Symmetries of the ideal and the unitary Fermi gases

Elisa Meunier based on joint work with X. Bekaert and S. Moroz [arXiv:1111.3656, arXiv:1111.1082]
Laboratoire de Mathématiques et Physique Théorique Université François Rabelais de Tours

May 15th, 2012

Plan

(1) Motivations
(2) Symmetries

- The Schrödinger group of kinematical symmetries
- The Weyl algebra of higher symmetries
(3) Bargmann framework

4. Conclusion

Motivations

Unitary Fermi gas : between BCS (Bardeen Cooper Schrieffer) and BEC (Bose-Einstein condensate) regimes

In the large- N limit (N flavors of atoms)
unitary Fermi gas (interactions) \longleftrightarrow ideal Fermi gas (free)

Motivations

Unitary Fermi gas : between BCS (Bardeen Cooper Schrieffer) and BEC (Bose-Einstein condensate) regimes

In the large- N limit (N flavors of atoms) :
unitary Fermi gas (interactions) $\underset{\text { Legendre }}{\overleftrightarrow{~ i d e a l ~ F e r m i ~ g a s ~(f r e e) ~}}$

Symmetries

Galilei group (1)

The Galilei group acts on the d-dimensionnal spatial coordinates \mathbf{x} and time t as

$$
(t, \mathbf{x}) \rightarrow g(t, \mathbf{x})=(t+\beta, \mathscr{R} \mathbf{x}+\mathbf{v} t+\mathbf{a})
$$

where

- $\beta \in \mathrm{R}$ and g_{β} is a time translation and its generator \hat{P}_{t}
- \mathscr{R} is a rotation matrix and $\frac{d(d-1)}{2}$ spatial rotations generators $\hat{M}_{i j}$
- $\mathbf{v} \in \mathbb{R}^{d}$ and q_{v} are d Galilean boost and their generators K_{i}
- $a \in \mathbb{R}^{d}$ and g_{a} are spatial translations and their generators

Galilei group (1)

The Galilei group acts on the d-dimensionnal spatial coordinates \mathbf{x} and time t as

$$
(t, \mathbf{x}) \rightarrow g(t, \mathbf{x})=(t+\beta, \mathscr{R} \mathbf{x}+\mathbf{v} t+\mathbf{a})
$$

where

- $\beta \in \mathbb{R}$ and g_{β} is a time translation and its generator \hat{P}_{t}
- \mathscr{R} is a rotation matrix and $\frac{d(d-1)}{2}$ spatial rotations generators $\hat{M}_{i j}$
- $\mathbf{v} \in \mathbb{R}^{d}$ and g_{v} are d Galilean boost and their generators K_{i}
- $\mathbf{a} \in \mathbb{R}^{d}$ and g_{a} are spatial translations and their generators

Galilei group (1)

The Galilei group acts on the d-dimensionnal spatial coordinates \mathbf{x} and time t as

$$
(t, \mathbf{x}) \rightarrow g(t, \mathbf{x})=(t+\beta, \mathscr{R} \mathbf{x}+\mathbf{v} t+\mathbf{a})
$$

where

- $\beta \in \mathbb{R}$ and g_{β} is a time translation and its generator \hat{P}_{t}
- \mathscr{R} is a rotation matrix and $\frac{d(d-1)}{2}$ spatial rotations generators $\hat{M}_{i j}$
- $\mathbf{v} \in \mathbb{R}^{d}$ and g_{v} are d Galilean boost and their generators \hat{K}_{i}
- $\mathbf{a} \in \mathbb{R}^{d}$ and g_{a} are spatial translations and their generators

Galilei group (1)

The Galilei group acts on the d-dimensionnal spatial coordinates \mathbf{x} and time t as

$$
(t, \mathbf{x}) \rightarrow g(t, \mathbf{x})=(t+\beta, \mathscr{R} \mathbf{x}+\mathbf{v} t+\mathbf{a})
$$

where

- $\beta \in \mathbb{R}$ and g_{β} is a time translation and its generator \hat{P}_{t}
- \mathscr{R} is a rotation matrix and $\frac{d(d-1)}{2}$ spatial rotations generators $\hat{M}_{i j}$
- $\mathbf{v} \in \mathbb{R}^{d}$ and g_{v} are d Galilean boost and their generators \hat{K}_{i}
- $a \in \mathbb{R}^{d}$ and g_{a} are spatial translations and their generators

Galilei group (1)

The Galilei group acts on the d-dimensionnal spatial coordinates \mathbf{X} and time t as

$$
(t, \mathbf{x}) \rightarrow g(t, \mathbf{x})=(t+\beta, \mathscr{R} \mathbf{x}+\mathbf{v} t+\mathbf{a})
$$

where

- $\beta \in \mathbb{R}$ and g_{β} is a time translation and its generator \hat{P}_{t}
- \mathscr{R} is a rotation matrix and $\frac{d(d-1)}{2}$ spatial rotations generators $\hat{M}_{i j}$
- $\mathbf{v} \in \mathbb{R}^{d}$ and g_{v} are d Galilean boost and their generators \hat{K}_{i}
- $\mathbf{a} \in \mathbb{R}^{d}$ and g_{a} are spatial translations and their generators \hat{P}_{i}

Galilei group (2)

The Galilei group acts only on the coordinates. The transformations are "geometrical". $\varphi(t, \mathbf{x}) \rightarrow \varphi^{\prime}(t, \mathbf{x})=\varphi\left(t^{\prime}, \mathbf{x}^{\prime}\right)=\varphi(g(t, \mathbf{x}))$.

The generators of spatial translations and Galiean boosts commute : $\left[\hat{P}_{i}, \hat{K}_{j}\right]=0$

Galilei group (2)

The Galilei group acts only on the coordinates.
The transformations are "geometrical".
$\varphi(t, \mathbf{x}) \rightarrow \varphi^{\prime}(t, \mathbf{x})=\varphi\left(t^{\prime}, \mathbf{x}^{\prime}\right)=\varphi(g(t, \mathbf{x}))$.
The generators of spatial translations and Galilean boosts commute : $\left[\hat{P}_{i}, \hat{K}_{j}\right]=0$

Symmetry : definitions

- symmetry of Schrödinger equation (linear) : $\widehat{\boldsymbol{S}} \psi=0$ with $\widehat{S}:=\hat{P}_{t}-\hat{H}:$

$$
\psi \rightarrow \psi^{\prime}=\hat{\boldsymbol{A}} \psi
$$

- linear equation and if \hat{A}_{1} and \hat{A}_{2} are symmetries $\Rightarrow \hat{A}_{1} \hat{A}_{2}$ is symmetry also
- Relation of equivalence

$$
\hat{A}_{1} \approx \hat{A}_{2} \quad \Longleftrightarrow \quad \hat{A}_{1}=\hat{A}_{2}+\hat{O} \hat{S} .
$$

with \approx stands for equal on the mass-shell or proportionnal to the equations of motion
and the trivial symmetry $\hat{O} \widehat{S}$ maps any solution to zero.

Symmetry : definitions

- symmetry of Schrödinger equation (linear) : $\widehat{\boldsymbol{S}} \psi=0$ with $\widehat{S}:=\hat{P}_{t}-\hat{H}:$

$$
\psi \rightarrow \psi^{\prime}=\hat{\boldsymbol{A}} \psi
$$

- linear equation and if \hat{A}_{1} and \hat{A}_{2} are symmetries $\Rightarrow \hat{A}_{1} \hat{A}_{2}$ is symmetry also
- Relation of equivalence

$$
\hat{A}_{1} \approx \hat{A}_{2} \quad \Longleftrightarrow \quad \hat{A}_{1}=\hat{A}_{2}+\hat{O S} .
$$

with \approx stands for equal on the mass-shell or proportionnal
to the equations of motion
and the trivial symmetry $\hat{O} \widehat{S}$ maps any solution to zero.

Symmetry : definitions

- symmetry of Schrödinger equation (linear) : $\widehat{S} \psi=0$ with $\widehat{S}:=\hat{P}_{t}-\hat{H}:$

$$
\psi \rightarrow \psi^{\prime}=\hat{\boldsymbol{A}} \psi
$$

- linear equation and if $\hat{A_{1}}$ and \hat{A}_{2} are symmetries $\Rightarrow \hat{A}_{1} \hat{A}_{2}$ is symmetry also
- Relation of equivalence :

$$
\hat{A}_{1} \approx \hat{A}_{2} \quad \Longleftrightarrow \quad \hat{A}_{1}=\hat{A}_{2}+\hat{O} \hat{S}
$$

with \approx stands for equal on the mass-shell or proportionnal to the equations of motion
and the trivial symmetry $\hat{O} \widehat{S}$ maps any solution to zero.

The Schrödinger group of kinematical symmetries

The free Schrödinger equation (and chemical potential $\mu=0$) is :

$$
\left(2 i m \partial_{t}+\Delta\right) \psi(t, \mathbf{x})=0 .
$$

It is invariant under Galilei transformations if we allowed to modify wave function $\psi(t, \mathbf{x})$ (bhase factor proportionnal to the mass).
These are kinematical symmetries

The generators are order-one differential operators.

The Schrödinger group of kinematical symmetries

The free Schrödinger equation (and chemical potential $\mu=0$) is :

$$
\left(2 i m \partial_{t}+\Delta\right) \psi(t, \mathbf{x})=0 .
$$

It is invariant under Galilei transformations if we allowed to modify wave function $\psi(t, \mathbf{x})$ (phase factor proportionnal to the mass).
These are kinematical symmetries :

$$
\psi(t, \mathbf{x}) \rightarrow \gamma(t, \mathbf{x}) \psi^{\prime}(t, \mathbf{x})=\gamma\left(g^{-1}\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right) \psi(g(t, \mathbf{x}))
$$

The generators are order-one differential operators.

Bargmann group

Projective representation (a phase) of Galilei group
= "genuine" representation of Bargmann group
By enlarging the Galilei group through a central extension,
known as the mass operator \hat{M} (or the particle number operator) $=$ Bargmann group

Generators of Bargmann group : $\hat{P}_{t}, \hat{M}_{i j}, \hat{K}_{i}, \hat{P}_{i}, \hat{M}$

Bargmann group

Projective representation (a phase) of Galilei group
= "genuine" representation of Bargmann group
By enlarging the Galilei group through a central extension, known as the mass operator \hat{M} (or the particle number operator) $=$ Bargmann group

Generators of Bargmann group : $\hat{P}_{t}, \hat{M}_{i j}, \hat{K}_{i}, \hat{P}_{i}, \hat{M}$

Bargmann group

Projective representation (a phase) of Galilei group
= "genuine" representation of Bargmann group
By enlarging the Galilei group through a central extension, known as the mass operator \hat{M} (or the particle number operator) $=$ Bargmann group

Generators of Bargmann group : $\hat{P}_{t}, \hat{M}_{i j}, \hat{K}_{i}, \hat{P}_{i}, \hat{M}$

Bargmann group(2)

The generators of spatial translations and Galilean boosts don't commute : $\left[\hat{P}_{i}, \hat{K}_{j}\right]=-i \delta_{i j} m$.

These are the canonical commutation relations of the Heisenberg algebra \mathfrak{h}_{d}
where \hat{K}_{i} play the role of the position operators \hat{X}_{i} while the reduced Planck constant \hbar is played by the role of the mass m.

Bargmann group(2)

The generators of spatial translations and Galilean boosts don't commute : $\left[\hat{P}_{i}, \hat{K}_{j}\right]=-i \delta_{i j} m$.

These are the canonical commutation relations of the Heisenberg algebra \mathfrak{h}_{d} where \hat{K}_{i} play the role of the position operators \hat{X}_{i} while the reduced Planck constant \hbar is played by the role of the mass m.

Schrödinger group

The Schrödinger group :

- Bargmann group
- Scale transformations (their generator D) :

$$
(t, \mathbf{x}) \rightarrow q(t, \mathbf{x})=\left(\frac{t}{\alpha^{2}}, \frac{\mathbf{x}}{\alpha}\right), \quad \alpha \in \mathbb{R} .
$$

- Expansion (non-relativistic analogue of the special conformal transformations) (its generator \hat{C}) : inversion $(t, \mathbf{x}) \rightarrow \Sigma(t, \mathbf{x})=\left(-\frac{1}{t}, \frac{\mathbf{x}}{t}\right)$ combines with time translation g_{β}

$$
(t, \mathbf{x}) \rightarrow\left(\Sigma^{-1} g_{\beta} \Sigma\right)(t, \mathbf{x})=\left(\frac{t}{1+\beta t}, \frac{\mathbf{x}}{1+\beta t}\right)
$$

Schrödinger group

The Schrödinger group :

- Bargmann group
- Scale transformations (their generator \hat{D}) :

$$
(t, \mathbf{x}) \rightarrow q(t, \mathbf{x})=\left(\frac{t}{\alpha^{2}}, \frac{\mathbf{x}}{\alpha}\right), \quad \alpha \in \mathbb{R} .
$$

- Expansion (non-relativistic analogue of the special conformal transformations) (its generator \hat{C})
inversion $(t, \mathbf{x}) \rightarrow \Sigma(t, \mathbf{x})=\left(-\frac{1}{t}, \frac{\mathbf{x}}{t}\right)$ combines with time translation g_{β}

Schrödinger group

The Schrödinger group :

- Bargmann group
- Scale transformations (their generator \hat{D}) :

$$
(t, \mathbf{x}) \rightarrow q(t, \mathbf{x})=\left(\frac{t}{\alpha^{2}}, \frac{\mathbf{x}}{\alpha}\right), \quad \alpha \in \mathbb{R} .
$$

- Expansion (non-relativistic analogue of the special conformal transformations) (its generator \hat{C}) : inversion $(t, \mathbf{x}) \rightarrow \Sigma(t, \mathbf{x})=\left(-\frac{1}{t}, \frac{\mathbf{x}}{t}\right)$ combines with time translation g_{β}

$$
(t, \mathbf{x}) \rightarrow\left(\Sigma^{-1} g_{\beta} \Sigma\right)(t, \mathbf{x})=\left(\frac{t}{1+\beta t}, \frac{\mathbf{x}}{1+\beta t}\right)
$$

Representations and Mathematical structure

Schrödinger algebra : $\mathfrak{s c h}(d)=\mathfrak{h}_{d} \boxplus(\mathfrak{o}(d) \oplus \mathfrak{s l}(2, \mathbb{R}))$

$$
\hat{P}_{i}=-i \partial_{i}, \quad \hat{K}_{i}=m x_{i}+i t \partial_{i}, \quad \hat{M}=m,
$$

- $\mathfrak{s l}(2, \mathbb{R})$

$$
\hat{M}_{i j}=-i\left(x_{i} \partial_{j}-x_{j} \partial_{i}\right),
$$

Representations and Mathematical structure

Schrödinger algebra : $\mathfrak{s c h}(d)=\mathfrak{h}_{d} \boxplus(\mathfrak{o}(d) \oplus \mathfrak{s l}(2, \mathbb{R}))$

- \mathfrak{h}_{d} :

$$
\hat{P}_{i}=-i \partial_{i}, \quad \hat{K}_{i}=m x_{i}+i t \partial_{i}, \quad \hat{M}=m,
$$

- $\mathfrak{s l}(2, \mathbb{R})$

Representations and Mathematical structure

Schrödinger algebra : $\mathfrak{s c h}(d)=\mathfrak{h}_{d} \boxplus(\mathfrak{o}(d) \oplus \mathfrak{s l}(2, \mathbb{R}))$

- \mathfrak{h}_{d} :

$$
\hat{P}_{i}=-i \partial_{i}, \quad \hat{K}_{i}=m x_{i}+i t \partial_{i}, \quad \hat{M}=m
$$

- $\mathfrak{o}(d)$:

$$
\hat{M}_{i j}=-i\left(x_{i} \partial_{j}-x_{j} \partial_{i}\right)
$$

- $\mathfrak{s l}(2, \mathbb{R})$

Representations and Mathematical structure

Schrödinger algebra : $\mathfrak{s c h}(d)=\mathfrak{h}_{d} \boxplus(\mathfrak{o}(d) \oplus \mathfrak{s l}(2, \mathbb{R}))$

- \mathfrak{h}_{d} :

$$
\hat{P}_{i}=-i \partial_{i}, \quad \hat{K}_{i}=m x_{i}+i t \partial_{i}, \quad \hat{M}=m
$$

- $\mathfrak{o}(d)$:

$$
\hat{M}_{i j}=-i\left(x_{i} \partial_{j}-x_{j} \partial_{i}\right)
$$

- $\mathfrak{s l}(2, \mathbb{R})$:

$$
\begin{gathered}
\hat{P}_{t}=i \partial_{t} \\
\hat{D}=i\left(2 t \partial_{t}+x^{i} \partial_{i}+\frac{d}{2}\right) \\
\hat{C}=i\left(t^{2} \partial_{t}+t\left(x^{i} \partial_{i}+\frac{d}{2}\right)\right)+\frac{m}{2} x^{2} .
\end{gathered}
$$

Commutation relations

$\mathfrak{s c h}(d)=\mathfrak{h}_{d} \boxplus(\mathfrak{o}(d) \oplus \mathfrak{s l}(2, \mathbb{R}))$
$\mathfrak{o}(d)$:

$$
\left[\hat{M}_{i j}, \hat{M}_{k l}\right]=i\left(\delta_{i k} \hat{M}_{j l}-\delta_{j k} \hat{M}_{i l}-\delta_{i j} \hat{M}_{j k}+\delta_{j l} \hat{M}_{i k}\right)
$$

$$
[\hat{D}, \hat{C}]=2 i \hat{C}, \quad\left[\hat{D}, \hat{P}_{t}\right]=-2 i \hat{P}_{t}, \quad\left[\hat{C}, \hat{P}_{t}\right]=-i \hat{D} .
$$

\mathfrak{h}_{d}

Commutation relations

$$
\begin{aligned}
& \mathfrak{s c h}(d)=\mathfrak{h}_{d} \boxplus(\mathfrak{o}(d) \oplus \mathfrak{s l}(2, \mathbb{R})) \\
& \mathfrak{o}(d): \\
& \quad\left[\hat{M}_{i j}, \hat{M}_{k l}\right]=i\left(\delta_{i k} \hat{M}_{j l}-\delta_{j k} \hat{M}_{i l}-\delta_{i l} \hat{M}_{j k}+\delta_{j l} \hat{M}_{i k}\right) \\
& \mathfrak{s l}(2, \mathbb{R}): \\
& \quad[\hat{D}, \hat{C}]=2 i \hat{C}, \quad\left[\hat{D}, \hat{P}_{t}\right]=-2 i \hat{P}_{t}, \quad\left[\hat{C}, \hat{P}_{t}\right]=-i \hat{D} .
\end{aligned}
$$

Commutation relations

$$
\begin{aligned}
& \mathfrak{s c h}(d)=\mathfrak{h}_{d} \boxplus(\mathfrak{o}(d) \oplus \mathfrak{s l}(2, \mathbb{R})) \\
& \mathfrak{o}(d): \\
& \quad\left[\hat{M}_{i j}, \hat{M}_{k l}\right]=i\left(\delta_{i k} \hat{M}_{j l}-\delta_{j k} \hat{M}_{i l}-\delta_{i l} \hat{M}_{j k}+\delta_{j l} \hat{M}_{i k}\right)
\end{aligned}
$$

$\mathfrak{s l}(2, \mathbb{R})$:

$$
[\hat{D}, \hat{C}]=2 i \hat{C}, \quad\left[\hat{D}, \hat{P}_{t}\right]=-2 i \hat{P}_{t}, \quad\left[\hat{C}, \hat{P}_{t}\right]=-i \hat{D}
$$

$\mathfrak{h}_{d}:$

$$
\begin{aligned}
& {\left[\hat{P}_{i}, \hat{D}\right]=i \hat{P}_{i}, \quad\left[\hat{P}_{i}, \hat{C}\right]=-i \hat{K}_{i}, \quad\left[\hat{K}_{i}, \hat{D}\right]=-i \hat{K}_{i},} \\
& {\left[\hat{M}_{i j}, \hat{K}_{k}\right]=i\left(\delta_{i k} \hat{K}_{j}-\delta_{j k} \hat{K}_{i}\right), \quad\left[\hat{M}_{i j}, \hat{P}_{k}\right]=i\left(\delta_{i k} \hat{P}_{j}-\delta_{j k} \hat{P}_{i}\right),} \\
& {\left[\hat{P}_{i}, \hat{K}_{j}\right]=-i \delta_{i j} \hat{M}, \quad\left[\hat{P}_{t}, \hat{K}_{j}\right]=-i \hat{P}_{j} .}
\end{aligned}
$$

Niederer Theorem

The maximal group of kinematical symmetries of free Schrödinger equation is the Schrödinger group.
geometrical (linear in the derivatives) \subset kinematical (one order differential operators : linear and constant in the derivatives)
\subset higher (higher order differential operators)
Galilei \subset Bargmann \subset Schrödinger \subset Weyl

Niederer Theorem

The maximal group of kinematical symmetries of free Schrödinger equation is the Schrödinger group.
geometrical (linear in the derivatives)
\subset kinematical (one order differential operators : linear and
constant in the derivatives)
\subset higher (higher order differential operators)
Galilei \subset Bargmann \subset Schrödinger \subset Weyl

Symmetries : maximal algebra

Definition : The maximal symmetry algebra of the free Schrödinger equation is the algebra of all the inequivalent (not trivial) symmetries of the free Schrödinger equation.

Theorem : The maximal Lie algebra of symmetries for the free Schrödinger equation is generated algebraically by the space translations and the Galilean boosts.
\Rightarrow Weyl algebra $=$ envelopping Heisenberg algebra $\mathfrak{A}(d)=\mathcal{U}\left(\mathfrak{h}_{d}\right)=\operatorname{Pol}(\hat{K}, \hat{P})$

Theorem : (Castwood, 2002) The maximal Lie algebra of symmetries for d'Alembert equation is generated algebraically
by the conformal Killing vectors (= algebra of Vasiliev
higher-spin gravity).

Symmetries : maximal algebra

Definition : The maximal symmetry algebra of the free Schrödinger equation is the algebra of all the inequivalent (not trivial) symmetries of the free Schrödinger equation.

Theorem : The maximal Lie algebra of symmetries for the free Schrödinger equation is generated algebraically by the space translations and the Galilean boosts.

```
# Weyl algebra = envelopping Heisenberg algebra
A(d)=\mathcal{U}(\mp@subsup{\mathfrak{h}}{d}{})=\operatorname{Pol}(\hat{K},\hat{P})
Theorem:([astwood, 2002) The maximal Lie algebra of
symmetries for d'Alembert equation is generated algebraically
by the conformal Killing vectors (= algebra of Vasiliev
higher-spin gravity).
```


Symmetries : maximal algebra

Definition : The maximal symmetry algebra of the free Schrödinger equation is the algebra of all the inequivalent (not trivial) symmetries of the free Schrödinger equation.

Theorem : The maximal Lie algebra of symmetries for the free Schrödinger equation is generated algebraically by the space translations and the Galilean boosts.
\Rightarrow Weyl algebra $=$ envelopping Heisenberg algebra $\mathfrak{A}(d)=\mathcal{U}\left(\mathfrak{h}_{d}\right)=\operatorname{Pol}(\hat{K}, \hat{P})$
Theorem: (Eastwood, 2002) The maximal Lie algebra of
symmetries for d'Alembert equation is generated algebraically
by the conformal Killing vectors (= algebra of Vasiliev
higher-spin gravity).

Symmetries : maximal algebra

Definition : The maximal symmetry algebra of the free Schrödinger equation is the algebra of all the inequivalent (not trivial) symmetries of the free Schrödinger equation.

Theorem : The maximal Lie algebra of symmetries for the free Schrödinger equation is generated algebraically by the space translations and the Galilean boosts.
\Rightarrow Weyl algebra $=$ envelopping Heisenberg algebra $\mathfrak{A}(d)=\mathcal{U}\left(\mathfrak{h}_{d}\right)=\operatorname{Pol}(\hat{K}, \hat{P})$
Theorem : (Eastwood, 2002) The maximal Lie algebra of symmetries for d'Alembert equation is generated algebraically by the conformal Killing vectors (= algebra of Vasiliev higher-spin gravity).

Generators of degree two in \hat{P} and \hat{K}

$\hat{\mathbf{X}}(t) \rightarrow \hat{\mathbf{K}} / m$ and $\hat{\mathbf{P}}(t) \rightarrow \hat{\mathbf{P}} \quad(\mathrm{M}$. Valenzuela, 2009)

Generators of degree two in \hat{P} and \hat{K}

$\hat{\mathbf{X}}(t) \rightarrow \hat{\mathbf{K}} / m$ and $\hat{\mathbf{P}}(t) \rightarrow \hat{\mathbf{P}} \quad$ (M. Valenzuela, 2009)

$$
\begin{aligned}
& \hat{P}_{t} \approx \frac{\hat{P}^{2}}{2 m}, \\
& \hat{M}_{i j}=\frac{\hat{K}_{i} \hat{P}_{j}-\hat{K}_{j} \hat{P}_{i}}{m}, \\
& \hat{D} \approx-\frac{\hat{K}^{i} \hat{P}_{i}+\frac{d}{2}}{m}, \\
& \hat{C} \approx \frac{\hat{K}^{2}}{2 m} .
\end{aligned}
$$

Bargmann framework

Symmetry algebra : from conformal to Schrödinger

The non-trivial commutation relations of the conformal algebra $\mathfrak{o}(d+2,2)$:

where Greek indices run from 0 to $d+1$.
The tilde sians are for relativistic aenerators
and hatted symbols for the non-relativistic operators.

Symmetry algebra : from conformal to Schrödinger

The non-trivial commutation relations of the conformal algebra $o(d+2,2)$:

$$
\begin{aligned}
{\left[\tilde{M}^{\mu \nu}, \tilde{M}^{\alpha \beta}\right] } & =i\left(\eta^{\mu \alpha} \tilde{M}^{\nu \beta}+\eta^{\nu \beta} \tilde{M}^{\mu \alpha}-\eta^{\mu \beta} \tilde{M}^{\nu \alpha}-\eta^{\nu \alpha} \tilde{M}^{\mu \beta}\right), \\
{\left[\tilde{M}^{\mu \nu}, \tilde{P}^{\alpha}\right] } & =i\left(\eta^{\mu \alpha} \tilde{P}^{\nu}-\eta^{\nu \alpha} \tilde{P}^{\mu}\right), \\
{\left[\tilde{D}, \tilde{P}^{\mu}\right] } & =-i \tilde{P}^{\mu}, \quad\left[\tilde{D}, \tilde{K}^{\mu}\right]=i \tilde{K}^{\mu}, \\
{\left[\tilde{P}^{\mu}, \tilde{K}^{\nu}\right] } & =-2 i\left(\eta^{\mu \nu} \tilde{D}+\tilde{M}^{\mu \nu}\right),
\end{aligned}
$$

where Greek indices run from 0 to $d+1$.
The tilde signs are for relativistic generators and hatted symbols for the non-relativistic operators.

Symmetry algebra : from conformal to Schrödinger

The representations are :

$$
\begin{aligned}
& \tilde{P}_{\mu}=-i \partial_{\mu}, \quad \tilde{M}_{\mu \nu}=-i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right), \\
& \tilde{K}_{\mu}=i\left(2 x_{\mu}\left(x^{\nu} \partial_{\nu}+\frac{d}{2}\right)-x^{2} \partial_{\mu}\right), \quad \tilde{D}=i\left(x^{\mu} \partial_{\mu}+\frac{d}{2}\right)
\end{aligned}
$$

The light-cone momentum $\tilde{P}^{+}=\left(\tilde{P}^{0}+\tilde{P}^{d+1}\right) / \sqrt{2}$ \longleftrightarrow the mass operator \hat{M} in the non-relativistic theory.

All onerators in the conformal algebra $(\mu=(-,+i))$ that commute with \tilde{P}^{+}, form a subalgebra $=$Schrödinger algebra $\mathfrak{s c h}(d)$

Symmetry algebra : from conformal to Schrödinger

The representations are :

$$
\begin{aligned}
& \tilde{P}_{\mu}=-i \partial_{\mu}, \quad \tilde{M}_{\mu \nu}=-i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right), \\
& \tilde{K}_{\mu}=i\left(2 x_{\mu}\left(x^{\nu} \partial_{\nu}+\frac{d}{2}\right)-x^{2} \partial_{\mu}\right), \quad \tilde{D}=i\left(x^{\mu} \partial_{\mu}+\frac{d}{2}\right)
\end{aligned}
$$

The light-cone momentum $\tilde{P}^{+}=\left(\tilde{P}^{0}+\tilde{P}^{d+1}\right) / \sqrt{2}$ \longleftrightarrow the mass operator \hat{M} in the non-relativistic theory.
All operators in the conformal algebra $(\mu=(-,+, i))$ that commute with \tilde{P}^{+}, form a subalgebra $=$Schrödinger algebra $\mathfrak{s c h}(d)$

Symmetry algebra : from conformal to Schrödinger

The representations are :

$$
\begin{aligned}
& \tilde{P}_{\mu}=-i \partial_{\mu}, \quad \tilde{M}_{\mu \nu}=-i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right), \\
& \tilde{K}_{\mu}=i\left(2 x_{\mu}\left(x^{\nu} \partial_{\nu}+\frac{d}{2}\right)-x^{2} \partial_{\mu}\right), \quad \tilde{D}=i\left(x^{\mu} \partial_{\mu}+\frac{d}{2}\right)
\end{aligned}
$$

The light-cone momentum $\tilde{P}^{+}=\left(\tilde{P}^{0}+\tilde{P}^{d+1}\right) / \sqrt{2}$ \longleftrightarrow the mass operator \hat{M} in the non-relativistic theory.
All operators in the conformal algebra $(\mu=(-,+, i))$ that commute with \tilde{P}^{+}, form a subalgebra $=$Schrödinger algebra $\mathfrak{s c h}(d)$:

$$
\begin{aligned}
& \hat{M}=\tilde{P}^{+}, \quad \hat{P}_{t}=\tilde{P}^{-}, \quad \hat{P}^{i}=\tilde{P}^{i}, \quad \hat{M}^{i j}=\tilde{M}^{i j}, \\
& \hat{K}^{i}=\tilde{M}^{i+}, \quad \hat{D}=\tilde{D}+\tilde{M}^{+-}, \quad \hat{C}=\frac{\tilde{K}^{+}}{2} .
\end{aligned}
$$

Embedding diagram

Kinematical
 Higher
 Relativistic $\quad \mathfrak{o}(d+2,2) \quad \subset \quad$ Vasiliev algebra $(\mathrm{d}+2,2)$
 Eastwood

Non - relativistic $\quad \mathfrak{s c h}(d) \quad \subset \quad$ Weyl algebra (d)

Equations of motion : from K-G to Schrödinger

Massless Klein-Gordon (d'Alembert) equation in $d+2$-dimensional Minkowski spacetime

$$
\square \Psi(x) \equiv-\partial_{0}^{2} \Psi(x)+\sum_{i=1}^{d+1} \partial_{i}^{2} \Psi(x)=0
$$

- the light-cone coordinates : $x^{ \pm}=\frac{x^{0} \pm x^{d+1}}{\sqrt{2}}$
- the dimensionnal reduction along a light-like (or null) direction x^{-}(and time is $x^{+}=t$)

\Rightarrow Free Schrödinger equation
$\left(2 \operatorname{im} \partial_{t}+\Lambda\right) \psi(t, x)=0$

Equations of motion : from K-G to Schrödinger

Massless Klein-Gordon (d'Alembert) equation in $d+2$-dimensional Minkowski spacetime

$$
\square \Psi(x) \equiv-\partial_{0}^{2} \Psi(x)+\sum_{i=1}^{d+1} \partial_{i}^{2} \Psi(x)=0
$$

- the light-cone coordinates: $x^{ \pm}=\frac{x^{0} \pm x^{d+1}}{\sqrt{2}}$
- the dimensionnal reduction along a light-like (or null) direction x^{-}(and time is $x^{+}=t$):

\Rightarrow Free Schrödinger equation
$\left(2 i m \partial_{t}+\Delta\right) \psi(t, x)=0$

Equations of motion : from K-G to Schrödinger

Massless Klein-Gordon (d'Alembert) equation in $d+2$-dimensional Minkowski spacetime

$$
\square \Psi(x) \equiv-\partial_{0}^{2} \Psi(x)+\sum_{i=1}^{d+1} \partial_{i}^{2} \Psi(x)=0
$$

- the light-cone coordinates: $x^{ \pm}=\frac{x^{0} \pm x^{d+1}}{\sqrt{2}}$
- the dimensionnal reduction along a light-like (or null) direction x^{-}(and time is $x^{+}=t$):

$$
\Psi(x)=e^{-i m x^{-}} \psi\left(x^{+}, \mathbf{x}\right)
$$

\Rightarrow Free Schrödinger equation
$\left(2 i m \partial_{t}+\Delta\right) \psi(t, x)=0$

Equations of motion : from K-G to Schrödinger

Massless Klein-Gordon (d'Alembert) equation in $d+2$-dimensional Minkowski spacetime

$$
\square \Psi(x) \equiv-\partial_{0}^{2} \Psi(x)+\sum_{i=1}^{d+1} \partial_{i}^{2} \Psi(x)=0
$$

- the light-cone coordinates: $x^{ \pm}=\frac{x^{0} \pm x^{d+1}}{\sqrt{2}}$
- the dimensionnal reduction along a light-like (or null) direction x^{-}(and time is $x^{+}=t$):

$$
\Psi(x)=e^{-i m x^{-}} \psi\left(x^{+}, \mathbf{x}\right)
$$

\Rightarrow Free Schrödinger equation

$$
\left(2 i m \partial_{t}+\Delta\right) \psi(t, \mathbf{x})=0
$$

Conclusion

- Summary
- Symmetries : Weyl algebra is a maximal algebra of symmetries of free Schrödinger equation
- Currents : non relativistic, conserved (or not), neutral/charged
- Motivation : Analogue of correspondance AdS/CFT for condensed matter

Conclusion

- Summary
- Symmetries : Weyl algebra is a maximal algebra of symmetries of free Schrödinger equation
- Currents : non relativistic, conserved (or not), neutral/charged
- Motivation : Analogue of correspondance AdS/CFT for condensed matter

Conclusion

- Summary
- Symmetries : Weyl algebra is a maximal algebra of symmetries of free Schrödinger equation
- Currents : non relativistic, conserved (or not), neutral/charged
- Motivation : Analogue of correspondance AdS/CFT for condensed matter

Conclusion

- Summary
- Symmetries : Weyl algebra is a maximal algebra of symmetries of free Schrödinger equation
- Currents : non relativistic, conserved (or not), neutral/charged
- Motivation : Analogue of correspondance AdS/CFT for condensed matter

Thank you

for your attention!

