Emilian Dudas

CERN and CPhT-Ecole Polytechnique

BEYOND THE STANDARD MODEL

Outline

- Hints from Higgs mass ?
- (meta)stability of the SM vacuum
- hierarchy problem and its solutions
- Flat and curved extra dimensions
- SUSY models after the last LHC results
- inverted hierarchy
- Beyond the MSSM
- low-scale SUSY breaking (non-linear MSSM)
- \bullet Hidden sector Z'
- Conclusions and perspectives.

may 16, 2012, RPP, Montpellier

1. Hints from the Higgs mass?

We all hope that Higgs hunting will suceeed soon (talks Djouadi, Zerwas)

Evidence of a Higgs scalar with mass around 125 GeV (Moriond 2012).

It the signal is real, is SM consistent until the GUT/Planck scale ?

Perturbativity/stability Higgs mass limits. Λ =scale of new physics

- In the SM, for 124-126 GeV mass, the Higgs potential develops an instability around 10^{11} GeV. Lifetime of our vacuum >> age of the universe.
- Can derive upper limits on the right-handed neutrino masses from SM vacuum stability

Quantum corrections to the Higgs mass in the SM, coming from diagrams in Fig. 29, are quadratically divergent

$$\delta m_h^2 \simeq \frac{3\Lambda^2}{8\pi^2 v^2} (4m_t^2 - 4M_W^2 - 2M_Z^2 - m_h^2) .$$

Quadratic divergences to the Higgs mass in the SM, leading to the hierarchy problem.

In a theory including gravity or GUT's, Λ is a physical mass scale $\Lambda=M_P,M_{GUT}.$ It is then difficult to understand why

$$m_h^2 = (m_h^0)^2 + \frac{3\Lambda^2}{8\pi^2 v^2} (4m_t^2 - 4M_W^2 - 2M_Z^2 - m_h^2) \sim v^2 << \Lambda^2$$

This is the the hierarchy problem. Traditional solutions fall into three categories:

- low-energy supersymmetry (SUSY)
- strong dynamics (technicolor, RS, composite Higgs models)
- large extra dimensions

2. Flat and curved extra dimensions

Large-extra dimensional scenario (ADD) solves hierarchy problem by having a low (TeV) fundamental scale

There are large dims. where only gravity propagates

Searches for deviations from Newton law, with

$$V(r) = G_N \frac{m_1 m_2}{r} (1 + \alpha e^{-r/\lambda})$$

Current limits: $R_{\perp}^{-1} > 0.1 \text{ mm}$

TeV extra dims. can provide:

- low-energy unification of gauge couplings
- Kaluza-Klein dark matter (UED)

Unification with extra dims. $R^{-1}=10^5/10^8~{\rm GeV}$ (left/right). Current UED limits: $R^{-1}>700~{\rm GeV}$.

Modern reincarnation of technicolor: holography. Ex: Randall-Sundrum brane-world model

There is a 5d-4d (AdS/CFT holographic dictionary:

- states localized on TeV (IR) brane: composite.
- states localized on Planck (UV) brane: elementary.

 ◆ KK states in 5d ⇔ resonances of 4d strongly coupled theory.

Nice features:

Different localization of fermions \rightarrow flavor structure which can explain fermion masses and mixings.

Some problems:

 \bullet KK states affect SM observables: electroweak precision tests, FCNC effects $\to \Lambda_{IR} >$ 3 TeV.

Models with $\Lambda_{IR} \sim$ TeV exist, with deformed metric in the infrared: soft-wall (Cabrer, Gersdorff, Quiros)

3. SUSY models after the last LHC results (talks Djouadi, Drieu la Rochelle)

SUSY: every fermion (boson) ↔ boson (fermion)

- nice gauge coupling unification
- natural dark matter candidate (neutralino)

There are two main new informations from LHC:

- 1) Direct SUSY searches restrict:
- masses of squarks of first two generations and gluino to have masses > 1 TeV
- third generation squarks can be much lighter (> 300 GeV)
- 2) SUSY spectrum specific, since MSSM prefers a light scalar (at tree-level $m_h^0 < M_Z$):

$$\delta m_h^2 \approx \frac{3g^2 m_t^4}{8\pi^2 m_W^2} \left[\ln \left(\frac{M_{\rm SUSY}^2}{m_t^2} \right) + \frac{X_t^2}{M_{\rm SUSY}^2} \left(1 - \frac{X_t^2}{12 M_{\rm SUSY}^2} \right) \right]$$

where and M_{SUSY} (A_t) denotes the average stop mass (mass mixing in the stop sector).

boson mass versus $X_t/M_{SUSY}.$ Heavier Higgs easier for $X_t>0$, but negative values more natural from RGE from $M_{GUT}.$

Higgs

A 125 GeV Higgs not natural in CMMSM/mSUGRA, since:

- for $A_t \sim M_{SUSY}$ it requires $M_{SUSY} >$ 3 4 TeV \Rightarrow big fine-tuning of the electroweak scale
- for $M_{SUSY} < 1$ TeV, it requires large A-terms. Difficult to conceive, starting from $M_{\rm GUT}$ or $M_{\rm Planck}$.

From a theoretical viewpoint, this requires some departure from the standard SUSY breaking mediation scenarios:

- ullet gravity mediation: generically $A \sim M_{SUSY}$
- gauge mediation: $A << M_{SUSY}$.

One old possibility which became popular recently: inverted hierarchy / natural SUSY:

- third generation scalars in the TeV range
- first two generations much heavier (10 15 TeV)

This is actually natural in flavor and holographic models. Good ex: abelian flavor models. Quark mass matrices are given by

$$h_{ij}^U \sim \epsilon^{q_i + u_j + h_u}$$
 , $h_{ij}^D \sim \epsilon^{q_i + d_j + h_d}$,

where $\epsilon << 1$, q_i (u_i, d_i, h_u, h_d) denote the $U(1)_X$ charges of the left-handed quarks (right-handed up-quarks, right-handed down-quarks, H_u and H_d , respectively).

Quark masses and mixings are

$$\begin{split} \frac{m_u}{m_t} &\sim \epsilon^{q_{13}+u_{13}} \ , \ \frac{m_c}{m_t} \sim \epsilon^{q_{23}+u_{23}} \ , \ \frac{m_d}{m_b} \sim \epsilon^{q_{13}+d_{13}} \ , \ \frac{m_s}{m_b} \sim \epsilon^{q_{23}+d_{23}} \\ \sin\theta_{12} &\sim \epsilon^{q_{12}} \ , \quad \sin\theta_{13} \sim \epsilon^{q_{13}} \ , \quad \sin\theta_{23} \sim \epsilon^{q_{23}} \ . \end{split}$$

Good fit to data ⇒ larger charges for lighter generations

$$q_1 > q_2 > q_3$$
 , $u_1 > u_2 > u_3$, $d_1 > d_2 > d_3$.

Scalar masses in abelian flavor models are of the form

$$m_{ij}^2 = X_i \langle D \rangle + a_{ij} \langle F \rangle$$
.

If D >> F, inverted hierarchy is generated.

If $m_{1,2}/m_3$ is too large, stops became tachyonic \rightarrow natural way to generate large stop mixing.

Inverted hierarchy example. Higgs mass (black dashed),stop mass (solid green) for $\mu>0$, $\tan\beta=10, M_{1/2}=1, A_0=-2$ (TeV). Yellow "tachyonic stop" and grey "no REWSB" ($\mu^2<0$) regions are excluded. Dark green region: $\Omega_{\rm DM}h^2<0.1288$.

4. Beyond the MSSM

There are various approaches/frameworks:

- 1) SUSY models with different gauge groups and/or field content:
- MSSM + light singlet(s): NMSSM (Ellwanger, Hugonie, etc)
 and its variants

There are new contributions to Higgs self coupling.

- 2) strongly coupled models: SUSY-RS models, $\lambda MSSM$, etc
- 3) MSSM with higher dimensional operators (talk Drieu de la Rochelle), low-scale SUSY breaking.

- MSSM + goldstino: Non-linear MSSM.

Usually we parameterize SUSY breaking in MSSM by a coupling to a spurion

$$S = \theta^2 m_{soft}$$

If SUSY breaking scale f is low, we consider SUSY matter sector coupled to the goldstino. This can be done by replacing S with a constrained superfield X, satisfying $X^2=0$

$$X = \frac{GG}{2F_X} + \sqrt{2}\theta G + \theta^2 F_X.$$

new MSSM couplings, correction to the higgs potential.

The main difference in non-linear MSSM is the replacement $S \to \frac{m_{soft}}{f} X$.

This reproduces the MSSM soft terms, but it adds new dynamics :

- F_X is a dynamical auxiliary field ightarrow new couplings from

$$-\bar{F}_X = f + \frac{B}{f}h_1h_2 + \frac{A_u}{f}quh_2 + \cdots$$

- it contains in a compact form the goldstino couplings to matter.

All couplings to the Goldstino are proportional to softterms. The lagrangian is

$$\mathcal{L} = \mathcal{L}_{MSSM} + \mathcal{L}_{X} + \mathcal{L}_{m} + \mathcal{L}_{AB} + \mathcal{L}_{g} \text{ where}$$

$$\mathcal{L}_{H} = \sum_{i=1,2} \frac{m_{i}^{2}}{f^{2}} \int d^{4}\theta \ X^{\dagger}X \ H_{i}^{\dagger}e^{V_{i}}H_{i} \ ,$$

$$\mathcal{L}_{m} = \sum_{\Phi} \frac{m_{\Phi}^{2}}{f^{2}} \int d^{4}\theta \ X^{\dagger}X\Phi^{\dagger}e^{V}\Phi \ , \ \Phi = Q, U_{c}, D_{c}, L, E_{c}$$

$$\mathcal{L}_{AB} = \frac{B}{f} \int d^{2}\theta \ XH_{1}H_{2} + (\frac{A_{u}}{f} \int d^{2}\theta \ XQU_{c}H_{2} + \cdots)$$

$$\mathcal{L}_{g} = \sum_{i=1}^{3} \frac{1}{16 g_{i}^{2} \kappa} \frac{2 m_{\lambda_{i}}}{f} \int d^{2}\theta \ X \operatorname{Tr} \left[W^{\alpha} W_{\alpha} \right]_{i} + h.c.$$

Matter terms coming from solving for F_X are new compared to MSSM. Ex: the scalar potential is modified:

$$V = (|\mu|^2 + m_1^2) |h_1|^2 + (|\mu|^2 + m_2^2) |h_2|^2 + (Bh_1.h_2 + h.c.)$$

$$+ \frac{g_1^2 + g_2^2}{8} [|h_1|^2 - |h_2|^2]^2 + \frac{g_2^2}{2} |h_1^{\dagger} h_2|^2$$

$$+ \frac{1}{f^2} |m_1^2 |h_1|^2 + m_2^2 |h_2|^2 + Bh_1.h_2|^2$$

The last term is new, generated by integrating out the sgoldstino.

Physical interpretation: new couplings of the Higgs to the (low-scale) SUSY breaking sector.

Implications for Higgs masses.

Due to the new quartic couplings, the Higgs masses change

$$\Delta m_h^2 = \frac{v^2}{16f^2} \frac{1}{\sqrt{w}} \left[16m_A^2 \mu^4 + 4m_A^2 \mu^2 m_Z^2 + (m_A^2 - 8\mu^2) m_Z^4 - 2m_Z^6 + 2(-2m_A^2 \mu^2 + 8\mu^4 + 4\mu^2 m_Z^2 + m_Z^4) \sqrt{w} + \cdots \right]$$

with $w=(m_A^2+m_Z^2)^2-4m_A^2m_Z^2\cos^22\beta$. The increase in the Higgs mass is significant for

$$1.5 \ TeV \le f \le 10 \ TeV$$

The fine-tuning of the electroweak scale is also reduced.

Higgs mass in non-linear MSSM. In (a), (b) $\mu=900$ GeV, $\tan\beta=50$. In (c), (d), $m_A=150$ GeV. In (c) $\tan\beta=50$.

5. Hidden Z'

Additional neutral gauge bosons can be light if hidden from SM. Natural communication hidden/SM sectors :

Kinetic mixing

$$\mathcal{L}_{\mathsf{mix}} = \epsilon F_{mn}^{Y} F_{mn}^{Z'}$$

 Chern-Simons terms (loops of heavy fermions or string theory Green-Schwarz mechanism)

$$\mathcal{L}_{CS} = \alpha_1 \epsilon^{mnpr} Z'_m Z_n F^Y_{pr}$$

• If DM is the lightest charged fermion in the hidden sector, these models have specific signatures.

Feynman diagrams contributing to the dark matter annihilation. First diagram generates a gamma-ray line, the second accommodates WMAP relic density.

Photon spectrum from the annihilation of dark matter

Conclusions and perspectives

- With 125 GeV Higgs and if SM, we live in a metastable vacuum.
- Additional couplings are restricted by lifetime of our vacuum
- \bullet ± 3 GeV in the Higgs mass change drastically both phenomenology and model builindg!
- Simplest SUSY models (mSUGRA,CMMSM) less and less viable. Non-standard models are needed.
- Inverted hierarchy models are natural and predictive in flavor models.

- Non-linear MSSM: new quartic Higgs coupling: contribution to Higgs mass, important for \sqrt{f} < 10 TeV.
- Alleviated fine-tuning of the electroweak scale.
- ullet Hidden Z' can be the mediator between hidden sector and our sector.
- Chern-Simons couplings can generate gamma ray lines in the dark matter annihilation (signal in FERMI) ?

Thank you!