

Deconfinement

QCD reminder Deconfinement transition

Heavy ion collisions Heavy Ion Collisions

Effective descriptions Transport theory

Kinetic theory

Hydrodynamics

Gluon saturation

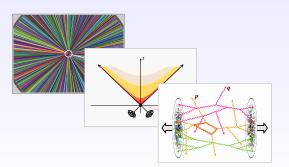
Why small-x gluons matter Gluon saturation

Perturbative OCD

Lattice OCD Partition function

Lattice QCD

AdS/CFT


Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

François Gelis IPLT, Saclay

QCD in Heavy-ion collisions

RPP 2012, Montpellier

Outline

CMS Experiment at the LHC. CERN

ata recorded: 2010-Nov-08 10:22:07.828203 GMT(11:22:07 CL

1 Deconfinement

2 Heavy ion collisions

3 Transport theory

4 Gluon saturation

6 Perturbative QCD

6 Lattice QCD

7 AdS/CFT

Deconfinement

QCD reminder
Deconfinement transition

Heavy ion collisions Heavy Ion Collisions Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative OCD

Lattice QCD

Partition function

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Deconfinement transition

Heavy ion collisions

Transport theory

Gluon saturation

Perturbative QCD

6 Lattice QCD

AdS/CFT

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions Heavy Ion Collisions Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

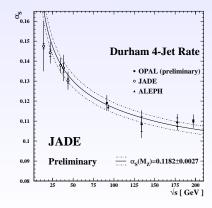
Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD Partition function

Partition function Lattice QCD


AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Asymptotic freedom

• Running coupling : $\alpha_s = g^2/4\pi$

$$\alpha_s(r) = \frac{2\pi N_c}{(11N_c - 2N_f)\log(1/r\Lambda_{_{QCD}})}$$

François Gelis

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions Heavy Ion Collisions Effective descriptions

Transport theory Kinetic theory

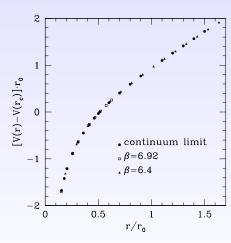
Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD


Partition function

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

Color confinement

The quark potential increases linearly with distance

François Gelis

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions

Heavy Ion Collisions

Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

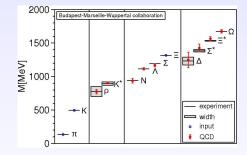
Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD

Partition function Lattice QCD


AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

Color confinement

- In nature, we do not see free quarks and gluons (the closest we have to actual quarks and gluons are jets)
- Instead, we see hadrons (quark-gluon bound states):

- The hadron spectrum is uniquely given by $\Lambda_{\scriptscriptstyle
 m OCD}, m_{\scriptscriptstyle
 m f}$
- But this dependence is non-perturbative (it can now be obtained fairly accurately by lattice simulations)

François Gelis

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions Heavy Ion Collisions Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

QCD reminder

Deconfinement transition

4 Heavy ion collisions

3 Transport theory

Gluon saturation

Perturbative QCD

6 Lattice QCD

AdS/CFT

Deconfinement OCD reminder

Deconfinement transition

Heavy ion collisions
Heavy Ion Collisions
Effective descriptions

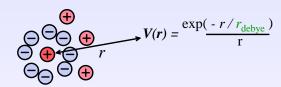
Transport theory Kinetic theory

Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD


Lattice QCD Partition function

Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Debye screening

- In a dense medium, color charges are screened by their neighbors
- The interaction potential decreases exponentially beyond the Debye radius $r_{\mbox{\tiny debye}}$
- Hadrons whose radius is larger than $r_{\text{\tiny debve}}$ cannot bind

François Gelis

Deconfinement

QCD reminder

Deconfinement transition Heavy ion collisions

Heavy Ion Collisions Effective descriptions

Transport theory Kinetic theory

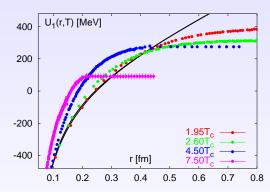
Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD


Partition function

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

Debye screening

• In lattice calculations, one sees the $q \bar q$ potential flatten at long distance as T increases

François Gelis

Deconfinement QCD reminder

Deconfinement transition
Heavy ion collisions

Heavy Ion Collisions Effective descriptions

Transport theory Kinetic theory

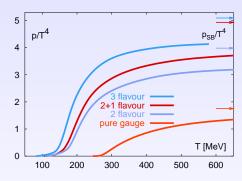
Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD


Partition function

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

Deconfinement transition

- · Rapid increase of the pressure :
 - at T ~ 270 MeV, with gluons only
 - at T ~ 150 to 180 MeV, with light quarks

ightharpoonup interpreted as the increase in the number of degrees of freedom due to the liberation of quarks and gluons

François Gelis

Deconfinement OCD reminder

Deconfinement transition
Heavy ion collisions

Heavy Ion Collisions Effective descriptions

Transport theory
Kinetic theory

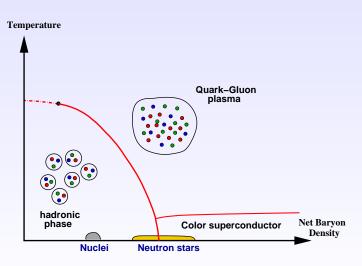
Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD Partition function


Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

QCD phase diagram

François Gelis

Deconfinement

QCD reminder

Deconfinement transition Heavy ion collisions

Heavy Ion Collisions Effective descriptions

Transport theory Kinetic theory

Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD Partition function

Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

QGP in the early universe

François Gelis

Deconfinement

QCD reminder

Deconfinement transition Heavy ion collisions

Heavy Ion Collisions
Effective descriptions

Transport theory

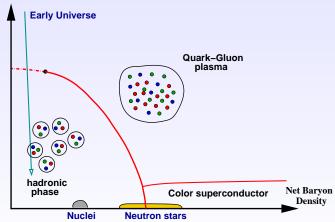
Kinetic theory Hydrodynamics

Gluon saturation

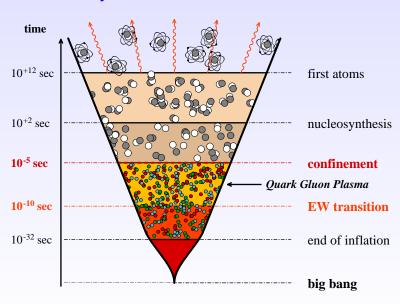
Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD


Partition function Lattice QCD

AdS/CFT


Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

Temperature

QGP in the early universe

François Gelis

Deconfinement QCD reminder

Deconfinement transition

Heavy ion collisions

Heavy Ion Collisions

Effective descriptions Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD
Partition function
Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Deconfinement

2 Heavy ion collisions Heavy Ion Collisions

Effective descriptions

- Transport theory
- Gluon saturation
- Perturbative QCD
- 6 Lattice QCD
- AdS/CFT

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions

Heavy Ion Collisions

Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD Partition function

Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Heavy ion collisions

François Gelis

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions

Heavy Ion Collisions

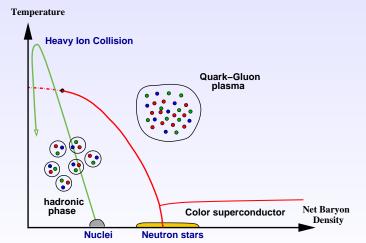
Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation


Perturbative QCD

Lattice QCD

Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

What would we like to learn?

æ

François Gelis

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions

Heavy Ion Collisions

Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative OCD

Lattice QCD

Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

- i. Parameters of the transition: T_c , ϵ_c
- ii. Equation of state of nuclear matter
- iii. Transport properties of nuclear matter
- iv. Do some hadrons survive in the QGP?
- v. Formation of the QGP and thermalization

What we must get out of the way first...

 Unfortunately, heavy ion collisions also depend on a number of other trivial facts:

- i. Lead nuclei are approximately spherical
- ii. Their diameter is about 12 fermis
- iii. They contain $A \approx 200$ nucleons
- iv. The positions of these nucleons fluctuate
 - These properties have all an incidence on observables
 - None of them is interesting from the point of view of QCD
 - We need ways to make observables independent of these trivial aspects of nuclear physics

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions

Heavy Ion Collisions

Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Partition function
Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Deconfinement

QCD reminder Deconfinement transition

Heavy ion collisions Heavy Ion Collisions

Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

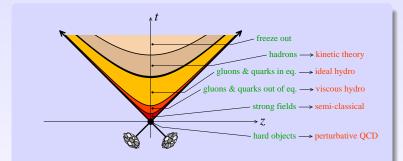
Perturbative OCD

Lattice OCD Partition function

Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations


Summary

2 Heavy ion collisions

Effective descriptions

- Transport theory
- Gluon saturation
- Perturbative QCD
- A Lattice QCD
- AdS/CFT

The multiple facets of QCD in Heavy Ion Collisions

- Except for the production of hard objects (jets, heavy quarks, direct photons) at the impact of the two nuclei, we have to deal with strong interactions in a non-perturbative regime NOTE: non-perturbative ≠ strongly coupled!!!
- Treated with a range of effective descriptions (semi-classical methods, hydrodynamics, kinetic theory) that are more or less closely related to QCD, but always require some QCD input

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions Heavy Ion Collisions

Effective descriptions

Transport theory Kinetic theory

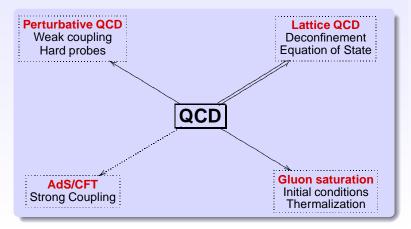
Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD Partition function


Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

The multiple facets of QCD in Heavy Ion Collisions

- The simple formulation of QCD is deceptive: Ab initio calculations are very difficult, and feasible only for a handful of questions
- In many instances, it is more efficient to use an effective theory in which inessential degrees of freedom have been integrated out

Deconfinement QCD reminder

QCD reminder Deconfinement transition

Heavy ion collisions
Heavy Ion Collisions
Effective descriptions

Transport theory

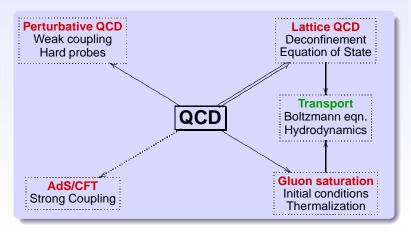
Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative OCD

Lattice QCD


Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

The multiple facets of QCD in Heavy Ion Collisions

- The simple formulation of QCD is deceptive: Ab initio calculations are very difficult, and feasible only for a handful of questions
- In many instances, it is more efficient to use an effective theory in which inessential degrees of freedom have been integrated out

François Gelis

Deconfinement OCD reminder

QCD reminder Deconfinement transition

Heavy ion collisions
Heavy Ion Collisions
Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD Partition function

Lattice QCD AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Transport models

François Gelis

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions Heavy Ion Collisions Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative OCD

Lattice QCD

Partition function

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

 In many cases, the description of the system can be done at a scale large enough for the microscopic details to become irrelevant:

- Kinetic theory
- Hydrodynamics
- To a large extent, the evolution of the system is driven by conservation laws (energy, momentum, baryon number...)
- The microscopic dynamics is relegated into a handful of quantities that enter in these mesoscopic descriptions

- Deconfinement
- Heavy ion collisions
- Transport theory Kinetic theory Hydrodynamics
- Gluon saturation
- **6** Perturbative QCD
- 6 Lattice QCD
- AdS/CFT

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions Heavy Ion Collisions Effective descriptions

Transport theory

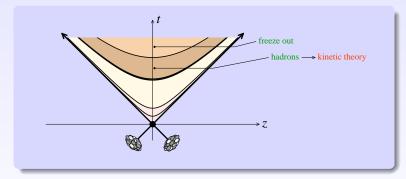
Kinetic theory Hydrodynamics

Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD


Lattice QCD Partition function

Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Kinetic theory

François Gelis

Deconfinement

QCD reminder
Deconfinement transition

Heavy ion collisions
Heavy Ion Collisions
Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD Partition function

Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Kinetic theory

François Gelis

Deconfinement

QCD reminder Deconfinement transition

Heavy ion collisions Heavy Ion Collisions Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative OCD

Lattice OCD

Partition function Lattice QCD

AdS/CFT

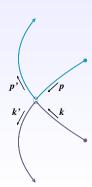
Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

The system is described by a particle distribution

$$f(t, \vec{\boldsymbol{x}}, \vec{\boldsymbol{\rho}}) = \frac{dN}{d^3 \vec{\boldsymbol{x}} d^3 \vec{\boldsymbol{\rho}}}$$

(in most cases, this distribution is spin and color averaged)


- The evolution of *f* is driven by the interactions between these particles
- The only QCD input is a set of cross-sections

Boltzmann equation

 The Boltzmann equation describes the evolution of a distribution of particles that undergo short range collisions

$$\left[\partial_t + \vec{\boldsymbol{v}}_{\boldsymbol{p}} \cdot \vec{\nabla}_{\boldsymbol{x}}\right] \boldsymbol{f}(t, \vec{\boldsymbol{x}}, \vec{\boldsymbol{p}}) = \underbrace{\mathcal{C}_{\boldsymbol{p}}[\boldsymbol{f}]}_{\text{collisions}} \quad \text{with } \vec{\boldsymbol{v}}_{\boldsymbol{p}} \equiv \frac{\vec{\boldsymbol{p}}}{E_{\boldsymbol{p}}}$$

• Elementary 2-body collision :

François Gelis

Deconfinement QCD reminder

QCD reminder
Deconfinement transition

Heavy ion collisions Heavy Ion Collisions Effective descriptions

Transport theory Kinetic theory

Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

$$\mathfrak{C}_{\pmb{\rho}}[\pmb{f}] = \frac{1}{2E_{\pmb{\rho}}} \int \frac{d^3 \vec{\pmb{\rho}}'}{(2\pi)^3 2E_{\pmb{\rho}'}} \int \frac{d^3 \vec{\pmb{k}}}{(2\pi)^3 2E_{\pmb{k}}} \int \frac{d^3 \vec{\pmb{k}}'}{(2\pi)^3 2E_{\pmb{k}'}} \underbrace{(2\pi)^4 \delta(p + k - p' - k')}_{\textit{\textit{E}}, \vec{\textit{p}}} \text{ conservation}$$

$$\times \left[f(\vec{\boldsymbol{p}}') f(\vec{\boldsymbol{k}}') (1 + f(\vec{\boldsymbol{p}})) (1 + f(\vec{\boldsymbol{k}})) - f(\vec{\boldsymbol{p}}) f(\vec{\boldsymbol{k}}) (1 + f(\vec{\boldsymbol{k}}')) (1 + f(\vec{\boldsymbol{p}}')) \right] \underbrace{- f(\vec{\boldsymbol{p}}) f(\vec{\boldsymbol{k}}) (1 + f(\vec{\boldsymbol{k}}')) (1 + f(\vec{\boldsymbol{p}}'))}_{\text{micro-reversibility, detailed balance}} \right] \underbrace{\left| \mathcal{M} \right|^2}_{\text{QCD}}$$

Inputs

- Cross-sections
- ii. Initial condition $f(t_0, \vec{x}, \vec{p})$

Francois Gelis

Deconfinement QCD reminder

Deconfinement transition

Heavy ion collisions

Heavy Ion Collisions Effective descriptions Transport theory

Kinetic theory

Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD Partition function

Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

4 Heavy ion collisions

Transport theory Kinetic theory Hydrodynamics

Gluon saturation

6 Perturbative QCD

6 Lattice QCD

AdS/CFT

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions Heavy Ion Collisions Effective descriptions

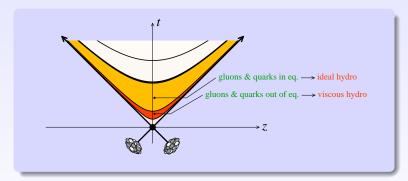
Transport theory
Kinetic theory

Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD


Lattice QCD Partition function

Partition function Lattice QCD

AdS/CFT Gauge-gravity duality

Viscosity in N=4 SYM Limitations

Hydrodynamics

François Gelis

Deconfinement

QCD reminder
Deconfinement transition

Heavy ion collisions
Heavy Ion Collisions
Effective descriptions

Transport theory

Kinetic theory

Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Equations of hydrodynamics (conservation laws)

$$\partial_{\mu}T^{\mu\nu}=0$$

$$\partial_{\mu}T^{\mu\nu}=0$$
 , $\partial_{\mu}J^{\mu}_{_{B}}=0$

Assumptions and inputs

i. Near equilibrium form of $T^{\mu\nu}$:

$$T^{\mu\nu} = \underbrace{(p + \epsilon) \ v^{\mu} \ v^{\nu} - p \ g^{\mu\nu}}_{\text{ideal hydro}} \oplus \underbrace{(\eta, \zeta) \partial v}_{\text{viscous terms}} \oplus \cdots$$

- ii. Equation of State: $p = f(\epsilon)$
- iii. Transport coefficients: η, ζ, \cdots
- iv. Initial condition for ϵ and \vec{v} at some t_0

Deconfinement

QCD reminder Deconfinement transition

Heavy ion collisions Heavy Ion Collisions Effective descriptions

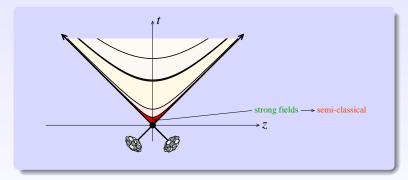
Transport theory Kinetic theory

Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative OCD


Lattice OCD Partition function

Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Gluon saturation

François Gelis

Deconfinement

QCD reminder
Deconfinement transition

Heavy ion collisions
Heavy Ion Collisions
Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

- A Heavy ion collisions
- Transport theory
- 4 Gluon saturation Why small-x gluons matter Gluon saturation
- Perturbative QCD
- 6 Lattice QCD
- AdS/CFT

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions Heavy Ion Collisions Effective descriptions

Transport theory Kinetic theory

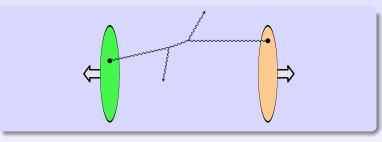
Hydrodynamics

Gluon saturation

Why small-x gluons matter

Gluon saturation

Perturbative QCD


Lattice QCD

Partition function

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Longitudinal momentum fraction in AA collisions

 The partons that are relevant for the process under consideration carry the longitudinal momentum fractions:

$$x_{1,2} = rac{P_{\perp}}{\sqrt{s}} \, \mathrm{e}^{\pm \, \mathrm{Y}}$$

- P_⊥ ~ 1 GeV
- $x \sim 10^{-2}$ at RHIC ($\sqrt{s} = 200 \text{ GeV}$)
- $x \sim 10^{-3}$ at the LHC ($\sqrt{s} = 2.76 \text{ TeV}$)

> partons at small x are the most important

François Gelis

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions Heavy Ion Collisions

Heavy Ion Collisions Effective descriptions

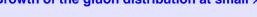
Transport theory Kinetic theory

Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative OCD


Lattice OCD

Partition function

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Growth of the gluon distribution at small x

Parton distributions at small x

François Gelis

Deconfinement

QCD reminder
Deconfinement transition

Heavy ion collisions

Heavy Ion Collisions Effective descriptions

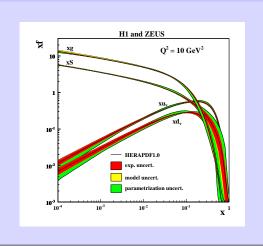
Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD


Lattice QCD

Partition function

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

• Gluons dominate at any $x \le 10^{-1}$

- Heavy ion collisions
- Transport theory
- Gluon saturation Why small-x gluons matter Gluon saturation
- Perturbative QCD
- A Lattice QCD
- AdS/CFT

Deconfinement

QCD reminder Deconfinement transition

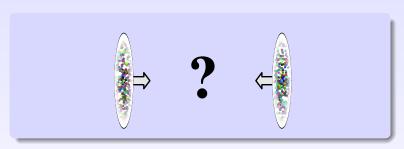
Heavy ion collisions Heavy Ion Collisions Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation Why small-x gluons matter

Gluon saturation Perturbative OCD


Lattice OCD

Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Multiple scatterings and gluon recombination

 Main difficulty: How to treat collisions involving a large number of partons?

Francois Gelis

Deconfinement

QCD reminder

Deconfinement transition

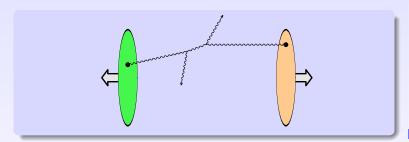
Heavy ion collisions
Heavy Ion Collisions
Effective descriptions

Transport theory Kinetic theory

Hydrodynamics

Gluon saturation
Why small-x gluons matter

Gluon saturation Perturbative QCD


Lattice QCD

Partition function

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Multiple scatterings and gluon recombination

- Dilute regime : one parton in each projectile interact
 ⊳ large Q², no small-x effects
 - > usual PDFs + DGLAP evolution

François Gelis

Deconfinement

QCD reminder
Deconfinement transition

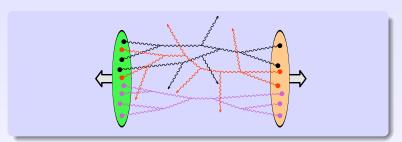
Heavy ion collisions
Heavy Ion Collisions
Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation
Why small-x gluons matter

Gluon saturation


Lattice QCD

Partition function

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Multiple scatterings and gluon recombination

- Dense regime : multiparton processes become crucial
 - ⊳ gluon recombinations are important (saturation)
 - > multi-parton distributions + JIMWLK evolution

$$\mathcal{L} = -\frac{1}{4} \mathbf{F^2} + \mathbf{J} \cdot \mathbf{A}$$

(gluons only, field ${\color{red} A}$ for ${\color{red} k^+}<\Lambda$, classical source ${\color{red} J}$ for ${\color{red} k^+}>\Lambda$)

François Gelis

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions

Heavy Ion Collisions Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD

Partition function

Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Color Glass Condensate effective theory

œı

François Gelis

Deconfinement

QCD reminder

Deconfinement transition

Heavy Ion Collisions

Heavy Ion Collisions Effective descriptions

Transport theory Kinetic theory

Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD

Partition function

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

Power counting :

- J ~ g⁻¹ in the saturated regime
- Each g² order gets contributions from an infinite set of graphs
- · LO: all tree graphs, classical fields
- NLO: one loop, small field fluctuations over a classical background
- Applications :
 - · Initial conditions for hydrodynamics
 - · Study of thermalization
- Main issue : the g² expansion is not uniform in time
 ⇒ secular divergences

[⊳ see T. Epelbaum's talk]

François Gelis

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions
Heavy Ion Collisions
Effective descriptions

Transport theory
Kinetic theory

Hydrodynamics
Gluon saturation

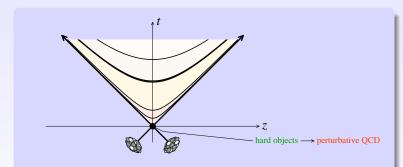
Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice OCD

Partition function Lattice QCD

AdS/CFT


Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

Deconfinement

- Heavy ion collisions
- Transport theory
- Gluon saturation
- **6** Perturbative QCD
- 6 Lattice QCD
- AdS/CFT

Perturbative QCD

François Gelis

Deconfinement

QCD reminder
Deconfinement transition

Heavy ion collisions

Heavy Ion Collisions Effective descriptions

Transport theory

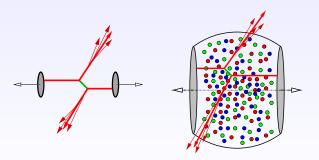
Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD


Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Jet quenching

- The basis of perturbative QCD is asymptotic freedom
- pQCD is the tool of choice for computing the production of hard objects (high p_⊥ jets, direct photons, heavy quarks)
- In heavy ion collisions, a new challenge for QCD is the study of the propagation of a hard object in a dense quark-gluon medium

François Gelis

Deconfinement QCD reminder

QCD reminder
Deconfinement transition

Heavy ion collisions Heavy Ion Collisions

Effective descriptions

Transport theory Kinetic theory

Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD

Partition function
Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

François Gelis

Deconfinement

QCD reminder
Deconfinement transition

Heavy ion collisions
Heavy Ion Collisions
Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter

Perturbative QCD

Lattice QCD

Partition function

Lattice QCD

AdS/CFT

Aug/Ci i

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

Deconfinement

Heavy ion collisions

Transport theory

Gluon saturation

Perturbative QCD

6 Lattice QCD Partition function

Lattice QCD

AdS/CFT

$$Z \equiv \operatorname{Tr}(e^{-\beta H}) = \int [\mathcal{D}A^{\mu}\mathcal{D}\overline{\psi}\mathcal{D}\psi] \ e^{-S_{\mathcal{E}}[A^{\mu},\overline{\psi},\psi]}$$

- $S_{\scriptscriptstyle E}$ is the Euclidean action, with imaginary time in $[0,\beta=1/T]$. The Matsubara formalism provides a way to do perturbative calculations at finite T
- Z knows everything about the QGP thermodynamics :

$$\begin{split} E &= -\frac{\partial Z}{\partial \beta} \\ S &= \beta E + \ln(Z) \\ F &= E - TS = -\frac{1}{\beta} \ln(Z) \end{split}$$

QCD reminder
Deconfinement transition

Heavy ion collisions Heavy Ion Collisions

Heavy Ion Collisions Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD

Partition function

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

François Gelis

Deconfinement

QCD reminder
Deconfinement transition

Heavy ion collisions
Heavy Ion Collisions
Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative OCD

Lattice QCD

Partition function

Partition function

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM

Limitations

Deconfinement

Heavy ion collisions

Transport theory

Gluon saturation

Perturbative QCD

n Lattice QCD

Partition function

Lattice QCD

AdS/CFT

QCD reminder
Deconfinement transition

Heavy ion collisions

Heavy Ion Collisions Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative OCD

Lattice QCD

Partition function

A JOIOT

AdS/CFT

Gauge-gravity duality
Viscosity in N=4 SYM
Limitations

Summary

 Lattice QCD: discretize space-time, and approximate the functional integration by a Monte-Carlo sampling

- · "Sign problem":
 - does not work for "real time" correlation functions
 limited to static properties of the QGP (thermodynamics)
 - does not work with a baryon chemical potential
- Light quarks with realistic masses are computationally expensive

- Heavy ion collisions
- Transport theory
- Gluon saturation
- Perturbative QCD
- 6 Lattice QCD

QCD reminder Deconfinement transition

Heavy ion collisions Heavy Ion Collisions Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

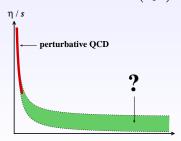
Why small-x gluons matter Gluon saturation

Perturbative OCD

Lattice OCD

Partition function Lattice QCD

AdS/CFT


Gauge-gravity duality Viscosity in N=4 SYM

Limitations

Viscosity at weak coupling

- It all started with the observation that hydrodynamics reproduces well the data provided one uses a very small viscosity
- The shear viscosity has been calculated in QCD at weak coupling $(g \rightarrow 0)$, and it is quite large:

$$\frac{\eta}{s} = \frac{5.12}{g^4 \ln\left(\frac{2.42}{g}\right)}$$

François Gelis

Deconfinement QCD reminder

Deconfinement transition

Heavy ion collisions Heavy Ion Collisions

Effective descriptions

Transport theory Kinetic theory

Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative OCD

Lattice OCD

Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM

Limitations Summary

QCD reminder
Deconfinement transition

Heavy ion collisions Heavy Ion Collisions

Heavy Ion Collisions Effective descriptions

Transport theory Kinetic theory

Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD Partition function

Partition function Lattice QCD

AdS/CFT Gauge-gravity duality

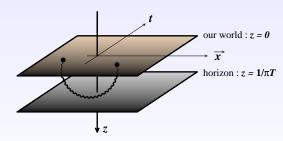
Viscosity in N=4 SYM

Limitations Summary

 Maximally super-symmetric SU(N) Yang-Mills theories in the limit g²N → +∞ are dual to classical super-gravity on an AdS₅ × S₅ manifold with metric

$$ds^2 = \frac{R^2}{z^2} (\underline{-dt^2 + d\vec{x}^2} + dz^2) + R^2 d\Omega_5^2$$
 we live here... (at z=0)

• If an operator O of our world is coupled on the boundary to a field ϕ_0 that extends in the bulk, the duality states that :


$$e^{-S_{cl}[\varphi]} = \left\langle e^{\int_{boundary} \mathfrak{O} \phi_0} \right\rangle$$

- The right hand side is a generating functional for the correlators of operators O in the 4-dim gauge theory
- The left hand side is calculable in the gravity dual (solve the classical EOM for ϕ with the boundary condition ϕ_0)

At finite temperature T:

$$-\mathit{dt}^2 + \mathit{dz}^2 \rightarrow -\mathit{f}(z)\mathit{dt}^2 + \mathit{dz}^2/\mathit{f}(z) \ \ \text{with} \ \mathit{f}(z) = 1 - (\pi z T)^4$$

• f(z) = 0 at $z = 1/\pi T$ \Rightarrow black hole horizon

 Ordinary particles in 4-dimensions are the end points of strings living in the bulk. Thermal effects occur when a string gets close to the BH horizon

Deconfinement

QCD reminder Deconfinement transition

Heavy ion collisions

Heavy Ion Collisions Effective descriptions

Transport theory Kinetic theory

Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD Partition function

Partition function Lattice QCD

AdS/CFT Gauge-gravity duality

Viscosity in N=4 SYM

Limitations Summary

- Heavy ion collisions
- Transport theory
- Gluon saturation
- Perturbative QCD
- 6 Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

QCD reminder Deconfinement transition

Heavy ion collisions Heavy Ion Collisions Effective descriptions

Transport theory

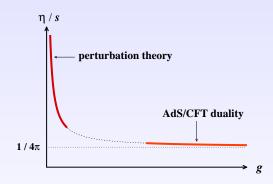
Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative OCD

Lattice OCD Partition function


Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM

Limitations

Viscosity in SUSY Yang-Mills

- In SYM at $g^2N \to \infty$, one gets $\eta/s = 1/4\pi$
- Conjecture : $1/4\pi$ is the lowest possible value for η/s

Francois Gelis

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions

Heavy Ion Collisions Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD Partition function

Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality
Viscosity in N=4 SYM

Limitations

Francois Gelis

Deconfinement

QCD reminder Deconfinement transition

Heavy ion collisions Heavy Ion Collisions Effective descriptions

Transport theory

Kinetic theory Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative OCD

Lattice OCD Partition function

Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM

Limitations

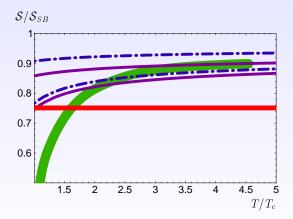
Summary

Heavy ion collisions

Transport theory

Gluon saturation

Perturbative QCD


6 Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Importance of scale violations near T_c

• Is the QGP at $T/T_c \sim 2-3$ really strongly coupled? For quantities such as the entropy, perturbative techniques (+resummations) lead to sensible results in this region

 At T < 3T_c, the coupling may indeed be strong, but scale violations make AdS/CFT unreliable

Deconfinement

QCD reminder

Deconfinement transition

Heavy Ion Collisions

Heavy Ion Collisions Effective descriptions

Transport theory Kinetic theory

Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD Partition function

Partition function Lattice QCD

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM

Limitations

- Ab initio methods (lattice) are practical only for certain quantities
- The consequence of this is the diversity of tools and techniques that have been developed to study various aspects of strong interactions in heavy ion collisions
- QCD also plays a role in providing inputs into a number of effective descriptions such as kinetic theory and hydrodynamics

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions Heavy Ion Collisions

Heavy Ion Collisions Effective descriptions

Transport theory Kinetic theory

Hydrodynamics

Gluon saturation

Why small-x gluons matter Gluon saturation

Perturbative QCD

Lattice QCD

Partition function

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations