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Motivations

Unitary Fermi gas : between BCS (Bardeen Cooper Schrieffer)
and BEC (Bose-Einstein condensate) regimes

In the large-N limit (N flavors of atoms) :

unitary Fermi gas (interactions) ) <—d> ideal Fermi gas (free)
egendre
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Symmetries The Schrédinger group of kinematical symmetries
The Weyl algebra of higher symmetries

The Galilei group acts on the d-dimensionnal spatial
coordinates x and time t as

(t,x) — g(t,x) = (t+ 5, Zx + vt + a),

where
@ 4 € Rand g; is a time translation and its generator P;
@ Z is a rotation matrix and @ spatial rotations
generators M
@ v e RY and g, are d Galilean boost and their generators K;

@ a c RY and g, are spatial translations and their generators
P
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The Galilei group acts only on the coordinates.
The transformations are “geometrical®.

(p(t, X) - (pl(t’ X) = gO(t,,X/) = Qo(g(t’ X))
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Symmetries The Schrédinger group of kinematical symmetries
The Weyl algebra of higher symmetries

The Galilei group acts only on the coordinates.
The transformations are “geometrical®.

(P(t7 X) - (Pl(t’ X) = gO(t,,X/) = So(g(t’x))'

The generators of spatial translations and Galilean boosts
commute : [P;, K] =0
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Symmetries The Schrédinger group of kinematical symmetries
The Weyl algebra of higher symmetries

ry : definitions

@ symmetry of Schrodinger equation (linear) : §1/; = 0 with
S = ﬁ’t — /:/Z .
Y= =AY

° Iinegr gquation andif Ay and A, are symmetries
= Aj Ay is symmetry also

@ Relation of equivalence :
/2\1%/2\2 <~ /2\1:/’424-@:?.

with ~ stands for equal on the mass-shell or proportionnal
to the equations of motlon
and the trivial symmetry oS maps any solution to zero.
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The free Schrédinger equation (and chemical potential 1 = 0) is :

(2imoy + A)y(t,x) = 0.
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Symmetries The Schrédinger group of kinematical symmetries
The Weyl algebra of higher symmetries

rodinger group of kinematical symmetries

The free Schrédinger equation (and chemical potential 1 = 0) is :
(2imo + A)y(t,x) = 0.

It is invariant under Galilei transformations if we allowed to
modify wave function v (t, x) (phase factor proportionnal to the

mass).
These are kinematical symmetries :

B(t,x) = (%) ¢/ (1. %) =7 (g7 (¢, X)) (g(t, X))

The generators are order-one differential operators.

E. Meunier RPP - Montpellier - May 2012



Symmetries The Schrédinger group of kinematical symmetries
The Weyl algebra of higher symmetries

Projective representation (a phase) of Galilei group
= “genuine” representation of Bargmann group

E. Meunier RPP - Montpellier - May 2012



Symmetries The Schrédinger group of kinematical symmetries
The Weyl algebra of higher symmetries

Projective representation (a phase) of Galilei group
= “genuine” representation of Bargmann group

By enlarging the Galilei group through a central extension,

known as the mass operator M (or the particle number
operator) = Bargmann group

E. Meunier RPP - Montpellier - May 2012



Symmetries The Schrédinger group of kinematical symmetries
The Weyl algebra of higher symmetries

Projective representation (a phase) of Galilei group
= “genuine” representation of Bargmann group

By enlarging the Galilei group through a central extension,
known as the mass operator M (or the particle number
operator) = Bargmann group

A

Generators of Bargmann group : Py, M;, K;, P;, (1
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Symmetries The Schrédinger group of kinematical symmetries
The Weyl algebra of higher symmetries

nn group(2)

The generators of spatial translations and Galilean boosts don't
commute : [P;, Kj] = —id;m.

These are the canonical commutation relations of the
Heisenberg algebra by

where K; play the role of the position operators X;

while the reduced Planck constant 7 is played by the role of the
mass m.
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The Weyl algebra of higher symmetries

The Schradinger group :
@ Bargmann group
@ Scale transformations (their generator f)) :

(£%) = q(t,%) = ( ! 5), 0 ER.
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Symmetries The Schrédinger group of kinematical symmetries
The Weyl algebra of higher symmetries

The Schradinger group :
@ Bargmann group
@ Scale transformations (their generator D) :

(£%) = q(t,%) = (t "), 0 ER.

@ Expansion (non-relativistic analogue of the special
conformal transformations) (its generator C) :
inversion (t,x) — £(t,x) = (-1, %) combines with time
translation g

(t,%x) = (Z"ggT)(t,x) = <1+tﬁt ’ 14?/3t>
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entations and Mathematical structure

Schrodinger algebra : sch(d) = by 3 (o(d) ® sl(2,R))

o hd :
Pi=—io, K=mx+ito, M=m,

@ o(d): R
M,‘j = —I'(X,'Bj — Xja;),
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Symmetries The Schrédinger group of kinematical symmetries
The Weyl algebra of higher symmetries

sntations and Mathematical structure

Schrodinger algebra : sch(d) = by 3 (o(d) ® sl(2,R))

o hd . R A
Bi=—io, K=mxq+ito, B=m,
@ o(d): N .
Mij = —I(X,‘Bj — Xjai)v
@ sl(2,R):

P, = ioy,
d
D= 2ta,+xa+2

2 d m >
<t 8,+t xf), 2>>+2x
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Symmetries The Schrédinger group of kinematical symmetries
The Weyl algebra of higher symmetries

tation relations

sch(d) = hg 2 (o(d) @ sl(2,R))
o(d) :

[, M) = i(SucMy — oMy — 6iMy + 5 M)
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Symmetries The Schrédinger group of kinematical symmetries
The Weyl algebra of higher symmetries

tation relations

sch(d) = hg 2 (o(d) @ sl(2,R))
o(d) :

[, M) = i(SucMy — oMy — 6iMy + 5 M)

A

[D,C] =2iC, [D,P]=-2iP;, [C, P]=-iD.
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Symmetries The Schrédinger group of kinematical symmetries
The Weyl algebra of higher symmetries

tation relations
sch(d) = hg 2 (o(d) @ sl(2,R))

o(d) :
[, M) = i(SucMy — oMy — 6iMy + 5 M)
sl(2,R)
[[I\)7 é] — 2/@7 [b, :bt] = —2”51, [é, Pt] — _jL
Ba

[Pi,D1=iPi, [P, Cl=-iK;, [K,D]=-Iiki,
[, Ki] = i(0xK; — 0Ki) , [ i Pk] =i ikPj — 0Py,
[P Kl = —isgM, [P, Kj] = ~
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Symmetries The Schrédinger group of kinematical symmetries
The Weyl algebra of higher symmetries

Theorem

The maximal group of kinematical symmetries of free
Schrédinger equation is the Schrédinger group. J

geometrical (linear in the derivatives)

C kinematical (one order differential operators : linear and
constant in the derivatives)

C higher (higher order differential operators)

Galilei ¢ Bargmann C Schrdédinger € Weyl
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Symmetries The Schrédinger group of kinematical symmetries
The Wey! algebra of higher symmetries

es : maximal algebra

Definition : The maximal symmetry algebra of the free
Schrédinger equation is the algebra of all the inequivalent (not
trivial) symmetries of the free Schrédinger equation.

Theorem : The maximal Lie algebra of symmetries for the free
Schrédinger equation is generated algebraically by the space
translations and the Galilean boosts.

= Weyl algebra = envelopping Heisenberg algebra
(d) =U(hg) = Pol(K, P)

Theorem : (Eastwood, 2002) The maximal Lie algebra of
symmetries for d’Alembert equation is generated algebraically
by the conformal Killing vectors (= algebra of Vasiliev
higher-spin gravity).
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Bargmann framework

ry algebra : from conformal to Schrédinger

The non-trivial commutation relations of the conformal algebra
o(d+2,2):
[ A9P] = i P8 4 B e — ped e — e sy,
[, P = i P — o P,
[D, P*] = —iP*, [D, K*] = ik*,
[P, K¥] = —2i(n" D + M),
where Greek indices run from 0 to d + 1.

The tilde signs are for relativistic generators
and hatted symbols for the non-relativistic operators.
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Bargmann framework

try algebra : from conformal to Schrédinger

The representations are :
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P,=—id,, M, =—i(x,0, — x,0,),

f(ﬂ = (2xﬂ (x”a,, + g) — x2(‘3ﬂ> ., D=i <x“8u + g)
The light-cone momentum Pt = (P° 4 Pdt1)/\/2
«— the mass operator M in the non-relativistic theory.
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Bargmann framework

ry algebra : from conformal to Schrédinger

The representations are :

P,=—id,, M, =—i(x,0, — x,0,),

f(ﬂ = (2xﬂ (x”a,, + g) — x2(‘3ﬂ> ., D=i <x“8u + g)

The light-cone momentum P+ = (P° 4 Pd+1)/y/2
«— the mass operator M in the non-relativistic theory.

All operators in the conformal algebra (1 = (—, +, 1)) that
commute with P, form a subalgebra = Schrédinger algebra

sch(d) :

A~

M=pPt, P =P, P =P =M
Ki=M+, D=D+M—, C=".
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Bargmann framework

ding diagram

Kinematical Higher

Relativistic o(d+2,2) C Vasiliev algebra (d+2,2)

Eastwood

U U

Non — relativistic sch(d) C Weyl algebra (d)
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Bargmann framework

ns of motion : from K-G to Schrédinger

Massless Klein-Gordon (d’Alembert) equation in
d + 2-dimensional Minkowski spacetime

d+1
OW(x) = —03V(x) + i I?U(x) =0
i=1
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Massless Klein-Gordon (d’Alembert) equation in
d + 2-dimensional Minkowski spacetime

d+1
OW(x) = —03V(x) + i I?U(x) =0
i=1

Xx04 xd+1

V2
@ the dimensionnal reduction along a light-like (or null)
direction x~ (and time is x™ = t) :

W(x) = e ™ y(xT,x)

@ the light-cone coordinates : x* =
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Bargmann framework

S of motion : from K-G to Schrédinger

Massless Klein-Gordon (d’Alembert) equation in
d + 2-dimensional Minkowski spacetime

d-+1
OW(x) = —BW(x)+ Y _0FW(x) =0
i=1

X0 xd+1

V2
@ the dimensionnal reduction along a light-like (or null)
direction x~ (and time is x™ = 1) :

W(x) = e ™ y(xT,x)

@ the light-cone coordinates : x* =

= Free Schrddinger equation
(2imo; + A)yY(t,x) =0
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Conclusion

@ Summary

» Symmetries : Weyl algebra is a maximal algebra of
symmetries of free Schrddinger equation

» Currents : non relativistic, conserved (or not),
neutral/charged

@ Motivation : Analogue of correspondance AdS/CFT for
condensed matter
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Conclusion

Thank you

for your attention !
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