Symmetries of the ideal and the unitary Fermi gases

Elisa Meunier

based on joint work with X. Bekaert and S. Moroz [arXiv:1111.3656, arXiv:1111.1082]

Laboratoire de Mathématiques et Physique Théorique Université François Rabelais de Tours

May 15th, 2012

Plan

- Motivations
- 2 Symmetries
 - The Schrödinger group of kinematical symmetries
 - The Weyl algebra of higher symmetries
- Bargmann framework
- 4 Conclusion

Motivations

Unitary Fermi gas : between BCS (Bardeen Cooper Schrieffer) and BEC (Bose-Einstein condensate) regimes

```
In the large-N limit (N flavors of atoms):
```

```
unitary Fermi gas (interactions) \longleftrightarrow ideal Fermi gas (free)
```

Motivations

Unitary Fermi gas : between BCS (Bardeen Cooper Schrieffer) and BEC (Bose-Einstein condensate) regimes

In the large-N limit (N flavors of atoms):

unitary Fermi gas (interactions) $\underset{\text{Legendre}}{\longleftrightarrow}$ ideal Fermi gas (free)

Symmetries

The Galilei group acts on the d-dimensionnal spatial coordinates \mathbf{x} and time t as

$$(t, \mathbf{x}) \rightarrow g(t, \mathbf{x}) = (t + \beta, \mathscr{R}\mathbf{x} + \mathbf{v}t + \mathbf{a}),$$

- ullet $eta\in\mathbb{R}$ and g_eta is a time translation and its generator \hat{P}_t
- \mathcal{R} is a rotation matrix and $\frac{d(d-1)}{2}$ spatial rotations generators \hat{M}_{ij}
- $\mathbf{v} \in \mathbb{R}^d$ and g_v are d Galilean boost and their generators \hat{K}_i
- $\mathbf{a} \in \mathbb{R}^d$ and g_a are spatial translations and their generators \hat{P}_i

The Galilei group acts on the d-dimensionnal spatial coordinates \mathbf{x} and time t as

$$(t, \mathbf{x}) \rightarrow g(t, \mathbf{x}) = (t + \beta, \mathscr{R}\mathbf{x} + \mathbf{v}t + \mathbf{a}),$$

- ullet $eta\in\mathbb{R}$ and $oldsymbol{g}_eta$ is a time translation and its generator $\hat{oldsymbol{P}}_t$
- \mathcal{R} is a rotation matrix and $\frac{d(d-1)}{2}$ spatial rotations generators \hat{M}_{ij}
- $\mathbf{v} \in \mathbb{R}^d$ and g_v are d Galilean boost and their generators \hat{K}_i
- $\mathbf{a} \in \mathbb{R}^d$ and g_a are spatial translations and their generators \hat{P}_i

The Galilei group acts on the d-dimensionnal spatial coordinates \mathbf{x} and time t as

$$(t, \mathbf{x}) \rightarrow g(t, \mathbf{x}) = (t + \beta, \mathscr{R}\mathbf{x} + \mathbf{v}t + \mathbf{a}),$$

- ullet $eta\in\mathbb{R}$ and $oldsymbol{g}_eta$ is a time translation and its generator $\hat{oldsymbol{P}}_t$
- \mathscr{R} is a rotation matrix and $\frac{d(d-1)}{2}$ spatial rotations generators \hat{M}_{ij}
- $\mathbf{v} \in \mathbb{R}^d$ and g_v are d Galilean boost and their generators \hat{K}_i
- $\mathbf{a} \in \mathbb{R}^d$ and g_a are spatial translations and their generators \hat{P}_i

The Galilei group acts on the d-dimensionnal spatial coordinates \mathbf{x} and time t as

$$(t, \mathbf{x}) \rightarrow g(t, \mathbf{x}) = (t + \beta, \mathscr{R}\mathbf{x} + \mathbf{v}t + \mathbf{a}),$$

- ullet $eta\in\mathbb{R}$ and $oldsymbol{g}_eta$ is a time translation and its generator $\hat{oldsymbol{P}}_t$
- \mathscr{R} is a rotation matrix and $\frac{d(d-1)}{2}$ spatial rotations generators \hat{M}_{ij}
- ullet ${f v} \in \mathbb{R}^d$ and g_v are d Galilean boost and their generators $\hat{\mathcal{K}}_i$
- $\mathbf{a} \in \mathbb{R}^d$ and g_a are spatial translations and their generators \hat{P}_i

The Galilei group acts on the d-dimensionnal spatial coordinates \mathbf{x} and time t as

$$(t, \mathbf{x}) \rightarrow g(t, \mathbf{x}) = (t + \beta, \mathscr{R}\mathbf{x} + \mathbf{v}t + \mathbf{a}),$$

- ullet $eta\in\mathbb{R}$ and $oldsymbol{g}_eta$ is a time translation and its generator $\hat{oldsymbol{P}}_t$
- \mathscr{R} is a rotation matrix and $\frac{d(d-1)}{2}$ spatial rotations generators \hat{M}_{ij}
- $\mathbf{v} \in \mathbb{R}^d$ and g_v are d Galilean boost and their generators \hat{K}_i
- $\mathbf{a} \in \mathbb{R}^d$ and g_a are spatial translations and their generators \hat{P}_i

The Galilei group acts only on the coordinates.

The transformations are "geometrical".

$$\varphi(t, \mathbf{x}) \to \varphi'(t, \mathbf{x}) = \varphi(t', \mathbf{x}') = \varphi(g(t, \mathbf{x})).$$

The generators of spatial translations and Galilean boosts commute : $[\hat{P}_i, \hat{K}_j] = 0$

The Galilei group acts only on the coordinates.

The transformations are "geometrical".

$$\varphi(t, \mathbf{x}) \to \varphi'(t, \mathbf{x}) = \varphi(t', \mathbf{x}') = \varphi(g(t, \mathbf{x})).$$

The generators of spatial translations and Galilean boosts commute : $[\hat{P}_i, \hat{K}_i] = 0$

Symmetry: definitions

• symmetry of Schrödinger equation (linear) : $\hat{S}\psi = 0$ with $\hat{S} := \hat{P}_t - \hat{H}$:

$$\psi \to \psi' = \hat{\mathbf{A}}\psi$$

- linear equation and if $\hat{A_1}$ and $\hat{A_2}$ are symmetries $\Rightarrow \hat{A_1}\hat{A_2}$ is symmetry also
- Relation of equivalence :

$$\hat{A}_1 \approx \hat{A}_2 \quad \Longleftrightarrow \quad \hat{A}_1 = \hat{A}_2 + \hat{O}\hat{S}$$
.

with \approx stands for equal on the mass-shell or proportionnal to the equations of motion and the trivial symmetry $\hat{O}\hat{S}$ maps any solution to zero.

Symmetry: definitions

• symmetry of Schrödinger equation (linear) : $\widehat{S}\psi=0$ with $\widehat{S}:=\widehat{P}_t-\widehat{H}$:

$$\psi \to \psi' = \hat{A}\psi$$

- linear equation and if $\hat{A_1}$ and $\hat{A_2}$ are symmetries $\Rightarrow \hat{A_1}\hat{A_2}$ is symmetry also
- Relation of equivalence :

$$\hat{A}_1 \approx \hat{A}_2 \quad \Longleftrightarrow \quad \hat{A}_1 = \hat{A}_2 + \hat{O} \widehat{S} \, .$$

with \approx stands for equal on the mass-shell or proportionnal to the equations of motion and the trivial symmetry $\hat{O}\hat{S}$ maps any solution to zero.

Symmetry: definitions

• symmetry of Schrödinger equation (linear) : $\hat{S}\psi = 0$ with $\hat{S} := \hat{P}_t - \hat{H}$:

$$\psi \to \psi' = \hat{A}\psi$$

- linear equation and if $\hat{A_1}$ and $\hat{A_2}$ are symmetries $\Rightarrow \hat{A_1}\hat{A_2}$ is symmetry also
- Relation of equivalence :

$$\hat{A}_1 pprox \hat{A}_2 \quad \Longleftrightarrow \quad \hat{A}_1 = \hat{A}_2 + \hat{O} \widehat{S} \, .$$

with \approx stands for equal on the mass-shell or proportionnal to the equations of motion and the trivial symmetry $\hat{O}\hat{S}$ maps any solution to zero.

The Schrödinger group of kinematical symmetries

The free Schrödinger equation (and chemical potential $\mu = 0$) is :

$$(2im\,\partial_t\,+\Delta)\psi(t,\mathbf{x})=0.$$

It is invariant under Galilei transformations if we allowed to modify wave function $\psi(t, \mathbf{x})$ (phase factor proportionnal to the mass).

These are kinematical symmetries

$$\psi(t, \mathbf{x}) \to \gamma(t, \mathbf{x}) \, \psi'(t, \mathbf{x}) = \gamma(g^{-1}(t', \mathbf{x}')) \, \psi(g(t, \mathbf{x}))$$

The generators are order-one differential operators

The Schrödinger group of kinematical symmetries

The free Schrödinger equation (and chemical potential $\mu = 0$) is :

$$(2im\,\partial_t\,+\Delta)\psi(t,\mathbf{x})=0.$$

It is invariant under Galilei transformations if we allowed to modify wave function $\psi(t, \mathbf{x})$ (phase factor proportionnal to the mass).

These are kinematical symmetries:

$$\psi(t, \mathbf{x}) \to \gamma(t, \mathbf{x}) \, \psi'(t, \mathbf{x}) = \gamma(g^{-1}(t', \mathbf{x}')) \, \psi(g(t, \mathbf{x}))$$

The generators are order-one differential operators.

Bargmann group

Projective representation (a phase) of Galilei group = "genuine" representation of Bargmann group

By enlarging the Galilei group through a central extension, known as the mass operator \hat{M} (or the particle number operator) = Bargmann group

Generators of Bargmann group : $\hat{P}_t, \hat{M}_{ij}, \hat{K}_i, \hat{P}_i, \hat{M}$

Bargmann group

Projective representation (a phase) of Galilei group = "genuine" representation of Bargmann group

By enlarging the Galilei group through a central extension, known as the mass operator \hat{M} (or the particle number operator) = Bargmann group

Generators of Bargmann group : \hat{P}_t , \hat{M}_{ij} , \hat{K}_i , \hat{P}_i , \hat{M}

Bargmann group

Projective representation (a phase) of Galilei group = "genuine" representation of Bargmann group

By enlarging the Galilei group through a central extension, known as the mass operator \hat{M} (or the particle number operator) = Bargmann group

Generators of Bargmann group : \hat{P}_t , \hat{M}_{ij} , \hat{K}_i , \hat{P}_i , \hat{M}

Bargmann group(2)

The generators of spatial translations and Galilean boosts don't commute : $[\hat{P}_i, \hat{K}_i] = -i \delta_{ij} m$.

These are the canonical commutation relations of the Heisenberg algebra \mathfrak{h}_d where \hat{K}_i play the role of the position operators \hat{X}_i while the reduced Planck constant \hbar is played by the role of the mass m.

Bargmann group(2)

The generators of spatial translations and Galilean boosts don't commute : $[\hat{P}_i, \hat{K}_i] = -i \delta_{ij} m$.

These are the canonical commutation relations of the Heisenberg algebra \mathfrak{h}_d where \hat{K}_i play the role of the position operators \hat{X}_i while the reduced Planck constant \hbar is played by the role of the mass m.

Schrödinger group

The Schrödinger group:

- Bargmann group
- Scale transformations (their generator \hat{D}):

$$(t,\mathbf{x}) o q(t,\mathbf{x}) = \left(rac{t}{lpha^2},rac{\mathbf{x}}{lpha}
ight), \qquad lpha \in \mathbb{R}$$

• Expansion (non-relativistic analogue of the special conformal transformations) (its generator \hat{C}): inversion $(t, \mathbf{x}) \to \Sigma(t, \mathbf{x}) = \left(-\frac{1}{t}, \frac{\mathbf{x}}{t}\right)$ combines with time translation g_{β}

$$(t, \mathbf{x}) \to (\Sigma^{-1} g_{\beta} \Sigma)(t, \mathbf{x}) = \left(\frac{t}{1 + \beta t}, \frac{\mathbf{x}}{1 + \beta t}\right)$$

Schrödinger group

The Schrödinger group:

- Bargmann group
- Scale transformations (their generator \hat{D}):

$$(t, \mathbf{x})
ightarrow q(t, \mathbf{x}) = \left(rac{t}{lpha^2}, rac{\mathbf{x}}{lpha}
ight), \qquad lpha \in \mathbb{R}$$

• Expansion (non-relativistic analogue of the special conformal transformations) (its generator \hat{C}): inversion $(t, \mathbf{x}) \to \Sigma(t, \mathbf{x}) = \left(-\frac{1}{t}, \frac{\mathbf{x}}{t}\right)$ combines with time translation g_{β}

$$(t,\mathbf{x}) o (\Sigma^{-1}g_{eta}\Sigma)(t,\mathbf{x}) = \left(rac{t}{1+eta t},rac{\mathbf{x}}{1+eta t}
ight)$$

Schrödinger group

The Schrödinger group:

- Bargmann group
- Scale transformations (their generator \hat{D}):

$$(t,\mathbf{x})
ightarrow q(t,\mathbf{x}) = \left(rac{t}{lpha^2},rac{\mathbf{x}}{lpha}
ight), \qquad lpha \in \mathbb{R}$$

• Expansion (non-relativistic analogue of the special conformal transformations) (its generator \hat{C}): inversion $(t, \mathbf{x}) \to \Sigma(t, \mathbf{x}) = \left(-\frac{1}{t}, \frac{\mathbf{x}}{t}\right)$ combines with time translation g_{β}

$$(t,\mathbf{x}) o (\Sigma^{-1}g_{\beta}\Sigma)(t,\mathbf{x}) = \left(\frac{t}{1+\beta t}, \frac{\mathbf{x}}{1+\beta t}\right)$$

Schrödinger algebra : $\mathfrak{sch}(d) = \mathfrak{h}_d \ni (\mathfrak{o}(d) \oplus \mathfrak{sl}(2,\mathbb{R}))$

• hd:

$$\hat{P}_i = -i\partial_i, \qquad \hat{K}_i = mx_i + it\partial_i, \qquad \hat{M} = mx_i$$

•
$$o(d)$$
:
$$\hat{M}_{ij} = -i(x_i\partial_j - x_j\partial_i),$$

$$\bullet$$
 $\mathfrak{sl}(2,\mathbb{R})$:

$$\begin{split} \hat{P}_t &= i\partial_t, \\ \hat{D} &= i\left(2\,t\,\partial_t + x^i\partial_i + \frac{d}{2}\right), \\ \hat{C} &= i\left(t^2\partial_t + t\left(x^i\partial_i + \frac{d}{2}\right)\right) + \frac{m}{2}\,x^2. \end{split}$$

Schrödinger algebra : $\mathfrak{sch}(d) = \mathfrak{h}_d \ni (\mathfrak{o}(d) \oplus \mathfrak{sl}(2,\mathbb{R}))$

• h_d:

$$\hat{P}_i = -i\partial_i, \qquad \hat{K}_i = mx_i + it\partial_i, \qquad \hat{M} = m,$$

•
$$o(d)$$
:
$$\hat{M}_{ij} = -i(x_i\partial_j - x_j\partial_i)$$

$$\bullet$$
 $\mathfrak{sl}(2,\mathbb{R})$:

$$\begin{split} \hat{P}_t &= i\partial_t, \\ \hat{D} &= i\left(2\,t\,\partial_t + x^i\partial_i + \frac{d}{2}\right), \\ \hat{C} &= i\left(t^2\partial_t + t\left(x^i\partial_i + \frac{d}{2}\right)\right) + \frac{m}{2}\,x^2. \end{split}$$

Schrödinger algebra : $\mathfrak{sch}(d) = \mathfrak{h}_d \ni (\mathfrak{o}(d) \oplus \mathfrak{sl}(2,\mathbb{R}))$

• h_d:

$$\hat{P}_i = -i\partial_i, \qquad \hat{K}_i = mx_i + it\partial_i, \qquad \hat{M} = m,$$

$$\hat{M}_{ij} = -i(x_i\partial_j - x_j\partial_i),$$

$$\bullet$$
 $\mathfrak{sl}(2,\mathbb{R})$:

$$\begin{split} \hat{P}_t &= i\partial_t, \\ \hat{D} &= i\left(2\,t\,\partial_t + x^i\partial_i + \frac{d}{2}\right), \\ \hat{C} &= i\left(t^2\partial_t + t\left(x^i\partial_i + \frac{d}{2}\right)\right) + \frac{m}{2}\,x^2. \end{split}$$

Schrödinger algebra : $\mathfrak{sch}(d) = \mathfrak{h}_d \ni (\mathfrak{o}(d) \oplus \mathfrak{sl}(2,\mathbb{R}))$

• h_d:

$$\hat{P}_i = -i\partial_i, \qquad \hat{K}_i = mx_i + it\partial_i, \qquad \hat{M} = m,$$

$$\bullet$$
 $\mathfrak{sl}(2,\mathbb{R})$:

$$\hat{P}_t = i\partial_t,$$

$$\hat{D} = i\left(2t\partial_t + x^i\partial_i + \frac{d}{2}\right),$$

$$\hat{C} = i\left(t^2\partial_t + t\left(x^i\partial_i + \frac{d}{2}\right)\right) + \frac{m}{2}x^2.$$

Commutation relations

$$\begin{split} \mathfrak{sch}(d) &= \mathfrak{h}_d \ni \left(\mathfrak{o}(d) \oplus \mathfrak{sl}(2,\mathbb{R})\right) \\ \mathfrak{o}(d) : \\ & [\hat{M}_{ij}, \hat{M}_{kl}] = i \left(\delta_{ik} \hat{M}_{jl} - \delta_{jk} \hat{M}_{il} - \delta_{il} \hat{M}_{jk} + \delta_{jl} \hat{M}_{ik}\right) \\ \mathfrak{sl}(2,\mathbb{R}) : \\ & [\hat{D}, \hat{C}] = 2i \hat{C} \,, \quad [\hat{D}, \hat{P}_t] = -2i \hat{P}_t \,, \quad [\hat{C}, \hat{P}_t] = -i \hat{D} \,. \end{split}$$

$$\mathfrak{h}_d : \\ & [\hat{P}_i, \hat{D}] = i \hat{P}_i \,, \quad [\hat{P}_i, \hat{C}] = -i \hat{K}_i \,, \quad [\hat{K}_i, \hat{D}] = -i \hat{K}_i \,, \\ & [\hat{M}_{ij}, \hat{K}_k] = i \left(\delta_{ik} \hat{K}_j - \delta_{jk} \hat{K}_i\right) \,, \quad [\hat{M}_{ij}, \hat{P}_k] = i \left(\delta_{ik} \hat{P}_j - \delta_{jk} \hat{P}_i\right) \,, \\ & [\hat{P}_i, \hat{K}_j] = -i \delta_{ij} \hat{M} \,, \qquad [\hat{P}_t, \hat{K}_j] = -i \hat{P}_j \,. \end{split}$$

Commutation relations

$$\begin{split} \mathfrak{sch}(d) &= \mathfrak{h}_d \ni \left(\mathfrak{o}(d) \oplus \mathfrak{sl}(2,\mathbb{R}) \right) \\ \mathfrak{o}(d) : \\ & [\hat{M}_{ij}, \hat{M}_{kl}] = i \left(\delta_{ik} \hat{M}_{jl} - \delta_{jk} \hat{M}_{il} - \delta_{il} \hat{M}_{jk} + \delta_{jl} \hat{M}_{ik} \right) \\ \mathfrak{sl}(2,\mathbb{R}) : \\ & [\hat{D}, \hat{C}] = 2i \hat{C} \,, \quad [\hat{D}, \hat{P}_t] = -2i \hat{P}_t \,, \quad [\hat{C}, \hat{P}_t] = -i \hat{D} \,. \end{split}$$

$$\mathfrak{h}_d : \\ & [\hat{P}_i, \hat{D}] = i \hat{P}_i \,, \quad [\hat{P}_i, \hat{C}] = -i \hat{K}_i \,, \quad [\hat{K}_i, \hat{D}] = -i \hat{K}_i \,, \\ & [\hat{M}_{ij}, \hat{K}_k] = i \left(\delta_{ik} \hat{K}_j - \delta_{jk} \hat{K}_i \right) \,, \quad [\hat{M}_{ij}, \hat{P}_k] = i \left(\delta_{ik} \hat{P}_j - \delta_{jk} \hat{P}_i \right) \,, \end{split}$$

Commutation relations

$$\begin{split} \mathfrak{sch}(d) &= \mathfrak{h}_d \ni \left(\mathfrak{o}(d) \oplus \mathfrak{sl}(2,\mathbb{R}) \right) \\ \mathfrak{o}(d) : \\ & [\hat{M}_{ij}, \hat{M}_{kl}] = i \left(\delta_{ik} \hat{M}_{jl} - \delta_{jk} \hat{M}_{il} - \delta_{il} \hat{M}_{jk} + \delta_{jl} \hat{M}_{ik} \right) \\ \mathfrak{sl}(2,\mathbb{R}) : \\ & [\hat{D}, \hat{C}] = 2i \hat{C} \,, \quad [\hat{D}, \hat{P}_t] = -2i \hat{P}_t \,, \quad [\hat{C}, \hat{P}_t] = -i \hat{D} \,. \end{split}$$

$$\mathfrak{h}_d : \\ & [\hat{P}_i, \hat{D}] = i \hat{P}_i \,, \quad [\hat{P}_i, \hat{C}] = -i \hat{K}_i \,, \quad [\hat{K}_i, \hat{D}] = -i \hat{K}_i \,, \\ & [\hat{M}_{ij}, \hat{K}_k] = i \left(\delta_{ik} \hat{K}_j - \delta_{jk} \hat{K}_i \right) \,, \quad [\hat{M}_{ij}, \hat{P}_k] = i \left(\delta_{ik} \hat{P}_j - \delta_{jk} \hat{P}_i \right) \,, \\ & [\hat{P}_i, \hat{K}_j] = -i \delta_{ij} \hat{M} \,, \qquad [\hat{P}_t, \hat{K}_j] = -i \hat{P}_j \,. \end{split}$$

Niederer Theorem

The maximal group of kinematical symmetries of free Schrödinger equation is the Schrödinger group.

```
geometrical (linear in the derivatives)
```

- kinematical (one order differential operators: linear and constant in the derivatives)
- higher (higher order differential operators)

Galilei ⊂ Bargmann ⊂ Schrödinger ⊂ Weyl

Niederer Theorem

The maximal group of kinematical symmetries of free Schrödinger equation is the Schrödinger group.

```
geometrical (linear in the derivatives)
```

- kinematical (one order differential operators : linear and constant in the derivatives)
- ⊂ higher (higher order differential operators)

Galilei ⊂ Bargmann ⊂ Schrödinger ⊂ Weyl

Symmetries: maximal algebra

<u>Definition</u>: The maximal symmetry algebra of the free Schrödinger equation is the algebra of **all** the inequivalent (not trivial) symmetries of the free Schrödinger equation.

<u>Theorem:</u> The maximal Lie algebra of symmetries for the free Schrödinger equation is generated algebraically by the space translations and the Galilean boosts.

 \Rightarrow Weyl algebra = envelopping Heisenberg algebra $\mathfrak{A}(d) = \mathcal{U}(\mathfrak{h}_d) = Pol(\hat{K}, \hat{P})$

<u>Theorem</u>: (Eastwood, 2002) The maximal Lie algebra of symmetries for **d'Alembert equation** is generated algebraically by the **conformal Killing vectors** (= **algebra of Vasiliev higher-spin gravity**).

Symmetries: maximal algebra

<u>Definition</u>: The maximal symmetry algebra of the free Schrödinger equation is the algebra of **all** the inequivalent (not trivial) symmetries of the free Schrödinger equation.

<u>Theorem</u>: The maximal Lie algebra of symmetries for the free Schrödinger equation is generated algebraically by the space translations and the Galilean boosts.

 \Rightarrow Weyl algebra = envelopping Heisenberg algebra $\mathfrak{A}(d) = \mathcal{U}(\mathfrak{h}_d) = Pol(\hat{K}, \hat{P})$

<u>Theorem</u>: (Eastwood, 2002) The maximal Lie algebra of symmetries for **d'Alembert equation** is generated algebraically by the **conformal Killing vectors** (= algebra of Vasiliev higher-spin gravity).

Symmetries: maximal algebra

<u>Definition</u>: The **maximal** symmetry algebra of the free Schrödinger equation is the algebra of **all** the inequivalent (not trivial) symmetries of the free Schrödinger equation.

<u>Theorem</u>: The maximal Lie algebra of symmetries for the free Schrödinger equation is generated algebraically by the space translations and the Galilean boosts.

 \Rightarrow Weyl algebra = envelopping Heisenberg algebra $\mathfrak{A}(d) = \mathcal{U}(\mathfrak{h}_d) = Pol(\hat{K}, \hat{P})$

<u>Theorem</u>: (Eastwood, 2002) The maximal Lie algebra of symmetries for **d'Alembert equation** is generated algebraically by the **conformal Killing vectors** (= **algebra of Vasiliev higher-spin gravity**).

Symmetries: maximal algebra

<u>Definition</u>: The maximal symmetry algebra of the free Schrödinger equation is the algebra of **all** the inequivalent (not trivial) symmetries of the free Schrödinger equation.

<u>Theorem</u>: The maximal Lie algebra of symmetries for the free Schrödinger equation is generated algebraically by the space translations and the Galilean boosts.

 \Rightarrow Weyl algebra = envelopping Heisenberg algebra $\mathfrak{A}(d) = \mathcal{U}(\mathfrak{h}_d) = Pol(\hat{K}, \hat{P})$

<u>Theorem</u>: (Eastwood, 2002) The maximal Lie algebra of symmetries for **d'Alembert equation** is generated algebraically by the **conformal Killing vectors** (= algebra of Vasiliev higher-spin gravity).

Generators of degree two in \hat{P} and \hat{K}

 $\hat{\mathbf{X}}(t)
ightarrow \hat{\mathbf{K}}/m$ and $\hat{\mathbf{P}}(t)
ightarrow \hat{\mathbf{P}}$ (M. Valenzuela, 2009)

$$\begin{split} \hat{P}_t &\approx \frac{\hat{P}^2}{2m} \,, \\ \hat{M}_{ij} &= \frac{\hat{K}_i \hat{P}_j - \hat{K}_j \hat{P}_i}{m} \,, \\ \hat{D} &\approx -\frac{\hat{K}^i \hat{P}_i + \frac{d}{2}}{m} \,, \\ \hat{C} &\approx \frac{\hat{K}^2}{2m} \,. \end{split}$$

Generators of degree two in \hat{P} and \hat{K}

$$\hat{\mathbf{X}}(t)
ightarrow \hat{\mathbf{K}}/m$$
 and $\hat{\mathbf{P}}(t)
ightarrow \hat{\mathbf{P}}$ (M. Valenzuela, 2009)

$$\begin{split} \hat{P}_t &\approx \frac{\hat{P}^2}{2m}\,,\\ \hat{M}_{ij} &= \frac{\hat{K}_i \hat{P}_j - \hat{K}_j \hat{P}_i}{m}\,,\\ \hat{D} &\approx -\frac{\hat{K}^i \hat{P}_i + \frac{d}{2}}{m}\,,\\ \hat{C} &\approx \frac{\hat{K}^2}{2m}\,. \end{split}$$

Bargmann framework

The non-trivial commutation relations of the conformal algebra o(d+2,2):

$$\begin{split} \tilde{M}^{\mu\nu}, \ \tilde{M}^{\alpha\beta}] &= i(\eta^{\mu\alpha}\tilde{M}^{\nu\beta} + \eta^{\nu\beta}\tilde{M}^{\mu\alpha} - \eta^{\mu\beta}\tilde{M}^{\nu\alpha} - \eta^{\nu\alpha}\tilde{M}^{\mu\beta}), \\ [\tilde{M}^{\mu\nu}, \ \tilde{P}^{\alpha}] &= i(\eta^{\mu\alpha}\tilde{P}^{\nu} - \eta^{\nu\alpha}\tilde{P}^{\mu}), \\ [\tilde{D}, \ \tilde{P}^{\mu}] &= -i\tilde{P}^{\mu}, \quad [\tilde{D}, \ \tilde{K}^{\mu}] = i\tilde{K}^{\mu}, \\ [\tilde{P}^{\mu}, \ \tilde{K}^{\nu}] &= -2i(\eta^{\mu\nu}\tilde{D} + \tilde{M}^{\mu\nu}), \end{split}$$

where Greek indices run from 0 to d + 1.

The tilde signs are for relativistic generators and hatted symbols for the non-relativistic oper

The non-trivial commutation relations of the conformal algebra o(d+2,2):

$$\begin{split} [\tilde{M}^{\mu\nu},\,\tilde{M}^{\alpha\beta}] &= i(\eta^{\mu\alpha}\tilde{M}^{\nu\beta} + \eta^{\nu\beta}\tilde{M}^{\mu\alpha} - \eta^{\mu\beta}\tilde{M}^{\nu\alpha} - \eta^{\nu\alpha}\tilde{M}^{\mu\beta}), \\ [\tilde{M}^{\mu\nu},\,\tilde{P}^{\alpha}] &= i(\eta^{\mu\alpha}\tilde{P}^{\nu} - \eta^{\nu\alpha}\tilde{P}^{\mu}), \\ [\tilde{D},\,\tilde{P}^{\mu}] &= -i\tilde{P}^{\mu}, \quad [\tilde{D},\,\tilde{K}^{\mu}] = i\tilde{K}^{\mu}, \\ [\tilde{P}^{\mu},\,\tilde{K}^{\nu}] &= -2i(\eta^{\mu\nu}\tilde{D} + \tilde{M}^{\mu\nu}), \end{split}$$

where Greek indices run from 0 to d + 1.

The tilde signs are for relativistic generators and hatted symbols for the non-relativistic operators.

The representations are:

$$\begin{split} \tilde{P}_{\mu} &= -i\partial_{\mu}, \quad \tilde{M}_{\mu\nu} = -i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu}), \\ \tilde{K}_{\mu} &= i\left(2x_{\mu}\left(x^{\nu}\partial_{\nu} + \frac{d}{2}\right) - x^{2}\partial_{\mu}\right), \quad \tilde{D} = i\left(x^{\mu}\partial_{\mu} + \frac{d}{2}\right) \end{split}$$

The light-cone momentum $\tilde{P}^+ = (\tilde{P}^0 + \tilde{P}^{d+1})/\sqrt{2}$ \longleftrightarrow the mass operator \hat{M} in the non-relativistic theory

All operators in the conformal algebra $(\mu = (-, +, i))$ that commute with \tilde{P}^+ , form a subalgebra = Schrödinger algebra $\mathfrak{sch}(d)$:

$$\begin{split} \hat{M} &= \tilde{P}^+, \quad \hat{P}_t = \tilde{P}^-, \quad \hat{P}^i = \tilde{P}^i, \quad \hat{M}^{ij} = \tilde{M}^{ij}, \\ \hat{K}^i &= \tilde{M}^{i+}, \quad \hat{D} = \tilde{D} + \tilde{M}^{+-}, \quad \hat{C} = \frac{\tilde{K}^+}{2} \,. \end{split}$$

The representations are:

$$\begin{split} \tilde{P}_{\mu} &= -i\partial_{\mu}, \quad \tilde{M}_{\mu\nu} = -i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu}), \\ \tilde{K}_{\mu} &= i\left(2x_{\mu}\left(x^{\nu}\partial_{\nu} + \frac{d}{2}\right) - x^{2}\partial_{\mu}\right), \quad \tilde{D} = i\left(x^{\mu}\partial_{\mu} + \frac{d}{2}\right) \end{split}$$

The light-cone momentum $\tilde{P}^+ = (\tilde{P}^0 + \tilde{P}^{d+1})/\sqrt{2}$ \longleftrightarrow the mass operator \hat{M} in the non-relativistic theory.

All operators in the conformal algebra $(\mu = (-, +, i))$ that commute with \tilde{P}^+ , form a subalgebra = Schrödinger algebra $\mathfrak{sch}(d)$:

$$\hat{M} = \tilde{P}^+, \quad \hat{P}_t = \tilde{P}^-, \quad \hat{P}^i = \tilde{P}^i, \quad \hat{M}^{ij} = \tilde{M}^{ij},$$

 $\hat{K}^i = \tilde{M}^{i+}, \quad \hat{D} = \tilde{D} + \tilde{M}^{+-}, \quad \hat{C} = \frac{\tilde{K}^+}{2}.$

The representations are:

$$\begin{split} \tilde{P}_{\mu} &= -i\partial_{\mu}, \quad \tilde{M}_{\mu\nu} = -i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu}), \\ \tilde{K}_{\mu} &= i\left(2x_{\mu}\left(x^{\nu}\partial_{\nu} + \frac{d}{2}\right) - x^{2}\partial_{\mu}\right), \quad \tilde{D} = i\left(x^{\mu}\partial_{\mu} + \frac{d}{2}\right) \end{split}$$

The light-cone momentum $\tilde{P}^+ = (\tilde{P}^0 + \tilde{P}^{d+1})/\sqrt{2}$ \longleftrightarrow the mass operator \hat{M} in the non-relativistic theory.

All operators in the conformal algebra $\left(\mu=(-,+,i)\right)$ that commute with \tilde{P}^+ , form a subalgebra = Schrödinger algebra $\mathfrak{sch}(d)$:

$$\begin{split} \hat{M} &= \tilde{P}^+, \quad \hat{P}_t = \tilde{P}^-, \quad \hat{P}^j = \tilde{P}^j, \quad \hat{M}^{ij} = \tilde{M}^{ij}, \\ \hat{K}^i &= \tilde{M}^{i+}, \quad \hat{D} = \tilde{D} + \tilde{M}^{+-}, \quad \hat{C} = \frac{\tilde{K}^+}{2} \,. \end{split}$$

Embedding diagram

	Kinematical		Higher
Relativistic	o(d+2,2)	C Eastwood	Vasiliev algebra (d+2,2)
	U		U
Non – relativistic	$\mathfrak{sch}(d)$	\subset	Weyl algebra (d)

Massless Klein-Gordon (d'Alembert) equation in d + 2-dimensional Minkowski spacetime

$$\Box \Psi(x) \equiv -\partial_0^2 \Psi(x) + \sum_{i=1}^{d+1} \partial_i^2 \Psi(x) = 0$$

- the light-cone coordinates : $x^{\pm} = \frac{x^0 \pm x^{d+1}}{\sqrt{2}}$
- the dimensionnal reduction along a light-like (or null) direction x^- (and time is $x^+ = t$):

$$\Psi(x) = e^{-imx^{-}}\psi(x^{+}, \mathbf{x})$$

 \Rightarrow Free Schrödinger equation

$$(2im\,\partial_t + \Delta)\psi(t,\mathbf{x}) = 0$$

Massless Klein-Gordon (d'Alembert) equation in d + 2-dimensional Minkowski spacetime

$$\Box \Psi(x) \equiv -\partial_0^2 \Psi(x) + \sum_{i=1}^{d+1} \partial_i^2 \Psi(x) = 0$$

- the light-cone coordinates : $x^{\pm} = \frac{x^0 \pm x^{d+1}}{\sqrt{2}}$
- the dimensionnal reduction along a light-like (or null) direction x^- (and time is $x^+ = t$):

$$\Psi(x) = e^{-imx^{-}}\psi(x^{+}, \mathbf{x})$$

⇒ Free Schrödinger equation

$$(2im \partial_t + \Delta)\psi(t, \mathbf{x}) = 0$$

Massless Klein-Gordon (d'Alembert) equation in d + 2-dimensional Minkowski spacetime

$$\Box \Psi(x) \equiv -\partial_0^2 \Psi(x) + \sum_{i=1}^{d+1} \partial_i^2 \Psi(x) = 0$$

- the light-cone coordinates : $x^{\pm} = \frac{x^0 \pm x^{d+1}}{\sqrt{2}}$
- the dimensionnal reduction along a light-like (or null) direction x^- (and time is $x^+ = t$):

$$\Psi(\mathbf{x}) = \mathbf{e}^{-im\mathbf{x}^-} \psi(\mathbf{x}^+, \mathbf{x})$$

⇒ Free Schrödinger equation

$$(2im\,\partial_t + \Delta)\psi(t,\mathbf{x}) = 0$$

Massless Klein-Gordon (d'Alembert) equation in d + 2-dimensional Minkowski spacetime

$$\Box \Psi(x) \equiv -\partial_0^2 \Psi(x) + \sum_{i=1}^{d+1} \partial_i^2 \Psi(x) = 0$$

- the light-cone coordinates : $x^{\pm} = \frac{x^0 \pm x^{d+1}}{\sqrt{2}}$
- the dimensionnal reduction along a light-like (or null) direction x^- (and time is $x^+ = t$):

$$\Psi(\mathbf{x}) = \mathbf{e}^{-im\mathbf{x}^-} \psi(\mathbf{x}^+, \mathbf{x})$$

⇒ Free Schrödinger equation

$$(2im\,\partial_t\,+\Delta)\psi(t,\mathbf{x})=0$$

Summary

- Symmetries: Weyl algebra is a maximal algebra of symmetries of free Schrödinger equation
- Currents: non relativistic, conserved (or not), neutral/charged
- Motivation : Analogue of correspondance AdS/CFT for condensed matter

- Summary
 - Symmetries: Weyl algebra is a maximal algebra of symmetries of free Schrödinger equation
 - Currents: non relativistic, conserved (or not), neutral/charged
- Motivation : Analogue of correspondance AdS/CFT for condensed matter

Summary

- Symmetries: Weyl algebra is a maximal algebra of symmetries of free Schrödinger equation
- Currents: non relativistic, conserved (or not), neutral/charged
- Motivation : Analogue of correspondance AdS/CFT for condensed matter

- Summary
 - Symmetries: Weyl algebra is a maximal algebra of symmetries of free Schrödinger equation
 - Currents: non relativistic, conserved (or not), neutral/charged
- Motivation : Analogue of correspondance AdS/CFT for condensed matter

Thank you

for your attention!

