

Inverse Seesaw

・ ロ マ チ 全部 マ キ 中 マ マ マ

Lepton Flavour Violation in the Supersymmetric Inverse Seesaw Model

Cédric Weiland

in collaboration with Asmâa Abada, Debottam Das and Avelino Vicente

Laboratoire de Physique Théorique d'Orsay, Université Paris-Sud 11, France

Rencontres de Physique des Particules Montpellier, May 15th, 2012

Plan		

- - Neutrino oscillations = Neutral lepton flavour violation. Why not have charged lepton flavour violation (cLFV)?
 - cLFV arises from higher order processes ⇒ negligible in the Standard Model
 - If observed:
 - Clear evidence of physics at a higher scale
 - Probe the origin of lepton mixing
 - Probe the origin of new physics
 - Complementary to other New Physics searches
 - High energy: LHC
 - High intensity:
 - B factories: Rare decays, etc
 - Neutrino dedicated experiments: U_{PMNS} non-unitarity, etc

・ ロ マ チ 全部 マ キ 中 マ マ マ

• Other low energy experiments: $(g-2)_{\mu}$, EDM, etc

・ ロ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Motivations

- BSM to generate $m_{\nu} \neq 0$
 - Radiative models
 - Extra dimensions
 - R-parity violation in supersymmetry
 - Seesaw mechanism → BAU through leptogenesis ?
- The SM doesn't only lack neutrino masses ⇒ The hierarchy problem
 - Strongly coupled theories : Technicolor, Composite Higgs
 - Extra-dimensions : Randall-Sundrum, Large extra dimension
 - Extending the SM field content/gauge group : 2HDM, Little Higgs, 4th generation, etc
 - Supersymmetric extensions : MSSM, NMSSM → Gauge coupling unification, DM candidate, graviton in local SUSY

・ ロ ト ・ 雪 ト ・ 国 ト ・ 日 ト

э

The Seesaw Mechanisms

- $m_{\nu} \neq 0 \Rightarrow$ New physics at a high scale (> SM)
- Seesaw mechanism: Consider new fields at this scale ($\sim M_R$) and Majorana mass terms \Rightarrow Generate m_{ν} in a renormalizable way
- Example: Type I seesaw $\mathcal{L}_{mass}^{\text{leptons}} = -Y^{\ell} \bar{L} \Phi \ell_R Y_{\nu} \bar{L} \tilde{\Phi} \nu_R \frac{1}{2} M_R \overline{\nu_R^C} \nu_R + \text{h.c.}$ \Rightarrow After EW symmetry breaking, a neutrino mass matrix appears $M_{6\times 6}^{\nu}$

$$\begin{split} M^{\nu} &= \begin{pmatrix} 0 & m_D \\ m_D^{\top} & m_R \end{pmatrix} & m_D = vY_{\nu} \text{ Dirac mass matrix} \\ &\Rightarrow \text{ Seesaw limit } M_R \gg m_D \\ &m_{\nu}^{\text{light}} \approx -m_D M_R^{-1} m_D^{\top} & \nu^{\text{light}} \approx \nu_L + \nu_L^C \\ &m_{\nu}^{\text{heavy}} \approx M_R & \nu^{\text{heavy}} \approx \nu_R + \nu_R^C \end{split}$$

• M^{ν} symmetric (Majorana ν) $\Rightarrow M^{\nu} = ZD_{\nu}Z^{\dagger}$ with Z unitary matrix $Z = \begin{pmatrix} V & Y \\ X & W \end{pmatrix}$

The same goes for M^{ℓ} the charged leptons mass matrix $\Rightarrow M^{\ell} = A_R D_{\ell} A_L^{\dagger}$ with $A_{R,L}$ unitary matrices

 $\Rightarrow U_{PMNS} = A_L^{\dagger} V$ leptonic mixing matrix (similar to V_{CKM})

A D > A P > A D > A D >

Effective approach to seesaw mechanisms

- Notice that lepton number conservation is accidental in the SM (from the gauge group, field content and renormalizability)
- Need to violate L conservation to generate m_ν ⇒ Effective non-renormalizable operators
- Unique dimension 5 operator for all seesaw mechanisms
 → Violates lepton number L ⇒ Majorana neutrinos

$$\delta \mathcal{L}^{d=5} = \frac{1}{2} c_{ij} \frac{(H \cdot L_i)^{\dagger} (H \cdot L_j)}{\Lambda} + \text{h.c.}$$

- To distinguish the several seesaw mechanisms, either
 - Directly produce the heavy states (LHC, ILC)
 - Look for dimension ≥ 6 operators effects $\rightarrow LFV$

The Inverse Seesaw Mechanism

• Type I seesaw: $M_R \simeq 10^{14}$ GeV with natural Yukawa $Y_{\nu} \sim \mathcal{O}(1)$ or $M_R \sim 1$ TeV with Yukawa $Y_{\nu} \sim \mathcal{O}(10^{-6})$

 \Rightarrow cLFV is suppressed (dimension 6 operator $\propto \frac{Y_{\nu}^{\vee}Y_{\nu}}{|M_{R}|^{2}}$)

- Inverse seesaw: $M_R \simeq 1$ TeV with natural Yukawa $Y_{\nu} \sim \mathcal{O}(1)$ \Rightarrow cLFV is much less suppressed
 - → Might be testable at the LHC and future B factories (SuperB)
- Inverse seesaw \Rightarrow Consider fermionic gauge singlets N_i (L = -1, i = 1, 2, 3) and X_i (L = +1, i = 1, 2, 3) [Mohapatra and Valle, 1986]

$$\mathcal{L}_{inverse} = Y_{\nu ij}H \cdot L_i N_j - (M_R)_{ij}N_iX_j - \frac{1}{2}(\mu_X)_{ij}X_iX_j + \text{h.c.}$$

$$m_{\nu} \approx \frac{m_D^2 \mu_X}{m_D^2 + M_R^2}$$

$$m_{1,2} \approx \mp \sqrt{m_D^2 + M_R^2} + \frac{M_R^2 \mu_X}{2(m_D^2 + M_R^2)}$$

With $m_D = Y_{\mu}v$

・ ロ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

The Minimal Supersymmetric Model

- Same gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y$
- Field content = SM fields and their SUSY partners
 ⇒ Except for the Higgs sector → Up- and down-type Higgs
- More than a 100 free parameters, most of them from soft SUSY breaking terms

 \Rightarrow Work in constrained frameworks (or find a SUSY breaking mechanism)

- mSUGRA: 4 free parameters $m_{1/2}$, m_0 , A_0 and $sign(\mu) \rightarrow$ Nearly entirely excluded
- Constrained MSSM: 5 free parameters $m_{1/2}$, m_0 , A_0 , $\tan(\beta)$ and $\operatorname{sign}(\mu) \rightarrow \operatorname{Very}$ restrictive boundary conditions

・ロット (雪) (日) (日)

Supersymmetric Seesaw Models

- No ν_R in the MSSM $\Rightarrow m_{\nu} = 0$ \rightarrow Implement a seesaw mechanism
- Non diagonal neutrino Yukawa couplings
 ⇒ LFV in the slepton mass matrices (radiatively induced)
 ⇒ LFV at low energies through RGE
- Amount of cLFV proportional to the Yukawa couplings
 ⇒ In the usual seesaw (type I), large scale to accommodate natural Yukawa couplings
 ⇒ Impossible to directly produce ν_R
- Embed the inverse seesaw in the MSSM
 ⇒ Natural Yukawa couplings with a TeV new Physics scale

・ロット (雪) (日) (日)

The Supersymmetric Inverse Seesaw Model

- MSSM extended by singlet chiral superfields \hat{N}_i and \hat{X}_i (i = 1, 2, 3) with respectively L = -1 and L = +1
- Defined by the superpotential:

$$\mathcal{W} = \varepsilon_{ab} \left[Y_d^{ij} \hat{H}_d^a \hat{Q}_i^b \hat{D}_j + Y_u^{ij} \hat{Q}_i^a \hat{H}_u^b \hat{U}_j + Y_e^{ij} \hat{H}_d^a \hat{L}_i^b \hat{E}_j + Y_\nu^{ij} \hat{L}_i^a \hat{H}_u^b \hat{N}_j \right. \\ \left. - \mu \hat{H}_d^a \hat{H}_u^b \right] + M_{R_{ij}} \hat{N}_i \hat{X}_j + \frac{1}{2} \mu_{X_{ij}} \hat{X}_i \hat{X}_j$$

• Derive one of the new couplings:

$$Y_{\nu}^{ij}\varepsilon_{ab}L_{i}^{a}\widetilde{N}_{j}\widetilde{H}_{u}^{b}+\text{h.c.}\in-\mathcal{L}$$

- Work with a flavour-blind mechanism for SUSY breaking
- Derive the right-handed sneutrino mass:

$$M_{\tilde{N}}^2 = m_{\tilde{N}}^2 + M_R^2 + Y_{\nu}^{ji*} Y_{\nu}^{ij} v_u^2 \sim M_{\text{SUSY}}^2 \sim (1 \text{TeV})^2$$

cLFV in Supersymmetric Seesaw Models

- Typically in SUSY, cLFV appears at the one-loop level through RGE-induced slepton mixing $(\Delta m_{\tilde{L}}^2)_{ij}$ [Borzumati and Masiero, 1986, Hisano et al., 1996, Hisano and Nomura, 1999] $\Rightarrow (\Delta m_{\tilde{L}}^2)_{ij} \propto (Y_{\nu}^{\dagger} Y_{\nu})_{ij} \ln \frac{M_{GUT}}{M_R}$
- Contribute to all cLFV observables
 → Dominant in most of the SUSY seesaw models
- Type I seesaw ($Y_{\nu} \sim 1, M_R \sim 10^{14} \text{GeV}$) $\rightarrow (\Delta m_{\tilde{L}}^2)_{ij} \propto 5$
- Inverse seesaw ($Y_{\nu} \sim 1$, $M_R \sim 1$ TeV) $\rightarrow (\Delta m_{\tilde{L}}^2)_{ij} \propto 30$ $\rightarrow \tilde{N}$ -mediated processes are no longer suppressed

Z-mediated cLFV

- Photon and Higgs-mediated contributions usually dominate in the MSSM
 - In the SUSY inverse seesaw, 2 orders of magnitude enhancement of Higgs-mediated observables [A. Abada, D. Das and C. W., JHEP 1203 (2012) 100
- Z-mediated contributions are suppressed in the MSSM through cancellations at leading order [Hirsch et al., 2012]
 - No longer true in the SUSY inverse seesaw due to new contributions from the right-handed sneutrino

Relative contributions to BR($\mu \rightarrow 3e$) $\Rightarrow \langle a \rangle \langle a \rangle \langle a \rangle$

Z-mediated cLFV

- Why is there a cancellation in the MSSM ?

 → Neglect chargino mixing: Masses cancel out in the combination of loop functions from different diagram
 ⇒ cLFV∞(Z[†]_vZ_v)_{ij} = 0 [Hirsch et al., 2012]
- What happens in the SUSY inverse seesaw ?

- Diagrams with right-handed sneutrinos are no longer suppressed \Rightarrow Spoils the cancellation cLFV $\propto \sum_{i} Z_{V}^{ik} Z_{V}^{ij*} Y_{\nu}^{ik*} Y_{\nu}^{ij}$
- Dominant contribution: Z-penguins scale like m_Z^{-2} while γ -penguins scale like m_{SUSY}^{-2}

• □ > • (□) • • □ > • □ >

$\mu - e$ Conversion

 $\mu - e$ conversion rate in Ti(48,22) as a function of $M = M_R^2/\mu_X$

- Different values of M_R : little impact on observables (blue: $M_R = 100$ GeV, red: $M_R = 1$ TeV, black: $M_R = 10$ TeV)
- Slightly dependent on CMSSM parameters: points from random values of m_0 and $M_{1/2}$ in the range [0, 3] TeV
- Current experimental limits 4.3×10^{-12} (SINDRUM II) \Rightarrow $(Y_{\nu}^{\dagger}Y_{\nu})_{12} < 2.7 \times 10^{-5}$

э

$\mu \rightarrow 3e \text{ VS } \mu \rightarrow e\gamma$

- Z-dominated observable: $\mu \rightarrow 3e$
- Slightly less constraining than μe conversion in Gold
- Small influence of *M_R* and SUSY parameters

- Observable without any Z contribution: μ → eγ
- Below $\mu \rightarrow 3e$ \Rightarrow Not constraining
- Strong influence of *M_R* and SUSY parameters

Other Observables and Comments

- Brs of observables like τ → 3μ or τ → μη are dominated by Z-penguins and of the same order than Br(μ → 3e)
 ⇒ No chance to be observed at future B factories without specific textures of Y_ν
- Collider observables like \$\tilde{\chi}_2^0 → \$\tilde{\chi}_1^0 \ell_i \ell_j\$ or Δm_{\tilde{\ell}\$} are suppressed when compared to MSSM + type I seesaw due to small Y_ν
- Non-degenerate singlets don't change the behaviour of observables dominated by Z-mediated contributions
- Higgs mass around 125 GeV can be accomodated with large A_0 and moderately large tan β and singlets don't contribute to Higgs mass because of the smallness of Y_{ν}

・ ロ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Conclusion

- $cLFV \Rightarrow Clear signal of new physics$
- Enhancement from the inverse seesaw ⇒ Put constraints on Yukawa couplings
- Most constraining observable: μe conversion
- If nothing is detected ⇒ Strong constraints on the SUSY inverse seesaw, maybe exclusion if coupled with LHC (absence of) results on SUSY
- If cLFV is detected in the predicted range ⇒ Interplay of cLFV with other observables will help to disentangle the type of neutrino mass generation mechanism and shed light on the new physics

э

▲日 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

æ

This is a work in progress but we have very good collaborators.

Thank you

Three Seesaw Mechanisms

- Three classes of seesaw models at tree level ⇒ Three kinds of heavy fields
 - type I: RH neutrinos, SM gauge singlets
 - type II: scalar triplets
 - type III: fermionic triplets

▲ロト ▲御 ト ▲ 陸 ト ▲ 陸 ト 一 陸 …

・ロト ・ 戸 ・ ・ ヨ ・ ・ 日 ・

Approche effective des mécanismes de seesaw

- Conservation accidentelle du nombre leptonique dans le MS (provient du groupe de jauge, du contenu en champ et de la renormalisabilité)
- Nécessité de violer L pour générer des masses de neutrino ⇒ Opérateurs effectifs non-renormalisables
- Unique opérateur de dimension 5 pour tous les seesaw
 → Viole le nombre leptonique ⇒ neutrinos de Majorana

$$\delta \mathcal{L}^{d=5} = \frac{1}{2} c_{ij} \frac{(H \cdot L_i)^{\dagger} (H \cdot L_j)}{\Lambda} + \text{h.c.}$$

- Pour distinguer les différents mécanismes de seesaw
 - Production directe des états lourds (LHC, ILC)
 - Effets des opérateurs de dimension 6 \rightarrow LFV

Higgs-mediated cLFV contribution through slepton mixing

Motivations Inverse Seesaw Supersymmetry Charged LFV Results

• Soft SUSY breaking lagrangian :

$$\begin{aligned} -\mathcal{L}_{\text{soft}} &= -\mathcal{L}_{\text{soft}}^{\text{MSSM}} + m_{\widetilde{N}}^2 \widetilde{N}_i^{\dagger} \widetilde{N}_i + m_X^2 \widetilde{X}_i^{\dagger} \widetilde{X}_i + \left(A_{\nu} Y_{\nu}^{ij} \varepsilon_{ab} \widetilde{L}_i^a \widetilde{N}_j H_u^b \right. \\ &+ B_{M_{R_i}} \widetilde{N}_i \widetilde{X}_i + \frac{1}{2} B_{\mu_{X_i}} \widetilde{X}_i \widetilde{X}_i + \text{h.c.} \right) \end{aligned}$$

RGE corrections to the left-handed slepton soft-breaking masses
 :

$$(\Delta m_{\tilde{L}}^2)_{ij} \simeq -\frac{1}{8\pi^2} (3m_0^2 + A_0^2) (Y_{\nu}^{\dagger} L Y_{\nu})_{ij}, \quad L = \ln \frac{M_{GUT}}{M_R}$$

= $\xi (Y_{\nu}^{\dagger} Y_{\nu})_{ij}$

• LFV coefficient :

$$\kappa_{ij}^{E} = \frac{\epsilon_{2ij}^{\text{tot}}(Y_{\nu}^{\dagger}Y_{\nu})_{ij}}{\left[1 + \left(\epsilon_{1} + \epsilon_{2ii}^{\text{tot}}(Y_{\nu}^{\dagger}Y_{\nu})_{ii}\right)\tan\beta\right]^{2}}$$

Motivations

Supersymmetry

Results

• Branching ratios:

$$\mathsf{Br}(\tau \to 3\mu) \approx \frac{G_F^2 m_\mu^2 m_\tau^7 \tau_\tau}{768 \, \pi^3 M_A^4} |\kappa_{\tau\mu}^E|^2 \tan^6 \beta$$

$$\mathsf{Br}(B_s \to \ell_i \ell_j) = \frac{G_F^4 M_W^4}{8 \, \pi^5} \left| V_{tb}^* V_{ts} \right|^2 M_{B_s}^5 f_{B_s}^2 \, \tau_{B_s} \left(\frac{m_b}{m_b + m_s} \right)^2$$

$$imes ~ \sqrt{ \left[1 - rac{(m_{\ell_i} + m_{\ell_j})^2}{M_{B_s}^2}
ight] \left[1 - rac{(m_{\ell_i} - m_{\ell_j})^2}{M_{B_s}^2}
ight] }$$

$$\times \left\{ \left(1 - \frac{(m_{\ell_i} + m_{\ell_j})^2}{M_{B_s}^2} \right) |c_S^{ij}|^2 + \left(1 - \frac{(m_{\ell_i} - m_{\ell_j})^2}{M_{B_s}^2} \right) |c_P^{ij}|^2 \right\}$$

$$c_S^{\mu\tau} = c_P^{\mu\tau} \approx \frac{8\pi^2 m_\tau m_t^2}{M_W^2} \frac{\epsilon_Y \kappa_{\tau\mu}^E \tan^4 \beta}{\left[1 + (\epsilon_0 + \epsilon_Y Y_t^2) \tan \beta\right] \left[1 + \epsilon_0 \tan \beta\right]} \frac{1}{M_A^2} \bigvee$$

$$\begin{aligned} \frac{\mathsf{Br}(\tau \to \mu\eta)}{\mathsf{Br}(\tau \to 3\mu)} &\simeq & 36\,\pi^2 \left(\frac{f_\eta^8\,m_\eta^2}{m_\mu\,m_\tau^2}\right)^2 (1-x_\eta)^2 \left[\xi_s + \frac{\xi_b}{3} \left(1+\sqrt{2}\frac{f_\eta^0}{f_\eta^8}\right)\right]^2 \\ \frac{\mathsf{Br}(\tau \to \mu\eta')}{\mathsf{Br}(\tau \to \mu\eta)} &\simeq & \frac{2}{9} \left(\frac{f_{\eta'}^0}{f_\eta^8}\right)^2 \frac{m_{\eta'}^4}{m_\eta^4} \left(\frac{1-x_{\eta'}}{1-x_\eta}\right)^2 \left[\frac{1+\frac{3}{\sqrt{2}}\frac{f_{\eta'}^8}{f_{\eta'}^6}\left(\frac{\xi_s}{\xi_b} + \frac{1}{3}\right)}{\frac{\xi_s}{\xi_b} + \frac{1}{3} + \frac{\sqrt{2}}{3}\frac{f_{\eta}^0}{f_\eta^8}}\right]^2 \\ \frac{\mathsf{Br}(\tau \to \mu\pi)}{\mathsf{Br}(\tau \to \mu\eta)} &\simeq & \frac{4}{3} \left(\frac{f_\pi}{f_\eta^8}\right)^2 \frac{m_\pi^4}{m_\eta^4} (1-x_\eta)^{-2} \left[\frac{\frac{\xi_d}{\xi_b}\frac{1}{1+z} + \frac{1}{2}(1+\frac{\xi_s}{\xi_b})\frac{1-z}{1+z}}{\frac{\xi_s}{\xi_b} + \frac{1}{3} + \frac{\sqrt{2}}{3}\frac{f_\eta^0}{f_\eta^8}}\right]^2 \end{aligned}$$

$$\mathsf{Br}(H_k \to \mu \tau) = \tan^2 \beta \; (|\kappa_{\tau \mu}^E|^2) \; C_\Phi \; \mathsf{Br}(H_k \to \tau \tau)$$

$$C_{h} = \left[\frac{\cos(\beta - \alpha)}{\sin\alpha}\right]^{2}, \quad C_{H} = \left[\frac{\sin(\beta - \alpha)}{\cos\alpha}\right]^{2}, \quad C_{A} = 1$$

|--|

10,10,10,12,12, 2, 3000