Lattice computation of $K \rightarrow \pi \pi$ amplitudes

Nicolas Garron RBC-UKQCD Collaborations

Rencontres de Physique des Particules, Montpellier 2102, 14th of May

Outline

- Background: kaon decay, kaon mixing and CP violation
- Computation of the $\Delta I=3 / 2$ amplitude
- Challenge and setup of the computation
- Bare matrix elements
- Phase shift
- Renormalization
- Physical implications
- Toward a computation of the $K \rightarrow(\pi \pi)_{I=0}$ amplitude

Based on work done within the RBC-UKQCD collaborations

- K to $\pi \pi$ Decay amplitudes from Lattice $Q C D$.
T. Blum, P. A. Boyle, N. H. Christ, N.G., E. Goode, T. Izubuchi, C. Lehner, Q. Liu, R. D. Mawhinney, C. T. Sachrajda, A. Soni, C. Sturm, H. Yin, R. Zhou. Phys.Rev.D., 2011.
- Opening the Rome-Southampton window for operator mixing matrices.
R. Arthur, P. A. Boyle, N.G. , C. Kelly, A. T. Lytle .

Phys.Rev.D., 2011.

- The $K \rightarrow(\pi \pi)_{I=2}$ Decay Amplitude from Lattice $Q C D$.
T. Blum, P. A. Boyle, N. H. Christ, N.G., E. Goode, T. Izubuchi, C. Jung, C. Kelly, C. Lehner, M. Lightman, Q. Liu, A. T. Lytle, R. D. Mawhinney, C. T. Sachrajda, A. Soni, C. Sturm. PRL, 2012.

Background: Kaon decays and CP violation

- First discovery of CP violation was made in kaon system in 1964 (Christenson, Cronin, Fitch and Turlay)
- Noble prize in 1980 (Cronin and Fitch)
- Very nice measurements of both direct and indirect CP violation [PDG '10]

$$
\left\{\begin{array}{cl}
\operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right) & =(1.65 \pm 0.26) \times 10^{-3} \\
|\varepsilon| & =(2.228 \pm 0.011) \times 10^{-3}
\end{array}\right.
$$

- Still lacking a quantitative theoretical description
- Theoretically:

Relate indirect $C P$ violation parameter (ϵ) to neutral kaon mixing (B_{K})
Still lacking a quantitative description of direct $C P$ violation $\left(\varepsilon^{\prime}\right)$

Background: Kaon decays and CP violation

Flavour eigenstates $\binom{K^{0}=\bar{s} \gamma_{5} d}{\bar{K}^{0}=\bar{d} \gamma_{5} s} \neq \mathrm{CP}$ eigenstates $\left|K_{ \pm}^{0}\right\rangle=\frac{1}{\sqrt{2}}\left\{\left|K^{0}\right\rangle \mp\left|\bar{K}^{0}\right\rangle\right\}$
They are mixed in the physical eigenstates $\left\{\begin{array}{lll}\left|K_{L}\right\rangle & \sim\left|K_{-}^{0}\right\rangle+\bar{\varepsilon}\left|K_{+}^{0}\right\rangle \\ \left|K_{S}\right\rangle & \sim\left|K_{+}^{0}\right\rangle+\bar{\varepsilon}\left|K_{-}^{0}\right\rangle\end{array}\right.$
Direct and indirect CP violation in $K \rightarrow \pi \pi$

$$
\left|K_{L}\right\rangle \propto\left|K_{-}^{0}\right\rangle+\bar{\varepsilon}\left|K_{+}^{0}\right\rangle
$$

Experimentally [PDG '10] $\left\{\begin{array}{cc}\operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right) & =(1.65 \pm 0.26) \times 10^{-3} \\ |\varepsilon| & =(2.228 \pm 0.011) \times 10^{-3}\end{array}\right.$

Neutral kaon mixing

In the $\mathrm{SM} K^{0}-\bar{K}^{0}$ mixing dominated by box diagrams with W exchange, e.g.

Factorise the non-perturbative contribution into

$$
\left\langle\bar{K}^{0}\right| \mathcal{O}_{L L}^{\Delta S=2}(\mu)\left|K^{0}\right\rangle=\frac{8}{3} F_{K}^{2} M_{K}^{2} B_{K}(\mu) \quad \mathrm{w} / \mathcal{O}_{L L}^{\Delta S=2}=\left(\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right)\left(\bar{s} \gamma^{\mu}\left(1-\gamma_{5}\right) d\right)
$$

Related to ε via CKM parameters, schematically

$$
\varepsilon \sim \text { known factors } \times V_{\mathrm{CKM}} \times C(\mu) \times B_{K}(\mu)
$$

$K \rightarrow \pi \pi$ amplitudes

Two isospin channels: $\Delta I=1 / 2$ and $\Delta I=3 / 2$

$$
K \rightarrow(\pi \pi)_{I=0,2}
$$

Corresponding amplitudes defined as

$$
A\left[K \rightarrow(\pi \pi)_{\mathrm{I}}\right]=A_{\mathrm{I}} \exp \left(i \delta_{\mathrm{I}}\right) \quad / \mathrm{w} \mathrm{I}=0,2 \quad \delta=\text { strong phases }
$$

$\Delta I=1 / 2$ rule

$$
\omega=\frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{o}} \sim 1 / 22 \quad \text { (experimental number) }
$$

Amplitudes are related to the parameters of CP violation $\varepsilon, \varepsilon^{\prime}$ via

$$
\begin{aligned}
& \operatorname{Re}\left[\frac{\epsilon^{\prime}}{\epsilon}\right]=\frac{\omega}{\sqrt{2}|\epsilon|}\left[\frac{\operatorname{Im}\left(A_{2}\right)}{\operatorname{Re}\left(A_{2}\right)}-\frac{\operatorname{Im}\left(A_{0}\right)}{\operatorname{Re}\left(A_{0}\right)}\right] \\
& \epsilon^{\prime}=\frac{i \omega \exp \left(i \delta_{2}-\delta_{0}\right)}{\sqrt{2}}\left[\frac{\operatorname{Im}\left(A_{2}\right)}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]
\end{aligned}
$$

Overview of the computation

Operator Product expansion

Describe $K \rightarrow(\pi \pi)_{\mathrm{I}=0,2}$ with an effective Hamiltonian

$$
H^{\Delta s=1}=\frac{G_{F}}{\sqrt{2}}\left\{\sum_{i=1}^{10}\left(V_{u d} V_{u s}^{*} z_{i}(\mu)-V_{t d} V_{t s}^{*} y_{i}(\mu)\right) Q_{i}(\mu)\right\}
$$

Short distance effects factorized in the Wilson coefficients y_{i}, z_{i}
Long distance effects factorized in the matrix elements

$$
\langle\pi \pi| Q_{i}|K\rangle \longrightarrow \text { Lattice }
$$

See eg [Norman Christ @ Kaon'09] for an overview of different strategies.

4-quark operators (II)

Current-Current

$$
Q_{2}=(\bar{s} u)_{\mathrm{V}-\mathrm{A}}(\bar{u} d)_{\mathrm{V}-\mathrm{A}} \quad Q_{1}=\text { color mixed }
$$

QCD penguins

$$
\begin{array}{rlr}
Q_{3} & =(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s}(\bar{q} q)_{\mathrm{V}-\mathrm{A}} & Q_{4}=\text { color mixed } \\
Q_{5} & =(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s}(\bar{q} q)_{\mathrm{V}+\mathrm{A}} & Q_{6}=\text { color mixed }
\end{array}
$$

EW penguins

$$
\begin{array}{ll}
Q_{7}=\frac{3}{2}(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s} e_{q}(\bar{q} q)_{\mathrm{V}+\mathrm{A}} & Q_{8}=\text { color mixed } \\
Q_{9}=\frac{3}{2}(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s} e_{q}(\bar{q} q)_{\mathrm{V}-\mathrm{A}} & Q_{10}=\text { color mixed }
\end{array}
$$

A challenge!

Many obstacles:

- Final state with two pions
- Many operators that mix under renormalisation
- Require the evaluation of disconnected graphs (numerically difficult)

Moreover, using a chiral disctretisation of the Dirac operator is probably unavoidable.
Plus the usual difficulties: light dynamical quarks, large volume, ...

Ispospin channels

- A priori 10 four-quark operators
- 7 are linearly independent
- Only 3 of these operators contribute to the $\Delta I=3 / 2$ channel
- A tree-level operator
- 2 electroweak penguins
- No disconnect graphs (which are hard to compute) contribute to the $\Delta I=3 / 2$ channel

u \qquad u
$\Rightarrow A_{0}$ is much more challenging than A_{2}

First problem: $|\pi \pi\rangle$ two hadrons in the final state

In a infinite volume, the physical two-pion state cannot be obtained from the Euclidean one [Maiani \& Testa '90] \longrightarrow no-go theorem

Solution: Lellouch-Lüscher method [Lellouch Lüscher '00]
Physical matrix element obtained from the finite-volume Euclidiean amplitude and the derivative of the phase shift

New problem(s): simulating the physical kinematic requires a very large (physical) volume

- Large volume and low masses \longrightarrow numerically very expensive
- Have to use a coarse lattice \longrightarrow cutoff $a^{-1} \sim \Lambda_{\mathrm{QCD}}$

Remember the Rome-Southampton window $\Lambda_{\mathrm{QCD}} \ll \mu \ll a^{-1}$
\longrightarrow How do we renormalize the matrix elements ?
\longrightarrow We use a step-scaling matrix \Leftrightarrow universal (continuum) running matrix

Another difficulty

- With Periodic B.C., the 2-pion ground state corresponds to each pion being at rest
- For the first 2-pion state to have the energy $=m_{K}$ we need $L \sim 6 \mathrm{fm}$
- Solution: combine
- Wigner-Eckart theorem (Exact up to isospin symmetry breaking!)

$$
\left.\left\langle\pi^{+}\left(p_{1}\right) \pi^{0}\left(p_{2}\right)\right| O_{\Delta I}^{\Delta I=3 / 2}\left|K^{+1 / 2}\right| K^{+}\right\rangle=3 / 2\left\langle\pi^{+}\left(p_{1}\right) \pi^{+}\left(p_{2}\right) \mid O_{\Delta I}^{\Delta I=3 / 2}=3 / 2, K^{+}\right\rangle
$$

and then compute the unphysical process $K^{+} \rightarrow \pi^{+} \pi^{+}$

- Use Anti-periodic B.C. to eliminate the unwanted (wrong-kinematic) ground state
- It is enough to use antiPBC in the valence sector [Sachrajda \& Villadoro PLB 2005, hep-lat 0411033]
- Works only for the $\Delta I=3 / 2$ part

$$
K \rightarrow(\pi \pi)_{\iota=2}
$$

Only 3 operators: a $(27,1)$ and two $(8,8)$

- The physical ones:

$$
\begin{aligned}
Q_{1} & \left.\left.=\left(\bar{s}_{\alpha} \gamma_{\mu}^{L} d_{\alpha}\right)\left[\left(\bar{u}_{\beta} \gamma_{\mu}^{L} u_{\beta}\right)-\left(\bar{d}_{\beta} \gamma_{\mu}^{L} d_{\beta}\right)\right)\right]+\left(\bar{s}_{\alpha} \gamma_{\mu}^{L} u_{\alpha}\right)\left(\bar{u}_{\beta} \gamma_{\mu}^{L} d_{\beta}\right)\right) \\
Q_{7} & \left.\left.=\left(\bar{s}_{\alpha} \gamma_{\mu}^{L} d_{\alpha}\right)\left[\left(\bar{u}_{\beta} \gamma_{\mu}^{R} u_{\beta}\right)-\left(\bar{s}_{\beta} \gamma_{\mu}^{R} s_{\beta}\right)\right)\right]+\left(\bar{s}_{\alpha} \gamma_{\mu}^{L} u_{\alpha}\right)\left(\bar{u}_{\beta} \gamma_{\mu}^{R} d_{\beta}\right)\right) \\
Q_{8} & \left.\left.=\left(\bar{s}_{\alpha} \gamma_{\mu}^{L} d_{\beta}\right)\left[\left(\bar{u}_{\beta} \gamma_{\mu}^{R} u_{\alpha}\right)-\left(\bar{s}_{\beta} \gamma_{\mu}^{R} s_{\alpha}\right)\right)\right]+\left(\bar{s}_{\alpha} \gamma_{\mu}^{L} u_{\beta}\right)\left(\bar{u}_{\beta} \gamma_{\mu}^{R} d_{\alpha}\right)\right)
\end{aligned}
$$

- In the Wigner-Eckart basis

$$
\begin{aligned}
Q_{(27,1)} & =\left(\bar{s}_{\alpha} \gamma_{\mu}^{L} d_{\alpha}\right)\left(\bar{u}_{\beta} \gamma_{\mu}^{L} d_{\beta}\right) \\
Q_{(8,8)} & =\left(\bar{s}_{\alpha} \gamma_{\mu}^{L} d_{\alpha}\right)\left(\bar{u}_{\beta} \gamma_{\mu}^{R} d_{\beta}\right) \\
Q_{(8,8), \text { mix }} & =\left(\bar{s}_{\alpha} \gamma_{\mu}^{L} d_{\beta}\right)\left(\bar{u}_{\beta} \gamma_{\mu}^{R} d_{\alpha}\right)
\end{aligned}
$$

Simulation details

Use Domain-Wall fermions :

- Good chiral-flavour properties
- Numerically expensive

With $n_{f}=2+1$ dynamical quarks:

- The light quarks are such that the lightest pion mass is $m_{\pi} \sim 170 \mathrm{MeV}$ for the unitary sector and $m_{\pi} \sim 140 \mathrm{MeV}$ for the partially quenched one
- The strange is close to its physical value

In order to avoid large finite volume effect, we have $V \sim(4.6 \mathrm{fm})^{3}$
Price to pay: coarse lattice : $a \sim 0.145 \mathrm{fm} \quad \leftrightarrow \quad a^{-1} \sim 1.364 \mathrm{GeV}$
So far only one lattice spacing
\Rightarrow Chiral dynamical fermions, light pion, large volume and coarse lattice

Extraction of the bare matrix elements

Compute a correlator

$$
\begin{aligned}
C_{K \pi \pi}^{i} & =\langle 0| J_{\pi \pi}\left(t_{\pi \pi}\right) Q_{i}\left(t_{Q}\right) J_{K}^{\dagger}\left(t_{K}\right)|0\rangle \\
& \longrightarrow \mathrm{e}^{-m_{K}\left(t_{Q}-t_{K}\right)} \mathrm{e}^{-E_{\pi \pi}\left(t_{\pi \pi}-t_{Q}\right)}\langle 0| J_{\pi \pi}(0)|\pi \pi\rangle\langle\pi \pi| Q_{i}(0)|K\rangle\langle K| J_{K}^{\dagger}(0)|0\rangle
\end{aligned}
$$

Extraction of the bare matrix elements

Compute a correlator

$$
\begin{aligned}
C_{K \pi \pi}^{i} & =\langle 0| J_{\pi \pi}\left(t_{\pi \pi}\right) Q_{i}\left(t_{Q}\right) J_{K}^{\dagger}\left(t_{K}\right)|0\rangle \\
& \longrightarrow \mathrm{e}^{-m_{K}\left(t_{Q}-t_{K}\right)} \mathrm{e}^{-E_{\pi \pi}\left(t_{\pi \pi}-t_{Q}\right)}\langle 0| J_{\pi \pi}(0)|\pi \pi\rangle\langle\pi \pi| Q_{i}(0)|K\rangle\langle K| J_{K}^{\dagger}(0)|0\rangle
\end{aligned}
$$

Needs also

$$
\begin{aligned}
C_{K}(t) & \left.=\langle 0| J_{K}(t) J_{K}^{\dagger}(0)|0\rangle \longrightarrow\left|\langle K| J_{K}^{\dagger}(0)\right| 0\right\rangle\left.\right|^{2} e^{-m_{K} t} \\
C_{\pi \pi}(t) & \left.=\langle 0| J_{\pi \pi}(t) J_{\pi \pi}^{\dagger}(0)|0\rangle \longrightarrow\left|\langle 0| J_{\pi \pi}(0)\right| \pi \pi\right\rangle\left.\right|^{2} e^{-E_{\pi \pi} t}
\end{aligned}
$$

And compute the ratios

$$
R\left(t_{Q}\right) \equiv \frac{C_{K \pi \pi}\left(t_{K}, t_{Q}, t_{\pi \pi}\right)}{C_{K}\left(t_{Q}-t_{K}\right) C_{\pi \pi}\left(t_{\pi \pi}-t_{Q}\right)} \longrightarrow \frac{\langle\pi \pi| Q_{i}|K\rangle}{\langle 0| J_{\pi \pi}(0)|\pi \pi\rangle\langle K| J_{K}^{\dagger}(0)|0\rangle}
$$

Extraction of the bare matrix elements

$$
R\left(t_{Q}\right) \equiv \frac{C_{K \pi \pi}\left(t_{K}, t_{Q}, t_{\pi \pi}\right)}{C_{K}\left(t_{Q}-t_{K}\right) C_{\pi \pi}\left(t_{\pi \pi}-t_{Q}\right)} \longrightarrow \frac{\langle\pi \pi| Q_{i}|K\rangle}{\langle 0| J_{\pi \pi}(0)|\pi \pi\rangle\langle K| J_{K}^{\dagger}(0)|0\rangle}
$$

Extraction of the bare matrix elements

$$
R\left(t_{Q}\right) \equiv \frac{C_{K \pi \pi}\left(t_{K}, t_{Q}, t_{\pi \pi}\right)}{C_{K}\left(t_{Q}-t_{K}\right) C_{\pi \pi}\left(t_{\pi \pi}-t_{Q}\right)} \longrightarrow \frac{\langle\pi \pi| Q_{i}|K\rangle}{\langle 0| J_{\pi \pi}(0)|\pi \pi\rangle\langle K| J_{K}^{\dagger}(0)|0\rangle}
$$

Extraction of the bare matrix elements

$$
R\left(t_{Q}\right) \equiv \frac{C_{K \pi \pi}\left(t_{K}, t_{Q}, t_{\pi \pi}\right)}{C_{K}\left(t_{Q}-t_{K}\right) C_{\pi \pi}\left(t_{\pi \pi}-t_{Q}\right)} \longrightarrow \frac{\langle\pi \pi| Q_{i}|K\rangle}{\langle 0| J_{\pi \pi}(0)|\pi \pi\rangle\langle K| J_{K}^{\dagger}(0)|0\rangle}
$$

Kinematics

- With our boundary conditions we "give" to the pions the momentum $|\mathbf{p}|=\sqrt{2} \pi / L$
- We can compute $E_{\pi \pi}=2 E_{\pi}+\Delta E$ from a 2-point function $C_{\pi \pi}$
- Define the momentum k_{π} of each pion in the 2-pion state from the relation dispersion

$$
E_{\pi \pi}=2 \sqrt{m_{\pi}^{2}+k_{\pi}^{2}}
$$

In MeV

m_{π}	m_{K}	$E_{\pi, 2}$	$E_{\pi \pi, 0}$	$E_{\pi \pi, 2}$	$m_{K}-E_{\pi \pi, 2}$
$142.9(1.1)$	$511.3(3.9)$	$238.8(2.4)$	$288.0(2.2)$	$492.6(5.5)$	$18.7(4.8)$

The subscripts 0,2 denote $p=0$ and $p=\sqrt{2} \pi / L$ respectively, where $p=|\mathbf{p}|$

The phase shift

The finite-volume matrix elements computed on the lattice \mathcal{M}_{i} are related to the corresponding infinite-volume ones \mathcal{A}_{i} by the Lellouch-Lüscher factor [Lellouch Lüscher '00, Lin et al '01]

$$
\mathcal{A}_{i}=\left[\frac{\sqrt{\nu / 4}}{\pi q_{\pi}} \sqrt{\frac{\partial \phi}{\partial q_{\pi}}+\frac{\partial \delta}{\partial q_{\pi}}}\right] \frac{1}{\sqrt{\nu}} \sqrt{m_{K}} E_{\pi \pi} \mathcal{M}_{i}
$$

where :
[] is the LL factor
δ is the s-wave phase shift
ν is a factor counting the free-field degenerate states
$q_{\pi}=k_{\pi} L / 2 \pi \quad$ where k_{π} is the pion momentum
ϕ is a kinematic function defined in [Lellouch Lüscher '00]

Once $E_{\pi \pi}$ has been measured and q_{π} determined, δ can be calculated using the Lüscher quantization condition [Lüscher 1990]

$$
n \pi=\delta\left(k_{\pi}\right)+\phi\left(q_{\pi}\right)
$$

The phase shift

The finite-volume matrix elements computed on the lattice \mathcal{M}_{i} are related to the corresponding infinite-volume ones \mathcal{A}_{i} by the Lellouch-Lüscher factor [Lellouch Lüscher '00, Lin et al '01]

$$
\mathcal{A}_{i}=\left[\frac{\sqrt{\nu / 4}}{\pi q_{\pi}} \sqrt{\frac{\partial \phi}{\partial q_{\pi}}+\frac{\partial \delta}{\partial q_{\pi}}}\right] \frac{1}{\sqrt{\nu}} \sqrt{m_{K}} E_{\pi \pi} \mathcal{M}_{i}
$$

\Rightarrow have to compute $\partial \delta / \partial q_{\pi}$

Renormalization of 4-quark operators

- Once the amplitudes $\mathcal{A}_{i}^{\text {lat }}$ have been obtained on the lattice, the physical decay amplitude \mathcal{A}_{2} is obtained via

$$
A_{2}^{\mathrm{phys}}=a^{-3} \sqrt{\frac{3}{2}} G_{F} V_{u d} V_{u s}^{*} \sum_{i, j} C_{i}(\mu) Z_{i j}(\mu, a) A_{j}^{\mathrm{lat}}(a) \quad i, j=1,7,8
$$

- Have to compute the renormalization matrix Z
\Rightarrow Better use a non perturbative scheme, like RI-MOM or S.F.
- Mixing pattern given by the $S U(3)_{L} \otimes S U(3)_{R}$ decomposition of the operators
- Motivation to work with a chiral action: the mixing pattern is the continuum one

Renormalisation pattern

- Q_{1} renormalises multiplicatively
- Q_{7} and Q_{8} mix together

Renormalization of 4-quark operators

- Wilson coefficients are computed in perturbation theory (e.g. $\overline{\mathrm{MS}}$) and Z non-perturbatively in a lattice (MOM) scheme, so in practice:

$$
C(\mu) Z(\mu, a) A^{\text {lat }}(a)=\underbrace{C(\mu) R^{\overline{\mathrm{MS}} \leftarrow \mathrm{MOM}}(\mu)}_{\text {perturbative } \mu} \underbrace{U^{\mathrm{MOM}}\left(\mu, \mu_{0}\right)}_{\text {running }} \underbrace{Z^{\mathrm{MOM}}\left(\mu_{0}, a\right) A^{\text {lat }}(a)}_{\text {low energy } \mu_{0}}
$$

- Window problem: in RI-MOM, to compute $Z^{\mathrm{MOM}}(\mu, a)$, we need

$$
\Lambda_{\mathrm{QCD}} \ll \mu \ll \pi a^{-1}
$$

- Problem: in our computation, $a^{-1} \sim 1.35 \mathrm{GeV}$
- Solution: compute the running non-perturbatively on finer lattices and extrapolate to the continuum

$$
\lim _{a_{1} \rightarrow 0} \underbrace{\left[Z\left(\mu_{1}, a_{1}\right) Z^{-1}\left(\mu_{0}, a_{1}\right)\right]}_{\text {fine lattice }} \times \underbrace{Z\left(\mu_{0}, a_{0}\right)}_{\text {coarse lattice }}=Z\left(\mu_{1}, a_{0}\right)
$$

Strategy to compute the non-perturbative running

Note that we need an overlap between the two set of lattices, since the "matching scale" μ_{0} should be accessible to both .

Results for the $(27,1)$ operator in different schemes

Results for the $(8,8)$ matrix in the different schemes

Comparison of $\sigma_{7,7}\left(\mu, \mu_{0}\right)$ with perturbation theory

More on NPR

Tremendous improvements on NPR in the last years:

- Combine volume source [QCDSF] with twisted boundary conditions and non-exceptional kinematics: high statistical precision, suppress unwanted IR contribution and well defined continuum limit.
- Step scaling: universal non-perturbative scale evolution
\Rightarrow opens the Rome-Southampton windows
- Generalized to the operator mixing case
$\Rightarrow Z$ factors can now be obtained non-perturbatively at the sub- $\%$ level
Limitation is the perturbative matching (only one-loop for the 4-quark operators)
\Rightarrow Essential ingredient in the RBC-UKQCD light flavor physics program: allows us to renormalize the data from the IDSDR lattice.

Results for $A_{0,2}$

Experimentally

$$
\begin{array}{ll}
\text { from } K^{+} & \operatorname{Re} A_{2}=1.479(4) \times 10^{-8} \mathrm{GeV} \\
\text { from } K_{S} & \operatorname{Re} A_{2}=1.416(35) \times 10^{-8} \mathrm{GeV}
\end{array}
$$

we find [RBC-UKQCD (Blum et al '11]

$$
\begin{aligned}
& \operatorname{Re} A_{2}=\left(1.436 \pm 0.063_{\text {stat }} \pm 0.258_{\text {syst }}\right) \times 10^{-8} \mathrm{GeV} \\
& \operatorname{Im} A_{2}=-\left(6.29 \pm 0.46_{\text {stat }} \pm 1.20_{\text {syst }}\right) \times 10^{-13} \mathrm{GeV}
\end{aligned}
$$

and

$$
\operatorname{Im} A_{2} / \operatorname{Re} A_{2}=\left(-4.76 \pm 0.37_{\text {stat }} \pm 0.81_{\text {syst }}\right) \times 10^{-5}
$$

More phenomenology

Combine our result for $\operatorname{Im} A_{2}$ with the experimental result of $\operatorname{Re} A_{2}$ from K^{+}, with $\operatorname{Re} A_{0}=3.33 \times 10^{-7} \mathrm{GeV}$ and $\epsilon^{\prime} / \epsilon$

$$
\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}=-1.60(19)_{\text {stat }}(20)_{\text {syst }} \times 10^{-4}
$$

Absorptive long-distance contribution to κ_{ϵ} [Buras \& Guadagnoli '08]

$$
\left(\kappa_{\epsilon}\right)_{\mathrm{abs}}=0.923 \pm 0.006
$$

Electroweak penguin contribution to $\epsilon^{\prime} / \epsilon$

$$
\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)_{\mathrm{EWP}}=-\left(6.52 \pm 0.49_{\mathrm{stat}} \pm 1.24_{\mathrm{syst}}\right) \times 10^{-4}
$$

and experimentally

$$
\operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)=(1.65 \pm 0.26) \times 10^{-3}
$$

Toward a computation of the $\Delta I=1 / 2$ amplitudes

Pilot computation [Blum et al 2011]

- Unphysical: Small volume and non-physical kinematics ($m_{\pi} \sim 400 \mathrm{MeV}$, pions at rest)
- All the contractions are computed
- Renormalisation done non-perturbatively

We believe that the first physical computation will be possible with the new generation of supercomputer

Toward a computation of the $\Delta I=1 / 2$ amplitudes

P.Boyle and the Blue Gene/Q in Edinburgh

Conclusion and outlook

- First realistic ab initio hadrdonic decay has been computed: $K \rightarrow(\pi \pi)_{l=2}$
- Technical improvement (realistic action, dynamical fermions, ...)
- New theoretical tools are being developed, e.g. for the renormalization
- Complete but unphysical computation of both $K \rightarrow(\pi \pi)$ amplitudes has been achieved [RBC-UKQCD '11]
- Aim for a physical computation of the $\Delta I=1 / 2$ part (Blue Gene $/ \mathrm{Q}$)
- Plans for simulating a finer lattice spacing

