{T}^{\text {miss }} / m_{\text {eff }}(N j)>$	0.3(2j)	0.4(2j)	0.25(3j)	0.25(4j)	0.2(5j)	0.15(6j)
$m_{\text {eff }}($ incl. $)[\mathrm{GeV}]>$	1900/1400/-	-/1200/-	1900/-/-	1500/1200/900	1500/-/-	1400/1200/900

No discrepancy with respect to SM predictions

Degenerated $1^{\text {st }} \& 2^{\text {nd }}$ generation squarks, LSP mass set to 0 (results hold up to $\sim 200 \mathrm{GeV}$).

Probing GMSB

- In GMSB models, the LSP is the gravitino, the next-to-lightest SUSY particle (NLSP) determines phenomenology

1204.3774
 wino / higgsino NLSP:
$Z+$ jets $+E_{T}{ }^{\text {miss }}$

Probing GMSB

PAS-SUS-12-001

Bino NLSP:

2 photons + jet $+\mathrm{E}_{\mathrm{T}}^{\text {miss }}$

Hrd generation
Can be lighter than the other two, naturalness points to a light third generation Gluino-mediated searches

PAS-SUS-11-028

3rd generation

Direct searches

2 b-jets + MET + MCT*

* cotransverse mass of the bjet system

GMSB model

PRL 108 (2012) 181802

$m\left(\mathrm{t}_{1}\right)<310 \mathrm{GeV}$ for $115 \mathrm{GeV}<\mathrm{m}(\mathrm{LSP})<230 \mathrm{GeV}$
$m\left(\tilde{b}_{1}\right)<390 \mathrm{GeV}$ excluded for $m\left(\tilde{\chi}^{0}\right)<60 \mathrm{GeV}$

Direct gaugino
 What about the electroweak sector?

1204.5638

$\mathbf{B R}\left(\tilde{\chi}_{1}^{ \pm} \rightarrow \tilde{\mathbf{l}}^{ \pm} \nu\right)=\mathbf{B R}\left(\tilde{\chi}_{1}^{ \pm} \rightarrow \mathbf{1}^{ \pm} \tilde{\nu}\right)=\mathbf{5 0} \%$
$\operatorname{BR}\left(\tilde{\chi}_{2}^{0} \rightarrow \tilde{\mathbf{l}}^{ \pm} \mathbf{1}^{\mp}\right)=\mathbf{B R}\left(\tilde{\chi}_{2}^{0} \rightarrow \tilde{\nu} \nu\right)=\mathbf{5 0} \%$

3-lepton $+\mathrm{E}_{\mathrm{T}}{ }^{\text {miss }}+\mathrm{Z}$-veto +b -jet veto

Probing 'invisible' production

Two search channels:
Jet $+E_{T}{ }^{\text {miss }}$
$\gamma+E_{T}{ }^{\text {miss }}$
arXiv:1204.0821
EXO-11059-Winter2012

Assumptions:

- Dirac particles
- heavy particle mediating interactions with dark sector can be integrated out

Long-lived particles

- If the mass gap between NLSP and LSP is very small, metastable NLSP can be produced
- Search for high-pt tracks that stop in outer TRT in jets+MET events ATLAS-CONF-2012-034

Exclude AMSB models with $\mathrm{m}\left(\chi_{1}{ }^{+}\right)<90(118) \mathrm{GeV}$ and $0.2(1)<\tau<90(2) \mathrm{ns}$

Precision measurements: B-> $\mu \mu$

SM prediction:
SM B $\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right)=(3.2 \pm 0.2) \times 10^{-9}$
SM B $(B \rightarrow \mu \mu)=(0.1 \pm 0.01) \times 10^{-9}$

Branching ratio very sensitive to new physics

CDF has an excess ($10 \mathrm{fb}^{-1}$):

$$
\mathrm{B}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu \mu\right)=\left(1.3^{+0.9}{ }_{-0.7}\right) \times 10^{-8}
$$

CMS limit at 95% CL ($5 \mathrm{fb}^{-1}$) :
1203.3976

$$
\begin{aligned}
& \mathrm{B}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu \mu\right)<7.7 \times 10^{-9} \\
& \mathrm{~B}(\mathrm{~B} \rightarrow \mu \mu)<1.8 \times 10^{-9}
\end{aligned}
$$

Precision measurements: $B->\mu \mu$

1203.4493

Set the most stringent upper limits to date at 95% CL:

$$
\begin{aligned}
& \mathrm{B}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu \mu\right)<4.5 \times 10^{-9} \\
& \mathrm{~B}(\mathrm{~B} \rightarrow \mu \mu)<1.03 \times 10^{-9}
\end{aligned}
$$

With the 2012 data, expect a 3σ evidence if $B R\left(B_{s} \rightarrow \mu \mu\right)$ is SM [X. Vidal, Pheno12]

And the search continues...

- The searches are now becoming very diversified, the accumulation of statistics allow new channels to open up
- But so far, in the new physics searches, it's been limits, limits, limits
- 2012:
- $4 \mathrm{TeV} /$ beam
- already more than $2 \mathrm{fb}^{-1}$
- luminosity at $6.0 \times 10^{33} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$
- $15 \mathrm{fb}^{-1}$ by the end of the year

BACKUP slides...

Object identification

The cMSSM plane with $4.7 \mathrm{fb}^{-1}$

ATLAS-CONF-2012-033
Up to 6 jets + ETmiss

ATLAS-CONF-2012-037
Up to 9 jets + ETmiss

ATLAS-CONF-2012-041
1 lepton + jets + ETmiss

Inclusive searches are already producing stringent limits on gluinos and the first two generations of squarks... If it exists, where could SUSY be hiding?
$t \bar{t} m_{C T}(b, b)$ from JHEP 1003:030,2010:

Contransverse Mass

$m_{C T}^{2}=\left[E_{T}\left(b_{1}\right)+E_{T}\left(b_{2}\right)\right]^{2}-\left[\overrightarrow{p_{T}}\left(b_{1}\right)-\overrightarrow{p_{T}}\left(b_{2}\right)\right]$

- $\tilde{b}_{1} \tilde{b}_{1}$ events: Endpoint at $\frac{m\left(\tilde{b}_{1}\right)^{2}-m\left(\tilde{\chi}_{1}^{0}\right)^{2}}{m\left(\tilde{b}_{1}\right)}$
- $t \bar{t}$ events: Endpoint at $\approx 135 \mathrm{GeV}$

