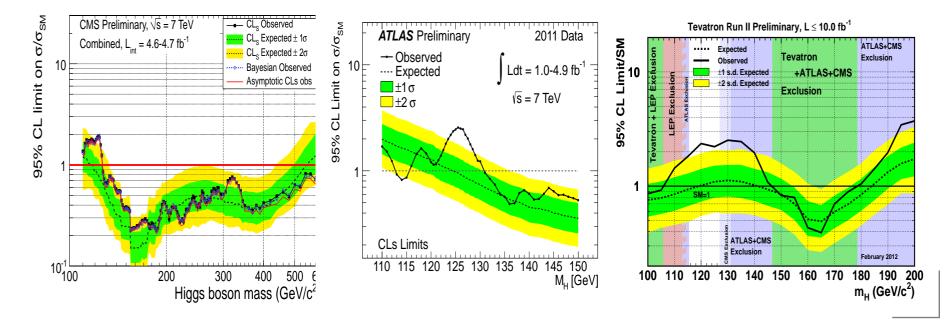
Implications of a 125 GeV Higgs

Abdelhak Djouadi (U. Paris-Sud/CERN)

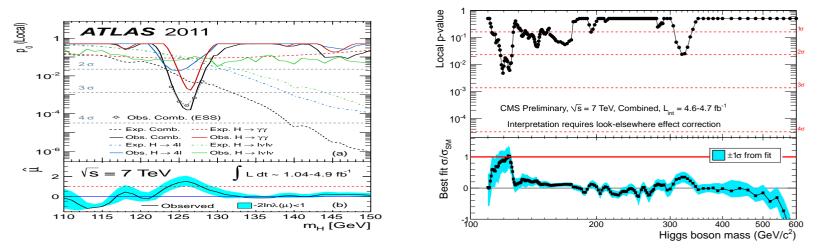
Is there really a 125 GeV Higgs?
 Implications for the SM
 Implications for the MSSM*
 Conclusion


* based on Arbey+Battaglia+Mahmoudi+Quevillon+AD, arXiv:1112.3028 and work in preparation.

RPP Montpellier 14/05/2012Implications of a 125 GeV Higgs – A. Djouadi – p.1/??

1. Is there really a 125 GeV Higgs?

We desperately wanted a Higgs for last Christmas and we got: – SM Higgs excluded everywhere except for M_H =123.5-127.5 GeV – a $\approx 3\sigma$ signal at $M_H \approx$ 125 GeV \rightarrow thanks to LHC, ATLAS, CMS! (let us hope it will not go away....) Also a 2.2 σ "hint" from Tevatron!


RPP Montpellier 14/05/2012

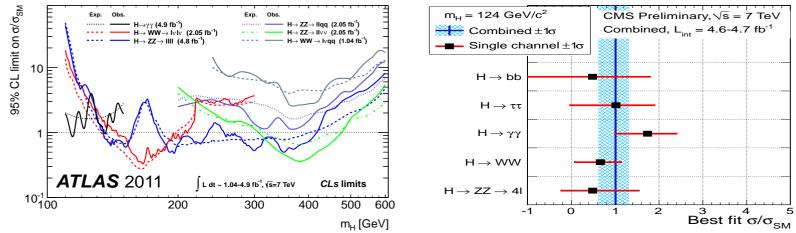
Implications of a 125 GeV Higgs – A. Djouadi – p.2/??

1. Is there really a 125 GeV Higgs?

ullet Is there really a Higgs at about pprox 125 GeV?

- ATLAS sees 3.5σ excess and CMS a 3.1σ one at mass ≈ 125 GeV \Rightarrow naive/theorist combination makes a signal with $\approx 4.7\sigma$ significance. This is local significance only! Include Look Elsewhere Effect (LEE), however, elsewhere of LEE should be simply the other experiment!

• Are there one or two Higgs particles?


- there are excesses in CMS at 124 (125?) GeV and in ATLAS at 126 GeV but $\gamma\gamma$, $4\ell^{\pm}$ resolutions seem to be of order of 1–2 GeV. Same Higgs. - But also: CMS sees two peaks, at 119 GeV and the other at 124 GeV. At 119 GeV: only 2.1σ in $4\ell^{\pm}$ and ATLAS sees nothing. Fluctuation.

1. Is there really a 125 GeV Higgs?

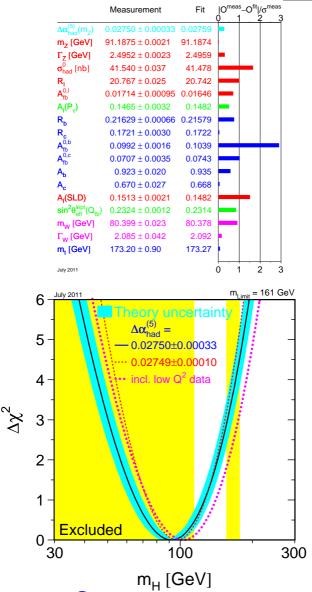
• Is the excess due to a Higgs particle or to something else?

– Probably a spin–0 particle as it decays into $\gamma\gamma$. But spin 2 possible. But could be anything: radion, heavy (KK) graviton, techni–something...

– Production/decay from excesses: couples to particles like a Higgs eg. ATLAS excess: 2.8 σ in $\gamma\gamma$, 2.1 σ in ZZ \rightarrow 4 ℓ and 1.4 σ in WW \rightarrow $\ell\ell\nu\nu$

• If it is indeed a Higgs particle, is it a SM-like Higgs?

- seems to be SM like: right magnitude of $\sigma \times BR$ (up to factor of 2).
- but local significance too high: expect only 2.5 σ and get $\gtrsim 3\sigma$ (and $\gamma\gamma$ excess in CMS seems to be driven by VBF–like events...)
- but CDF/D0 excess from $WH \rightarrow \ell \nu b \overline{b}$: Higgs not fermiophobic. More stats will tell! Here, assume a SM–like Higgs at 125 GeV. RPP Montpellier 14/05/2012 Implications of a 125 GeV Higgs – A. Djouadi – p.4/??


The SM: a rather predictive theory:
 A triumph for high-energy physics!
 Indirect constraints from EW data^a
 H contributes to RC to W/Z masses:

$$\mathcal{W}_{\mathbf{Z}} = \mathcal{W}_{\mathbf{X}} = \mathcal{W}_{\mathbf{X}} + \cdots$$

Fit the EW precision measurements, one obtains $M_{\rm H}=92^{+34}_{-26}$ GeV, or

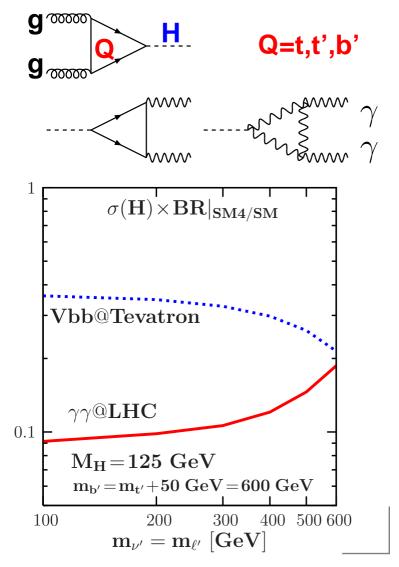
$M_{H} \lesssim 161$ GeV at 95% CL

compared with "observed" $M_{H}\!=\!125$ GeV A very non-trivial check of SM consistency! In 1995: top discovery with $m_{t}\!\approx\!175$ GeV while best-fit in the SM is for same value: it was considered as a great achievement....

^{*a*} Still some problems with A_{FB}^{b} (LEP), A_{FB}^{t} (TeV) and g-2 but not severe... RPP Montpellier 14/05/2012 Implications of a 125 GeV Higgs – A. Djouadi – p.5/??

2. Implications for SM: spectrum complete

If excess due to Higgs: no room for a 4th fermionic generation! Indeed, an extra doublet of quarks and leptons (with heavy ν') would:

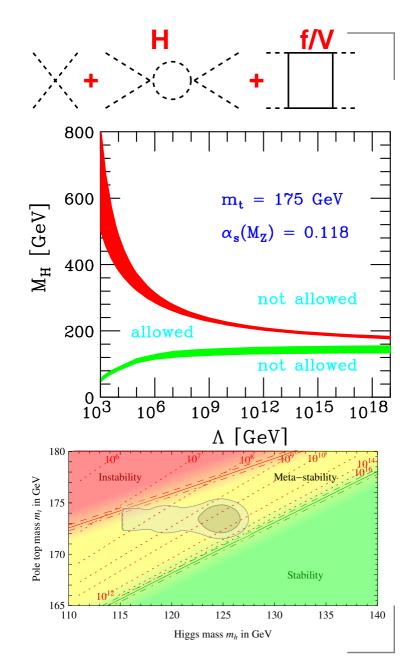

- increase $\sigma(\mathbf{gg}
 ightarrow \mathbf{H})$ by factor $pprox \mathbf{9}$
- Hightarrowgg suppresses BR(bb,VV) by pprox2
- strongly suppresses ${f BR}({f H}
 ightarrow \gamma \gamma)$

NLO $\mathcal{O}(\mathbf{G_Fm_{F'}^2})$ effects very important:

as for $m_{\mathbf{Q}'} pprox m_{\ell'} = 600$ GeV

- $g_{\rm HVV}$ further suppressed by 50%
- g_{Hbb} also suppressed by \approx 10% $\Rightarrow \sigma(WH \rightarrow Wbb)|_{SM4/SM} \lesssim \frac{1}{3} - \frac{1}{5}$ No excess in $q\bar{q} \rightarrow Wbb$ at Tevatron!

 $\Rightarrow \sigma(\mathbf{gg} \to \gamma \gamma)|_{\mathbf{SM4/SM}} \lesssim \frac{1}{5} - \frac{1}{10}$ No excess in $\mathbf{gg} \to \mathbf{H}! \to \gamma \gamma$ at LHC! If indeed a 125GeV H: SM4 ruled out... AD+Lenz (2012) \Rightarrow


RPP Montpellier 14/05/2012

Implications of a 125 GeV Higgs – A. Djouadi – p.6/??

2. Implications for the SM: extendable up $\mathbf{M}_{\mathbf{GUT}}$

$$\begin{split} & \overline{\lambda} \!=\! M_H^2/2v^2 \text{ increases with energy Q} \\ & \text{Large } \lambda \text{: Higgs contributions dominant} \\ & \text{RGE} \Rightarrow \lambda(\mathbf{Q}^2) = \lambda(\mathbf{v}^2)/[1 - \frac{3}{4\pi^2}\log\frac{\mathbf{Q}^2}{\mathbf{v}^2}] \\ & \mathbf{Q}^2 \ll \mathbf{v}^2 : \lambda \to \mathbf{0}_+ \text{: triviality} \\ & \mathbf{Q}^2 \gg \mathbf{v}^2 : \lambda \to \mathbf{0}_+ \text{: triviality} \\ & \mathbf{Q}^2 \gg \mathbf{v}^2 : \lambda \to \infty \text{: Landau pole} \\ & \text{SM only valid before } \lambda \lesssim 4\pi \approx \infty \\ & \Lambda_C \approx M_H \Rightarrow M_H \lesssim 650 \text{ GeV} \\ & \Lambda_C \approx M_P \Rightarrow M_H \lesssim 180 \text{ GeV} \end{split}$$

 $\begin{array}{ll} \mbox{Small λ: top,W,Z contributions dominant} \\ \frac{\lambda(Q^2)}{\lambda(v^2)} \approx s1 + 3 \frac{2M_W^4 + M_Z^4 - 4m_t^4}{16\pi^2 v^4} \log \frac{Q^2}{v^2} \\ \mbox{tops lead to $\lambda(0) < \lambda(v)$: unstable vacuum} \\ \mbox{SM valid only if $v \equiv EW-min, ie $\lambda(Q^2) > 0$} \\ \mbox{$\Lambda_C \sim M_P \Rightarrow M_H \gtrsim 130 \ GeV$} \\ \mbox{refinements+uncertainties+metastability} \Rightarrow \\ \mbox{125 GeV Higgs OK!} \qquad \mbox{Espinosa et al. 2011} \end{array}$

RPP Montpellier 14/05/2012

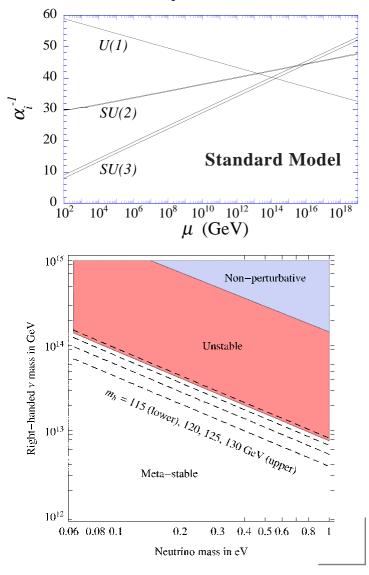
Implications of a 125 GeV Higgs – A. Djouadi – p.7/??

2. Implications for the SM: respectable theory?

With the Higgs, the SM is a perturbative, renormalisable, unitary theory. Can be extrapolated up to very high energy (even ultimate) scales.

However there are theoretical problems:

- extremely fine-tuned.... so what?
- no coupling unification; thresholds?
- not a theory of flavor; too bad...
 - \Rightarrow Maybe nature is not perfect?


To be extended to cope with experiment:

• needs framework for neutrino masses \Rightarrow simply add $\nu_{\mathbf{R}}$'s at very high scale will enter stability limit and help BAU?

Espinosa et al, 2011

no thermal dark matter candidate
 ⇒ axion would make it? try harder...

 Maybe minimal SM extension is the TO(a)E?
 (esp. no hint of new physics@LHC yet...)

RPP Montpellier 14/05/2012 Implications of a 125 GeV Higgs – A. Djouadi – p.8/??

In MSSM with two Higgs doublets: $H_1=inom{H_1^0}{H_1^-}$ and $H_2=inom{H_2^+}{H_2^0}$,

- $\ensuremath{\bullet}$ to cancel the chiral anomalies introduced by the new h field,
- give separately masses to d and u fermions in SUSY invariant way.

After EWSB (which can be made radiative: more elegant than in SM): three dof to make $W_L^{\pm}, Z_L \Rightarrow$ 5 physical states left out: h, H, A, H^{\pm} Only two free parameters at the tree level: $tan\beta, M_A$; others are:

$$\begin{split} \mathbf{M_{h,H}^2} = \frac{1}{2} \begin{bmatrix} \mathbf{M_A^2} + \mathbf{M_Z^2} \mp \sqrt{(\mathbf{M_A^2} + \mathbf{M_Z^2})^2 - 4\mathbf{M_A^2}\mathbf{M_Z^2}\mathbf{cos^2}2\beta} \\ \mathbf{M_{H^\pm}^2} = \mathbf{M_A^2} + \mathbf{M_W^2} \\ \tan 2\alpha = \tan 2\beta \left(\mathbf{M_A^2} + \mathbf{M_Z^2}\right)/(\mathbf{M_A^2} - \mathbf{M_Z^2}) \end{split}$$

Radiative corrections very important in the MSSM Higgs sector.

a huge effort from early 1990s up to now to calculate them...

Dominant corrections are due to top (s)quark at the one-loop level

$$\mathrm{M_h} \stackrel{\mathrm{M_A} \gg \mathrm{M_Z}}{
ightarrow} \mathrm{M_Z} |\mathrm{cos}2eta| + rac{3 ar{\mathbf{m}}_{\mathrm{t}}^4}{2 \pi^2 \mathbf{v}^2 \sin^2 eta} \left| \ \log rac{\mathrm{M_S}^2}{ar{\mathbf{m}}_{\mathrm{t}}^2} + rac{\mathrm{X}_{\mathrm{t}}^2}{2 \mathrm{M_S}^2} igg(1 - rac{\mathrm{X}_{\mathrm{t}}^2}{6 \mathrm{M_S}^2}igg)
ight|$$

Okada+Yamaguchi+Yanagida, Ellis+Ridolfi+Zwirner, Haber+Hempfling (1991)

depending on
$$tan\beta$$
, $M_S \equiv \sqrt{m_{\tilde{t}_1}m_{\tilde{t}_1}}$, $X_t = A_t - \mu/tan\beta$:
 $M_h^{max} \rightarrow M_Z + 30 - 50$ GeV...

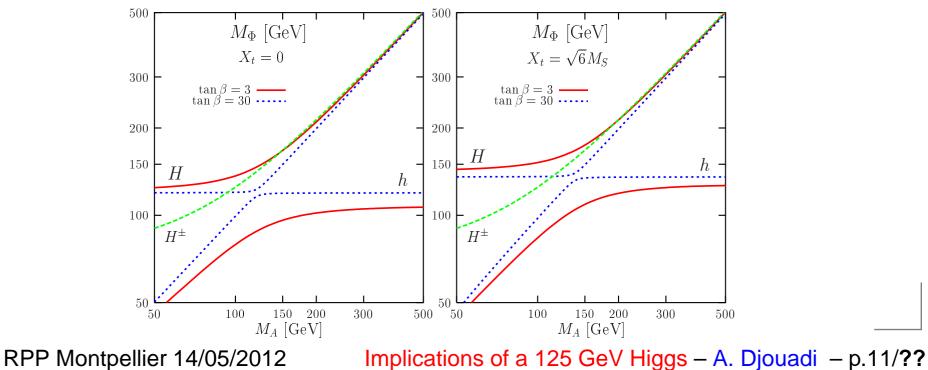
• Full one-loop including all contributions $\mathbf{ ilde{t}}, \mathbf{ ilde{b}}, \mathbf{ ilde{q}}, \mathbf{\Phi}, \mathbf{ ilde{\ell}}, \chi, \mathbf{etc..}$

Brignole, Chankowski+Rosiek+Pokorski, Dabelstein, Pierce+Bagger+Matchev+Zhang (92-96)

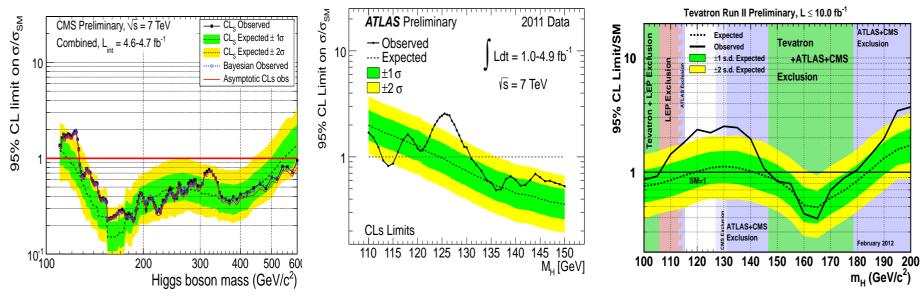
RGE improved one–loop corrections

Carena+Espinosa+Quiros+Wagner, Haber+Hempfling+Hoang (95–96)

- Dominant two–loop corrections: $\mathcal{O}(\alpha_{\mathbf{t}}\alpha_{\mathbf{s}}), \mathcal{O}(\alpha_{\mathbf{b}}\alpha_{\mathbf{s}}), \mathcal{O}(\alpha_{\mathbf{t}}^{2}), \mathcal{O}(\alpha_{\mathbf{b}}^{2})$ Heinemeyer+Hollik+Weiglein, Brignole+Degrassi+Slavich+Zwirner (98–02)
- Dominant three–loop corrections: $\mathcal{O}(\alpha_t \alpha_s^2)$ contributes \approx 0.5 GeV Harlander+Kant+Mihaila+Steinhauser (2010)


Impact of missing corrections estimated below 1 GeV (HKMS)!

RPP Montpellier 14/05/2012 Implications of a 125 GeV Higgs – A. Djouadi – p.10/??


Radiative corrections implemented in two different ways in general:

- On-shell scheme (OS) as in the MSSM Higgs code FeynHiggs Heinemeyer+Hollik+Weiglein+Han+....
- $\overline{\mathrm{DR}}$ scheme à la BDSZ as in RGE codes Softsusy, Spheno, Suspect Slavich, Allanach, Porod, Kneur+Moultaka+AD

Difference between the two approaches: $\Delta M_h\approx 2$ GeV in general, assumed to be the theoretical+"experimental" uncertainty on M_h no-mixing case: $M_H\!\lesssim\!120$ GeV; max-mixing case: $M_H\!\lesssim\!135$ GeV

In the following, I assume that a 125 ± 2 GeV Higgs has been observed, (no choice anyway as only $122.5\!\le\!M_h\!\le\!127.5$ GeV is now allowed...)

and that it is the one of the MSSM... I will ask the following questions:

- what are the implications in unconstrained and constrained MSSMs?
- what happens to MSSM Higgs sector if one includes other constraints?
- \bullet could one increase the rate for the $h \to \gamma \gamma$ signal?
- what are the implications for sparticle searches (mainly stops)?

From: Arbey, Battaglia, Mahmoudi, Quevillon, AD, arXiv:1112.3028

The mass value 125 GeV is rather large for the MSSM h boson, \Rightarrow one needs from the very beginning to almost maximize it... Maximizing M_h is maximizing the radiative corrections; at 1-loop:

$$\mathrm{M_h} \stackrel{\mathrm{M_A} \gg \mathrm{M_Z}}{
ightarrow} \mathrm{M_Z} |\mathrm{cos}2eta| + rac{3 ar{\mathrm{m}_t^4}}{2 \pi^2 \mathrm{v}^2 \mathrm{sin}^2 \, eta} \left| \ \log rac{\mathrm{M_S^2}}{ar{\mathrm{m}_t^2}} + rac{\mathrm{X_t^2}}{2 \mathrm{M_S^2}} \left(1 - rac{\mathrm{X_t^2}}{6 \mathrm{M_S^2}}
ight)
ight|$$

- decoupling regime with $\mathbf{M}_{\mathbf{A}}\!\sim\!\mathcal{O}$ (TeV);
- \bullet large values of $\mbox{tan}\beta\gtrsim 10$ to maximize tree-level value;
- ullet maximal mixing scenario: $\mathbf{X_t} = \sqrt{6} \mathbf{M_S}$;
- \bullet heavy stops, i.e. large $M_{\mathbf{S}}\!=\!\sqrt{m_{\tilde{t}_1}m_{\tilde{t}_2}};$

we choose at maximum $M_{
m S}\!\lesssim\!3$ TeV, not to have too much fine-tuning....

Do the complete job as in real life:

- small contributions of entire SUSY spectrum: $\Phi, \chi^{\pm}_i, \chi^0_i, \tilde{q}_i, \tilde{l}_i, \tilde{g}_{...}$
- complete radiative corrections up to two–loops

We use the RGE codes Suspect Kneur+Moultaka+AD and Softsusy Allanach which implement the known radiative corrections in the \overline{DR} scheme.

To evaluate M_h , perform a full scan of the MSSM parameter space; too complicated in the general MSSM as there are 105 free parameters

 \Rightarrow work in the phenomenological MSSM or pMSSM:

- no CP or flavor-violation: no new phase and diagonal $\mathbf{\tilde{m}}, \mathbf{A}$ matrices,
- universal first and second generation sfermions to cope with flavor.

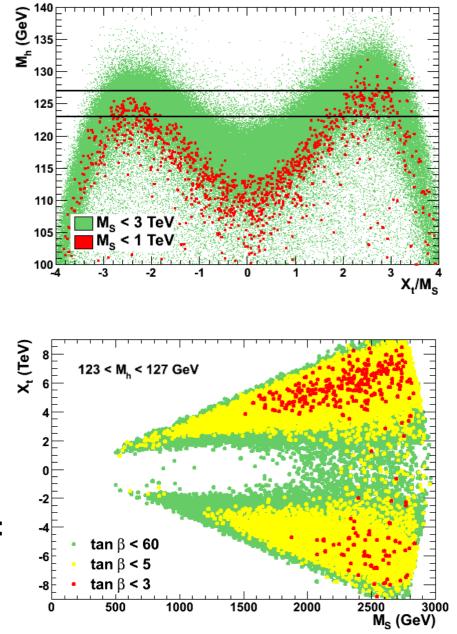
Only 22 free parameters: $tan\beta$, M_A , μ , $M_{1,2,3}$, $m_{\tilde{f}_L}$, $m_{\tilde{f}_R}$, A_f and only a few of them will play and important role in the Higgs sector...

Perform a full and fine scan of the pMSSM parameter space:

 $1 \leq \tan\beta \leq 60\,, \ 50 \ \mathrm{GeV} \leq \mathbf{M_A} \leq 3 \ \mathrm{TeV}, \ -9 \ \mathrm{TeV} \leq \mathbf{A_f} \leq 9 \ \mathrm{TeV},$

 $\begin{array}{l} 50 \; {\rm GeV} \leq m_{\tilde{f}_L}, m_{\tilde{f}_R}, M_3 \leq 3 \; {\rm TeV}, 50 \; {\rm GeV} \leq M_1, M_2, |\mu| \leq \! 1.5 \; {\rm TeV} \\ \bullet \; \mbox{determine the regions of parameter space where} \; 123 \leq \! M_h \leq \! 127 \; \mbox{GeV} \\ (2 \; \mbox{GeV} \; \mbox{uncertainty includes both "experimental" and "theoretical" error)} \end{array}$

• require h to be SM–like: $\sigma(h) \times BR(h \rightarrow VV) \gtrsim 0.9H_{SM}$

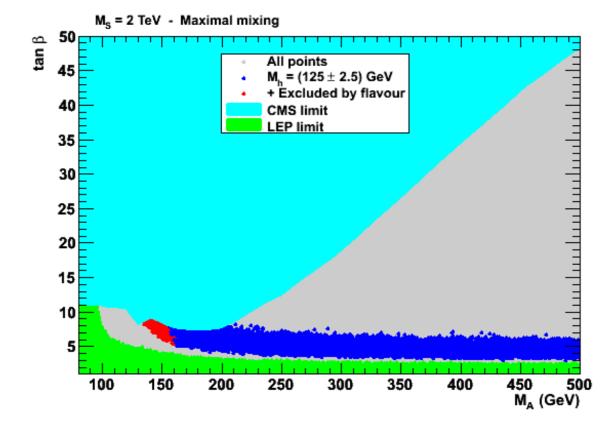

(we will also consider the possibility that H is the $H_{\rm SM}$, see later).

Main results:

- \bullet Large $M_{\mathbf{S}}$ values needed:
- $M_{\mathbf{S}} pprox 1$ TeV: only maximal mixing
- $M_{\rm S}\approx 3$ TeV: only typical mixing.
- Large tan β values favored but tan $\beta\!\approx\!3$ possible if $M_{\mathbf{S}}\!\approx\!3\text{TeV}$
- What about other benchmarks?

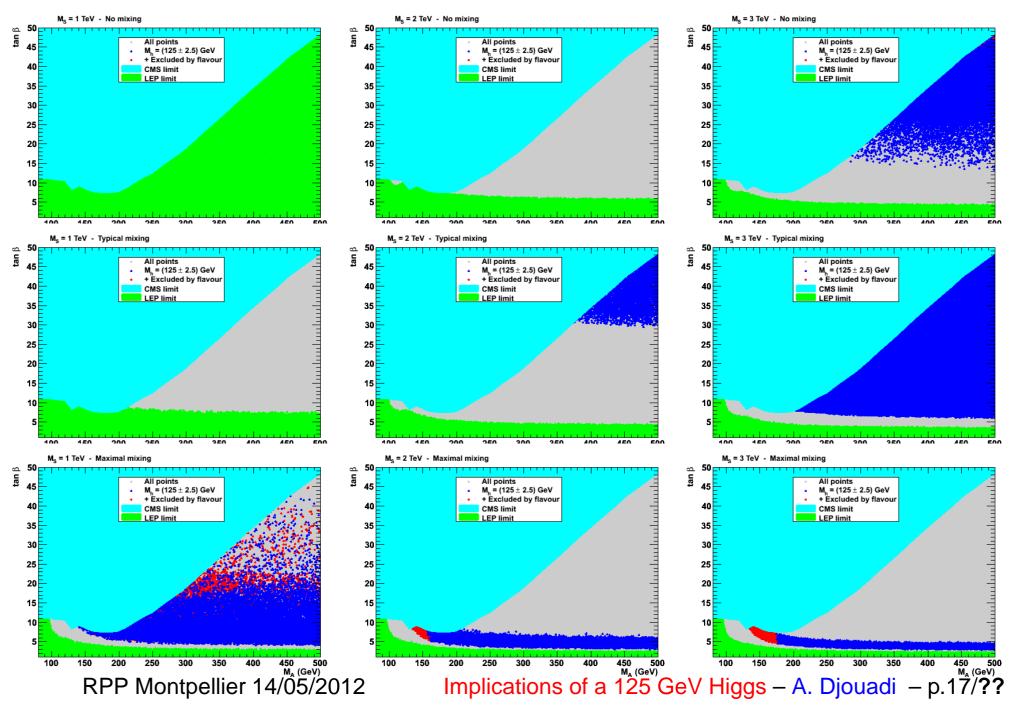
Carena+Heinemeyer+Wagner+Weiglein

- small $\alpha_{\rm eff}$ scenario with $g_{\rm hbb}\approx$ 0: ruled out by LHC/Tevatron data.
- gluophobic h with $g_{hgg} \ll g_{H_{\rm SM}gg}$ ruled out by $4\ell^+, \gamma\gamma$ signals at LHC (difficult to achieve as \tilde{t}_1 heavy..).
- no SUSY regime with light sparticles: BR(h $\rightarrow \chi_1^0 \chi_1^0)$ should be small...
- max and no-mix need to be updated!


RPP Montpellier 14/05/2012

Implications of a 125 GeV Higgs – A. Djouadi – p.15/??

update of $[M_{\mathbf{A}},tan\beta]$ propaganda plot is desperately needed!


Besides LEP2 and $A/H/h \rightarrow \tau \tau$ searches, one must now include:

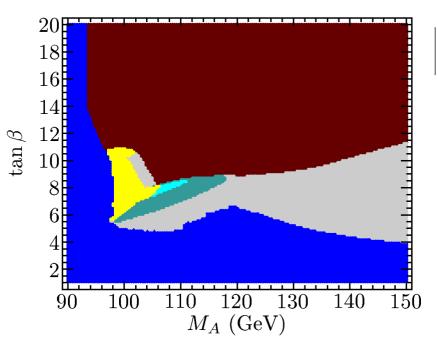
- ullet combined ATLAS+CMS of au au and $t o bH^+$ searches at low $M_{f A}$
- \bullet the limit $122.5\!\leq\!M_h\!\leq\!127.5$ GeV from $H_{\rm SM}$ searches
- \bullet constraints from flavor: at least (direct!) limits from $B_{\mathbf{s}}\!\rightarrow\!\mu\mu$...

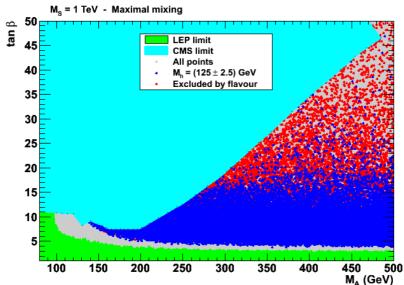
RPP Montpellier 14/05/2012

Implications of a 125 GeV Higgs – A. Djouadi – p.16/??

Are we really in decoupling regime?

- \bullet are small values of M_A allowed? \bullet can H be the SM-like Higgs boson? YES!, if no other constraints than:
- $M_{H} pprox 125 \pm 2$ GeV
- $g_{HVV} \approx g_{H_{SM}VV}$


Heinemeyer+Stal+Weiglein


$$\begin{split} \mathbf{M_A} &\approx & \mathbf{100} \ \mathbf{GeV}, \mathbf{tan}\beta \approx \mathbf{6-10}, \\ \mathbf{M_S} &\approx & \mu \approx & \mathbf{1} \ \mathbf{TeV}, \mathbf{X_t} \approx & \sqrt{\mathbf{6}}\mathbf{M_S}, \\ &\Rightarrow \mathbf{M_H} \approx & \mathbf{125} \ \mathbf{GeV} \text{ ; } \mathbf{M_h} \approx & \mathbf{98} \ \mathbf{GeV!} \end{split}$$

[in ABDMQ scan, only very few points (20 out of 10^6 valid) satisfy conditions but they are all ruled out by $b\to s\gamma$

\Rightarrow only h SM–like is likely...

maybe needs more detailed studies?]

Can one change the h prod rates?

• suppress g_{hWW} or g_{hbb} couplings \Rightarrow loose Wh $\!\!\!\!\rightarrow \ell \nu b \bar{b}$ Tevatron signal

• suppress g_{hZZ} or g_{htt} (incr. g_{hbb}) \Rightarrow loose $h \rightarrow ZZ \rightarrow 4\ell$ ATLAS signal hard to change tree-level couplings..

Only change is the $h\gamma\gamma$ coupling: increase to explain $\gamma\gamma$ LHC excess?

- light stau's and large $\mu an\!eta$
 - Carena+Gori+Shah+Wagner
- light $\chi_{\mathbf{1}}^{\pm}$ in non-univ MSSM

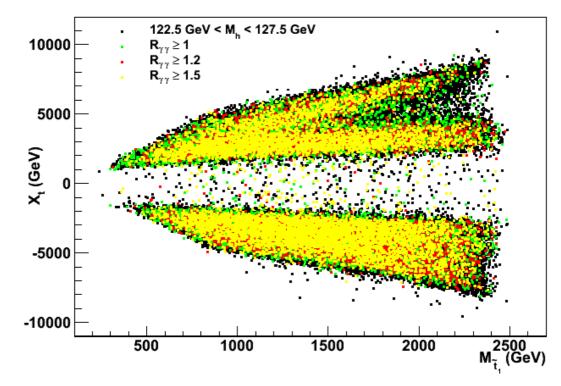
Driesen+Illana+Hollik+AD

- possibility of light \widetilde{t} :
- \Rightarrow max-mixing: $\sigma(\mathbf{gg} \rightarrow \mathbf{h})$ suppressed.
- \Rightarrow no mixing: yes, but stops too heavy. Arvanitaki+Villadoro,AD

 BMSSM? Ellwanger etal, King etal., Kraml+Jiang+Gunion · · · see J. Gunion's talk

TLAS Preliminary 2011 Data CMS Preliminary. √s = 7 Te\ Combined. L = $4.6-4.7 \text{ fb}^{-1}$ Observed · Expected _dt = 1.0-4.9 fb⁻ ±1σ s = 7 TeV +2 σ ATLAS 300 100 110 120 130 140 150 400 500 6 M, [GeV] n" (GeV/c²) Higgs bosor $\tan\beta = 60$ 1400 1200 μ [GeV] 1000 800 600 300 350 400 450 500 m_{L3} [GeV] $\sigma(gg \to \gamma\gamma)|_{\rm MSSM}$ $\sigma(gg \to \gamma \gamma)|_{\rm MSSM}$ $\tan \beta = 2.5$ $\tan\beta = 50$ $M_A = 1 \text{ TeV}$ $M_A = 1 \text{ TeV}$ 1.20.4 $m_{\tau} = 200 \text{ GeV}$ 0.21000 15002000 $1\,000$ 1500 $X_t \, [\text{GeV}]$ $-\mu$ [GeV]

Fevatron Run II Preliminarv. L \leq 10.0 fb⁻¹


RPP Montpellier 14/05/2012

Implications of a 125 GeV Higgs – A. Djouadi – p.19/??

How light superparticles can be in pMSSM with a 125 GeV Higgs?

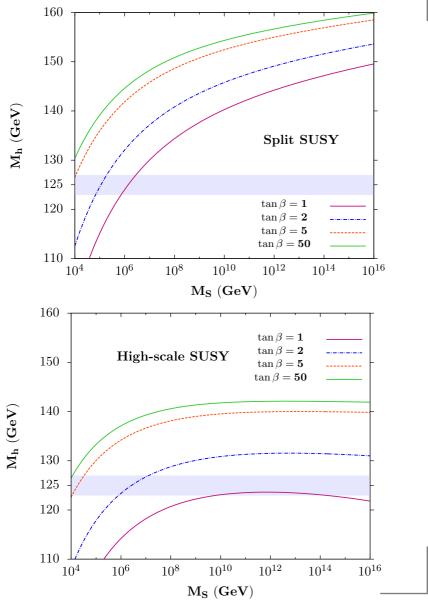
- ullet non-universal gaugino masses and μ parameter unconstrained,
- non-universal sfermions masses: decouple sleptons from squarks do not affect $M_h \Rightarrow$ light $\chi^{\pm}_{1,2}, \chi^0_{1...4}, \tilde{\ell}^{\pm}, \tilde{\nu}$ beyond LEP2 possible!
- first/second gen. squarks as well as gluinos can be very heavy...

But not main player stop! How light or heavy can the stops be?

RPP Montpellier 14/05/2012

Implications of a 125 GeV Higgs – A. Djouadi – p.20/??

3. Implications in pMSSM: high scale SUSY


The scale $M_{
m S}$ seems to be large. There are two extreme possibilities

• Split SUSY: allow fine-tuning scalars (including H_2) at high scale gauginos-higgsinos at weak scale (unification+DM solutions still OK) $M_h \propto \log(M_S/m_t) \rightarrow \text{large}$ Arkani-Hamed+DimopoulosGiudice, Romanino

• SUSY broken at the GUT scale...

give up fine-tuning and everything else still, $\lambda\!\propto\!M_{H}^{2}$ related to gauge cplgs $\lambda(\tilde{m})\!=\!\frac{g_{1}^{2}(\tilde{m})\!+\!g_{2}^{2}(\tilde{m})}{8}(1+\delta_{\tilde{m}})$... leading to $M_{H}\!=\!\!$ 120–140 GeV ... Hall+Nomura, Giudice+Strumia Bernal+Slavich+AD

In both cases small $an\!eta$ needed...

RPP Montpellier 14/05/2012

Implications of a 125 GeV Higgs – A. Djouadi – p.21/??

Constrained MSSMs are interesting from model building point of view:

- provide concrete schemes for supersymmetry breaking
- solve some problems of unconstrained MSSM: flavor, CPV, universality,
- reduce number of input parameters and are thus more predictive

Prototype model: the minimal supergravity model (mSUGRA).

- Underlying assumption: SUSY–breaking occurs in a hidden sector communicating with visible sector through gravitational interactions,
- parameters obey a set of boundary conditions at $M_{
 m GUT}\!pprox\!10^{16}\,$ GeV
- universal soft terms emerge if the interactions are "flavor-blind"

 $\Rightarrow \text{ only 4.5 inputs: } \tan\beta \ , \ m_{1/2} \ , \ m_0 \ , \ A_0 \ , \ \ \mathrm{sign}(\mu)$ In GMSB, SSB transmitted to MSSM fields via SM gauge interactions. Minimal inputs: $\tan\beta \ , \ \mathrm{sign}(\mu) \ , \ M_{\mathrm{mes}} \ , \ \Lambda_{\mathrm{SSB}} \ , \ N_{\mathrm{mess fields}}$ In AMSB, SSB in hidden sector transmitted via (super-Weyl) anomalies. Minimal inputs: $\mathbf{m_0} \ , \ \mathbf{m_{3/2}} \ , \ \tan\beta \ , \ \mathrm{sign}(\mu)$ Using Suspect+Softsusy, perform scans of the models parameter space and confront them with LHC constraint 123 $\mathrm{GeV} \leq M_{\mathrm{h}} \leq 127 \ \mathrm{GeV}$

The following ranges are considered for the model input parameters besides $1 \le aneta \le 60$ and sign(μ) = ± 1 that are common to all:

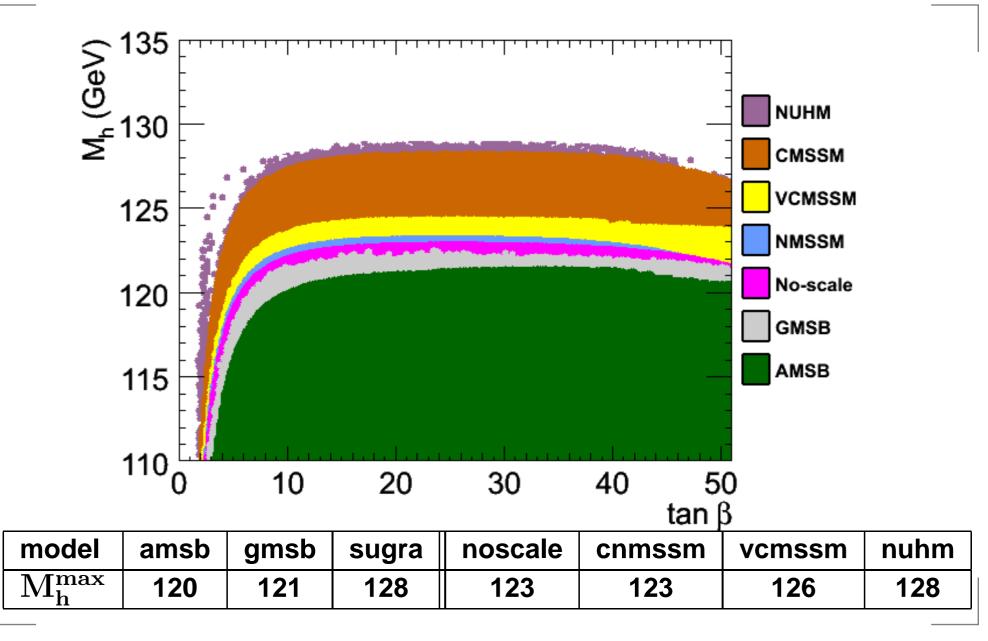
 $\begin{array}{ll} \mbox{mSUGRA:} & \mbox{50GeV} \leq m_0 \leq \mbox{2TeV}, & \mbox{50GeV} \leq m_{1/2} \leq \mbox{3TeV}, \ |A_0| \leq \mbox{9TeV}; \\ \mbox{mGMSB:} & \mbox{10TeV} \leq \Lambda \leq \mbox{1000 TeV}, \ \mbox{1} \leq M_{\rm mes} / \Lambda \ \leq \ \mbox{10}^{11}, \ \ \mbox{N}_{\rm mess} = \mbox{1;} \\ \mbox{mAMSB:} & \mbox{1 TeV} \leq m_{\frac{3}{2}} \leq \mbox{100TeV}, \mbox{50 GeV} \leq m_0 \leq \mbox{2 TeV}. \end{array}$

In mSUGRA we further consider the following (over-constrained) cases:

• no–scale:
$$\mathbf{m_0} = \mathbf{A_0} = \mathbf{0}$$

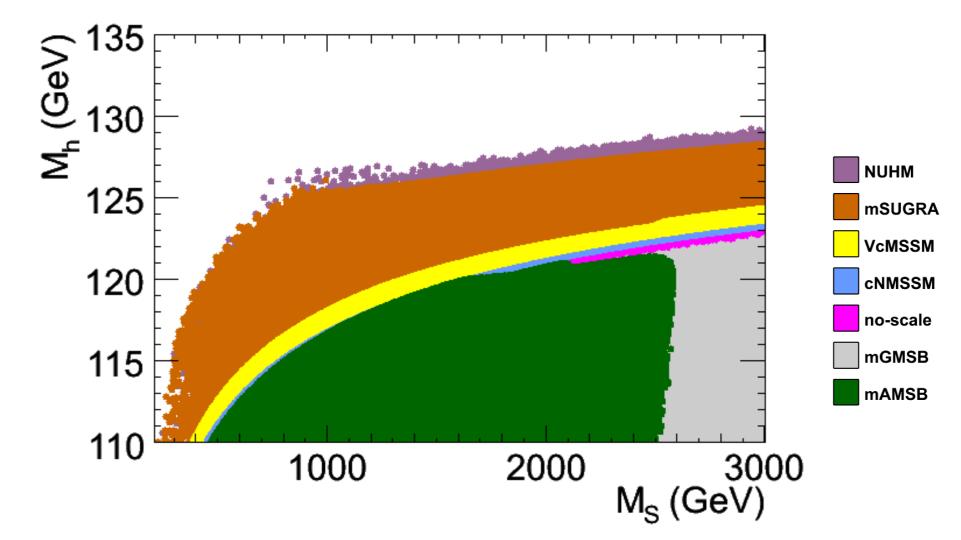
• cNMSSM:
$$\mathbf{m_0} = \mathbf{0}, \mathbf{A_0} = -rac{1}{4}\mathbf{m_{1/2}}$$

• vcMSSM: $\mathbf{m_0} = \mathbf{A_0}$

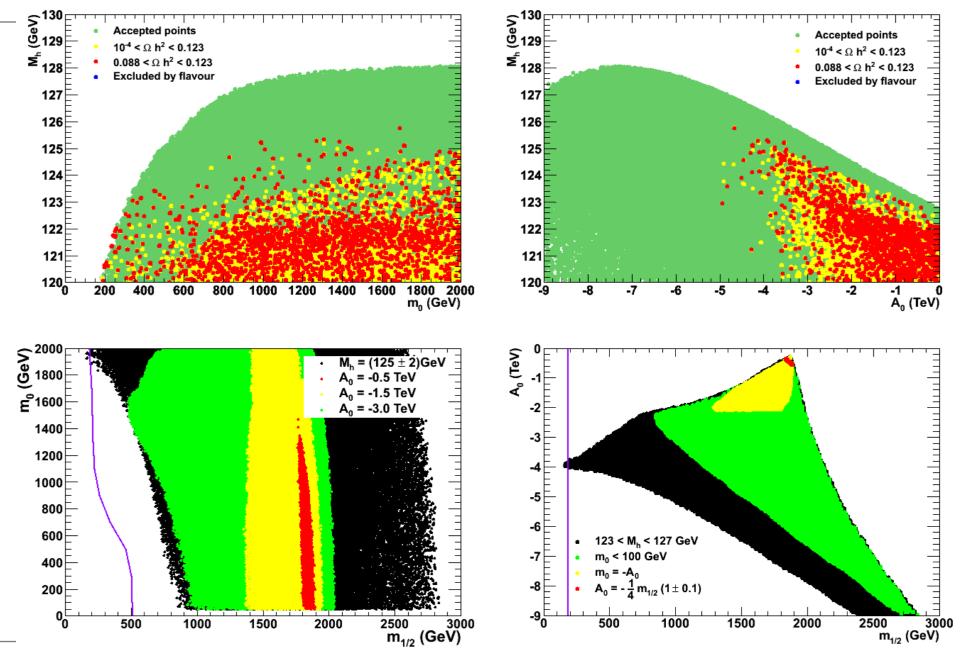

as well as as the less constrained non-universal Higgs mass model:

$$\bullet$$
 NUHM: $m_{1/2}, m_0, A_0$ and m_{H_u}, m_{H_d}

In mSUGRA case and its variants, we impose in addition bounds from:


- correct relic density of DM neutralino as measured by WMAP,
- constraints from flavor physics: ${f b}
 ightarrow {f s} \gamma, {f B}_{f s}
 ightarrow \mu \mu$,
- constraints from heavy MSSM Higgs production at the LHC.

Less freedom for $A_t \Rightarrow M_h$ is much more constraining!


RPP Montpellier 14/05/2012

Implications of a 125 GeV Higgs – A. Djouadi – p.24/??

also: Buchmuller etal, Drapper etal., Baer etal., Raidal etal., Li etal, Roszkowski etal... and in other (many!!) BMSSM including NMSSM scenarios, talk of Jack Gunion....

RPP Montpellier 14/05/2012Implications of a 125 GeV Higgs – A. Djouadi – p.25/??

RPP Montpellier 14/05/2012

Implications of a 125 GeV Higgs – A. Djouadi – p.26/??

5. Conclusions

There is a hint of a 125 GeV Higgs but many questions remain:

- is the 125 GeV Higgs really there? any wrong cable connection?
- if yes, is it really SM–like? What about the $\gamma\gamma, 4\ell^{\pm}, b\overline{b}$ rates?
- if indeed OK, a triumph for the Standard Model: Standarissimo!
- A 125 GeV Higgs provides information on BSM and SUSY in particular:
- $M_{\rm H}\,{=}\,119$ GeV would have been a boring value: everybody OK..
- $\bullet~M_{H}\!=\!145$ GeV would be a devastating value: mass extinction..
- $M_{
 m H}\!pprox\!125$ GeV is Darwinian: (natural) selection among models..
- SUSY spectrum heavy; except maybe for weakly interacting sparticles and also stops \Rightarrow more focus on them in SUSY searches! Some answers in July or December. More complete picture later! My personal feeling or bet: maybe the rather optimistic scenario?
- a (5 \oplus 5 σ ?...) Higgs in 2012, Higgstoric year!
- a stop and a chargino in 2015: my favorite/best-guess SUSY signal:

$$pp \rightarrow \tilde{t}_1 \tilde{t}_1 \rightarrow b \chi_1^+ \bar{b} \chi_1^- \rightarrow b \bar{b} e \mu + E_T$$

– following years, search for $gg \to \tilde{t}_1 \tilde{t}_1 h$ and measurement of $A_t...$