Lepton flavour violation and neutrinos

M. Hirsch

mahirsch@ific.uv.es

Astroparticle and High Energy Physics Group Instituto de Fisica Corpuscular - CSIC Universidad de Valencia Valencia - Spain

\mathcal{I} . Introduction: ν 's

II. Charged Lepton Flavour violation

\mathcal{III} . SUSY, neutrino masses and LFV

$\mathcal{I}\mathcal{V}.$ Discrete symmetries and LFV

Introduction

Lepton flavour is violated!

RPP 2012, 14/05/2012 - p.3/38

Status ν 's

Super-K fixes $heta_{\mathrm{Atm}}$

MINOS fixes $\Delta m^2_{
m Atm}$

Schwetz, Tortola & Valle; arXiv:1103.0734 and arXiv:1108.1376

Status ν 's

Super-K fixes $\theta_{\rm Atm}$

MINOS fixes $\Delta m^2_{
m Atm}$

fixes $heta_{\odot}$

KamLAND

fixes Δm_\odot^2

Schwetz, Tortola & Valle; arXiv:1103.0734 and arXiv:1108.1376

Latest ν 's

Don't know ν 's

Open questions:

Which hierarchy: Normal or inverted?

What is the absolute neutrino mass scale?

Is there CP violation in the lepton sector?

Don't know ν 's

Open questions:

Which hierarchy: Normal or inverted? What is the absolute neutrino mass scale?

Is there CP violation in the lepton sector? Is lepton number violated???

If Lepton Number is Violated:

Weinberg, 1979

$$m_{\nu} = \frac{1}{\mathcal{M}_{LNV}} (LH) (LH)$$

Many possible models:

(i) Seesaw mechanism: Type-I, Type-II, Type-III, Inverse seesaw, etc ...

(ii) Radiative models: Zee, Babu, LQs ... (iii) SUSY neutrino masses: R_p (iv) · · ·

If Lepton Number is Violated:

Weinberg, 1979

$$m_{\nu} = \frac{1}{\mathcal{M}_{LNV}} (LH) (LH)$$

Many possible models:

(i) Seesaw mechanism: Type-I, Type-II, Type-III, Inverse seesaw, etc ...

(ii) Radiative models: Zee, Babu, LQs ... (iii) SUSY neutrino masses: R_p (iv) · · · Experimental tests?

 $0
u\beta\beta$ decay!

LHC (???)

Charged Lepton Flavour violation

RPP 2012, 14/05/2012 - p.8/38

Decay	Current Limit	
$ au o \mu \gamma$	$4.4 \cdot 10^{-8}$	
$ au o e\gamma$	$3.3 \cdot 10^{-8}$	
$\mu ightarrow e \gamma$	$1.2 \cdot 10^{-11}$	
$ au o 3\mu$	$2.1 \cdot 10^{-8}$	
$\tau^- \to e^- \mu^+ \mu^-$	$2.7 \cdot 10^{-8}$	
$\tau^- \to e^+ \mu^- \mu^-$	$1.7 \cdot 10^{-8}$	
$\tau^- \to \mu^- e^+ e^-$	$1.8 \cdot 10^{-8}$	
$\tau^- \to \mu^+ e^- e^-$	$1.5 \cdot 10^{-8}$	
$\tau \to 3e$	$2.7 \cdot 10^{-8}$	
$\mu ightarrow 3e$	$1 \cdot 10^{-12}$	

All values from: Particle Data Group http://pdg.lbl.gov/

Decay	Current Limit	
$ au o \mu \gamma$	$4.4 \cdot 10^{-8}$	
$\tau \to e \gamma$	$3.3 \cdot 10^{-8}$	
$\mu ightarrow e \gamma$	$1.2 \cdot 10^{-11}$	
$ au o 3\mu$	$2.1 \cdot 10^{-8}$	
$\tau^- \to e^- \mu^+ \mu^-$	$2.7 \cdot 10^{-8}$	
$\tau^- \to e^+ \mu^- \mu^-$	$1.7 \cdot 10^{-8}$	
$\tau^- o \mu^- e^+ e^-$	$1.8 \cdot 10^{-8}$	
$\tau^- \to \mu^+ e^- e^-$	$1.5 \cdot 10^{-8}$	
$ au \to 3e$	$2.7 \cdot 10^{-8}$	
$\mu ightarrow 3e$	$1 \cdot 10^{-12}$	

All values from: Particle Data Group http://pdg.lbl.gov/

MEG 2011, PRL107, 171801: Br($\mu \rightarrow e\gamma$) $\leq 2.4 \times 10^{-12}$

Decay	Current Limit	
$ au o \mu \gamma$	$4.4 \cdot 10^{-8}$	
$\tau \to e \gamma$	$3.3 \cdot 10^{-8}$	
$\mu ightarrow e \gamma$	$1.2 \cdot 10^{-11}$	
$ au o 3\mu$	$2.1 \cdot 10^{-8}$	
$\tau^- \to e^- \mu^+ \mu^-$	$2.7 \cdot 10^{-8}$	
$\tau^- \to e^+ \mu^- \mu^-$	$1.7 \cdot 10^{-8}$	
$\tau^- \to \mu^- e^+ e^-$	$1.8 \cdot 10^{-8}$	
$\tau^- o \mu^+ e^- e^-$	$1.5 \cdot 10^{-8}$	
$\tau \to 3e$	$2.7 \cdot 10^{-8}$	
$\mu \rightarrow 3e$	$1 \cdot 10^{-12}$	

All values from: Particle Data Group http://pdg.lbl.gov/

MEG 2011, PRL107, 171801: Br($\mu \rightarrow e\gamma$) $\leq 2.4 \times 10^{-12}$

Limit on $\mu \rightarrow 3e$ from: SINDRUM 1988

New experiment could reach:

 $Br(\mu \to 3e) \simeq 10^{-16}$ (?)

A. Schöning et al., Physics Procedia 17 (2011) 181

Capture	Current Limit
$\mu^{-32}S \to e^{-32}S$	$7 \cdot 10^{-11}$
$\mu^{-32}S \rightarrow e^{+32}Si$	$9 \cdot 10^{-10}$
$\mu^- Ti \to e^- Ti$	$4.3 \cdot 10^{-12}$
$\mu^- Ti \to e^+ Ca$	$3.6 \cdot 10^{-11}$
$\mu^- Pb \rightarrow e^- Pb$	$4.6 \cdot 10^{-11}$
$\mu^- A u \to e^- A u$	$7 \cdot 10^{-13}$

All values from: Particle Data Group http://pdg.lbl.gov/

Capture	Current Limit
$\mu^{-32}S \to e^{-32}S$	$7 \cdot 10^{-11}$
$\mu^{-32}S \to e^{+32}Si$	$9 \cdot 10^{-10}$
$\mu^- Ti \to e^- Ti$	$4.3 \cdot 10^{-12}$
$\mu^- Ti \to e^+ Ca$	$3.6 \cdot 10^{-11}$
$\mu^- Pb \rightarrow e^- Pb$	$4.6 \cdot 10^{-11}$
$\mu^- A u \to e^- A u$	$7 \cdot 10^{-13}$

All values from: Particle Data Group http://pdg.lbl.gov/

Future experiments: Sensitivities of $\mathcal{O}(10^{-16})$ (?)

COMET: Letter of interest @: http://j-parc.jp/

Mu2E:

Proposal @: http://mu2e.fnal.gov/

Timeline: 2016 (?)

Guaranteed CLFV

Oscillations experiments have shown that $m_{\nu} \neq 0$:

 $\operatorname{Br}(\mu \to e\gamma) \sim$ $\frac{3\alpha}{32\pi} \left(\sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m^2_{i1}}{m^2_W} \right)^2$ $\leq 10^{-53}$

 \Rightarrow GIM suppressed by small neutrino masses

Guaranteed CLFV

Oscillations experiments have shown that $m_{\nu} \neq 0$:

 $Br(\mu \to e\gamma) \sim$ $\frac{3\alpha}{32\pi} \left(\sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m^2_{i1}}{m^2_W} \right)^2$ $\leq 10^{-53}$

 \Rightarrow GIM suppressed by small neutrino masses

Any observation of charged LFV points to physics beyond neutrino masses

CLFV beyond m_{ν}

Simple example: Heavy neutrinos (N) with $m_N \mathcal{O}(TeV)$:

$$\begin{aligned} & \text{Br}(\mu \to e\gamma) \sim \\ & \frac{\alpha^3 s_W^2}{256\pi^2} \frac{m_{\mu}^5}{m_W^4 \Gamma_{\mu}} \Big(\sum_i K_{\mu i}^* K_{ei} G(\frac{m_{N_k}^2}{m_W^2}) \Big)^2 \\ & \leq 9 \times 10^{-6} \Big(\sum_i K_{\mu i}^* K_{ei} G(\frac{m_{N_k}^2}{m_W^2}) \Big)^2 \end{aligned}$$

- $-K_{ik}$ heavy neutrino lepton mixing
- G(x) loop function, G(1) = 1/8

CLFV beyond m_{ν}

Simple example: Heavy neutrinos (N) with $m_N \mathcal{O}(TeV)$:

$$\begin{aligned} & \text{Br}(\mu \to e\gamma) \sim \\ & \frac{\alpha^3 s_W^2}{256\pi^2} \frac{m_{\mu}^5}{m_W^4 \Gamma_{\mu}} \left(\sum_i K_{\mu i}^* K_{ei} G(\frac{m_{N_k}^2}{m_W^2}) \right)^2 \\ & \leq 9 \times 10^{-6} \left(\sum_i K_{\mu i}^* K_{ei} G(\frac{m_{N_k}^2}{m_W^2}) \right)^2 \end{aligned}$$

 $-K_{ik}$ heavy neutrino - lepton mixing

- G(x) loop function, G(1) = 1/8

Practically any extension of SM with new states at TeV scale generates large charged LFV!

(C)LFV - Models

 \Rightarrow Example models that produce sizeable CLFV:

- TeV scale seesaw: Inverse seesaw, linear seesaw, etc.
- Radiative neutrino mass models: Zee-, Babu-Zee model, etc.
- RPC Supersymmetry
- RPV Supersymmetry
- Practically any extended Higgs sector: Little Higgs models, additional Higgs doublets, triplets, etc...
- Extra (large) dimensions
- etc ...

⇒ In fact, many models generate way to much CLFV: "Flavour problem" of BSM Schematically:

Can we learn about different BSM models from different LFV processes?

 $\mu \rightarrow e\gamma$ versus $\mu \rightarrow 3e$

Consider $\mu \rightarrow e\gamma$:

Some physics beyond SM generates blob:

 $\mu \rightarrow e\gamma$ versus $\mu \rightarrow 3e$

Consider $\mu \rightarrow e\gamma$:

Some physics beyond SM generates blob:

If photon diagram dominates:

$$Br(l_i \to l_j l_k l_k) \sim$$

 $\alpha \times Br(e \to l_j + \gamma)$

Compare $\mu \rightarrow 3e$:

Simple example

k

 ℓ_b

 ℓ_a

 ν_{α}

Babu-Zee model for neutrino mass:

$$\mathcal{L} = f(L^T L)h^+ + g(e_R^T e_R)k^{++} - \mu h^+ h^+ k^{--}$$

Cheng & Li, 1980 Zee, 1985 Babu, 1988

Babu & Macesanu, 2003 Aristizabal & Hirsch, 2006:

Large neutrino mixing angles require large CLFV

$$\mathcal{M}^{\nu}_{\alpha\beta} = \frac{8\mu}{(16\pi^2)^2 m_h^2} f_{\alpha a} m_a g_{xy} m_b f_{b\beta} \mathcal{I}(\frac{m_k^2}{m_h^2}),$$

 ν_{β}

CLFV in Babu-Zee model

If $\frac{g^2}{m_k^2} \ll \frac{f^2}{m_h^2}$:

Photon dominance!

 $\mu \rightarrow 3e$ tree-level!

RPP 2012, 14/05/2012 - p.17/38

Target dependence

Fig. from Cirigliano et al., 2009

 \Rightarrow use different nuclear targets to distinguish different operators

SUSY, neutrino masses and LFV

RPP 2012, 14/05/2012 – p.19/38

SUSY flavour problem

Soft SUSY breaking:

$$V = (m_{\tilde{L}}^2)_{ij} \tilde{L}_i^* \tilde{L}_j + \cdots$$

Off-diagonal elements induce decays, such as:

SUSY flavour problem

Soft SUSY breaking:

$$V = (m_{\tilde{L}}^2)_{ij} \tilde{L}_i^* \tilde{L}_j + \cdots$$

Off-diagonal elements induce decays, such as:

Ellis and Nanopoulos, 1981 Donoghue et al., 1983 Gerard et al., 1984 Hall et al., 1985 Romao et al., 1985 Borzumati, Masiero, 1986 ... many

$$\delta_{12} = \frac{(m_{\tilde{L}}^2)_{21}}{m_{SUSY}^2} \lesssim 10^{-4}$$

Boundary conditions: mSUGRA ("minimal Supergravity") :

$$\begin{split} M_1 &= M_2 = M_3 = M_{1/2}, \\ m_{H_u}^2 &= m_{H_d}^2 = m_0^2, \\ M_{\tilde{Q}}^2 &= M_{\tilde{U}}^2 = M_{\tilde{D}}^2 = M_{\tilde{L}}^2 = M_{\tilde{E}}^2 = m_0^2 \mathbf{1}_3, \\ A_d &= A_0 Y_d, A_u = A_0 Y_u, A_e = A_0 Y_e. \end{split}$$

mSugra

← Flavour blind SUSY breaking!

- \Rightarrow # of parameters: $4\frac{1}{2}$ (m_0 , $M_{1/2}$, A_0 , $\tan\beta$, $sgn(\mu)$)
- \Rightarrow Sometimes also called the CMSSM (C = constrained)
- ⇒ All low energy masses can then be calculated by RGE ("renormalization group equations")

\Rightarrow No neutrino masses and no LFV

Seesaw mechanism

Seesaw type-I, right-handed neutrinos:

$$m_{1/2} \simeq (-rac{Y_{
u}^2 v^2}{M_M}, M_M)$$

Seesaw type-II, scalar triplet:

$$m_{\nu} \simeq Y_T \langle \Delta_L^0 \rangle \simeq Y_T \frac{v^2}{m_{\Delta}}$$

Type-III: Replace
$$\nu_R$$
 by $\Sigma = (\Sigma^+, \Sigma^0, \Sigma^-)$:

$$m_{1/2} \simeq \left(-rac{Y_{\Sigma}^2 v^2}{M_{\Sigma}}, M_{\Sigma}
ight)$$

 u_L

ν_L RPP 2012, 14/05/2012 – p.22/38

mSugra and RGEs

Seesaw type-I:

Borzumati & Masiero, 1986

$$(\Delta M_{\tilde{L}}^2)_{ij} \sim -\frac{1}{8\pi^2} f(m_0, A_0, M_{1/2}, ...) (Y_{\nu}^{\dagger} L Y_{\nu})_{ij}$$

Note: $L_i = \log[M_G/M_i]$.

 \Rightarrow 9 new independent parameters

Seesaw type-II:

Rossi, 2002

$$(\Delta M_{\tilde{L}}^2)_{ij} \sim -\frac{1}{8\pi^2} g(m_0, A_0, M_{1/2}, ...) (Y_T^{\dagger} Y_T)_{ij} \log(M_G/M_T)$$

 \Rightarrow 9 entries, but proportional to Y_T^2 \Rightarrow Measuring all entries in $(\Delta M_{\tilde{L}}^2)_{ij}$ "over-constrains" type-II seesaw!

Note: type-III equation as type-I, but larger LFV ... see below

$\mu \rightarrow e\gamma$ in mSugra sessaw

 \Rightarrow The three different seesaws are: type-III, type-II and type-I

- \Rightarrow General expectation: "Large" LFV for "large" M_{Seesaw}
- \Rightarrow General expectation LFV in type-III \gg type-I

See talk by: A. Villanova

Only for Type-II

Neutrino angles fix relative size of entries in Y_T :

Hirsch et al., 2008

Here: $(r_{23}^{13})^2 = \text{Br}(\tau \to e\gamma)/\text{Br}(\tau \to \mu\gamma)$ etc.

Ratios of BR's "predicted" as function of neutrino parameters

LFV in SUSY LR model

Esteves et al., 2010

 \Rightarrow As in seesaw Br($\mu^+ \rightarrow e^+ \gamma$) strong function of $M_{\rm Seesaw}$... but ...

LFV in SUSY LR model

Esteves et al., 2010

Asymmetry:

$$\mathcal{A}(\mu^+ \to e^+ \gamma) = \frac{|A_L|^2 - |A_R|^2}{|A_L|^2 + |A_R|^2},$$

 \Rightarrow Note: In mSugra seesaw $\mathcal{A} = 1$ always

RPP 2012, 14/05/2012 - p.27/38

Linear & inverse seesaw

Inverse seesaw, basis (ν, ν^c, S) :

Mohapatra & Valle, 1986

After EWSB the effective light neutrino mass matrix is given by

$$M_{\nu} = m_D M^{T^{-1}} \mu M^{-1} m_D^T.$$

 $M_{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M \\ 0 & M^T & \mu \end{pmatrix},$

Linear seesaw:

$$M_{\nu} = \begin{pmatrix} 0 & m_D & M_L \\ m_D^T & 0 & M \\ M_L^T & M^T & 0 \end{pmatrix}$$

Akhmedov et al., 1995

Light neutrino mass:

$$M_{\nu} = m_D (M_L M^{-1})^T + (M_L M^{-1}) m_D^T$$

RPP 2012, 14/05/2012 - p.28/38

SUSY Inverse seesaw

Hirsch, Staub & Vicente, 2012

Z-penguin dominates when MSSM extended:

(i) particle content ($\hat{\nu}^c$) (ii) new Yukawa-like interactions (example also: RPV)

> See talk by: C. Weiland

Discrete symmetries and LFV

RPP 2012, 14/05/2012 – p.30/38

Discrete flavour symmetries

A very partial list:

 S_3 : Kubo et al., 2003; Chen et al., 2004; Grimus and Lavoura, 2005;Lavoura and Ma, 2005; Teshima, 2006;Many Refs in
Reviews by:Koide, 2006; Mohapatra et al., 2006; \cdots , \cdots Reviews by:

*S*₄: Ma, 2006; Hagedorn et al., 2006; Cai & Yu, 2006; Zhang, 2006; Koide, 2007; · · · , · · · Altarelli & Feruglio, 2010 arXiv: 1002.0211

 A_4 : Ma & Rajasekaran, 2001; Ma, 2002; Babu et al., 2003; Hirsch et al., 2003; Altarelli and Feruglio, 2005; Babu and He, 2005; Koide, 2007; · · · , · · ·

Ishimori et al. arXiv:1003.3552

 Q_4 : Frigerio et al. 2005, \cdots

. .

 D_4 : Grimus & Lavoura, 2003; Grimus et al., 2004; \cdots , \cdots

Summary: A_4

- 12 elements: rotations
- 4 irreps: 1, 1', 1" and 3
- smallest group with $\boldsymbol{3}$
- \Rightarrow Symmetry of the tetrahedron:

Summary: A_4

- 12 elements: rotations
- 4 irreps: 1, 1', 1" and 3
- smallest group with $\boldsymbol{3}$
- \Rightarrow Symmetry of the tetrahedron:

A4 is spontaneously broken in

Z3 in the charged sector Z2 in the neutrino sector

Assign: $L_i, l_j^c, H_k \ (\nu_m^c, \cdots)$ to different irreps of A_4

 $\Rightarrow \cdots$

A_4 : models

Type	L_i	ℓ_i^c	ν_i^c	Δ	References
A1				2	[1-14] $[15]$ #
A2	<u>3</u>	$\underline{1}, \underline{1}', \underline{1}''$		$\underline{1},\underline{1}',\underline{1}'',\underline{3}$	[16-18]
A3				1, 3	[19]
B1	<u>3</u>	<u>1</u> , <u>1'</u> , <u>1</u> "	<u>3</u>	5	[4,20-27]# [28-30]* [31-48]
B2				$\underline{1}, \underline{3}$	$[49]^{\#}$
C1		<u>3</u>	N°:	=	[2, 50, 51] $[52]$ [#]
C2	9			1	[53,54] [55]#
C3	<u>a</u>			<u>1, 3</u>	[56]
C4				$\underline{1},\underline{1}',\underline{1}'',\underline{3}$	[57]
D1		<u>3</u>		ŝ	[58, 59] [#] $[60, 61]$ [*] $[62]$
D2	9		<u>3</u>	1	[63] [64]*
D3	<u>0</u>			<u>1'</u>	[65]*
D4				<u>1', 3</u>	[66]*
E1	3	3 1 1	1 1/ 1//	÷	[67,68]
E2	<u>a</u>	<u>n</u>	±, ±, ±	<u>1</u>	[69]
F	$\underline{1}, \underline{1}', \underline{1}''$	<u>3</u>	<u>3</u>	$\underline{1} \text{ or } \underline{1}'$	[70]
G	<u>3</u>	<u>1, 1', 1"</u>	$\underline{1}, \underline{1}', \underline{1}''$	5	[71]
H	<u>3</u>	<u>1, 1, 1</u>	17	2	[72]
Ι	<u>3</u>	1, 1, 1	1	÷	[73]*
J	<u>3</u>	1, 1, 1	<u>1, 1</u>	2	[74]* [75]
K	<u>3</u>	<u>1, 1, 1</u>	<u>1, 1, 1</u>	5	[76]*
L	<u>3</u>	<u>1, 1, 1</u>	<u>1, 1', 1"</u>	ŝ	[77]
Μ	<u>3</u>	<u>1, 1, 1</u>	3	2	[12, 39, 78, 79]
Ν	<u>3</u>	<u>1, 1, 1</u>	<u>1, 1</u>	<u>1</u>	[80]*
0	<u>1, 1', 1"</u>	$\underline{1}, \underline{1}', \underline{1}''$	3	8	[81]
Р	<u>1, 1', 1"</u>	<u>1, 1", 1'</u>	<u>3, 1</u>	2	[82,83]
Q	<u>1, 1', 1"</u>	1, 1'', 1'	<u>3, 1', 1"</u>	알	[84]

Barry & Rodejohann, PRD81 093002 (2010)

Many - but not all! can give TBM

Classify:

(a) High-scale models(b) EW-scale models

RPP 2012, 14/05/2012 - p.33/38

Linear and inverse SS in A_4

 ${
m Br}(\mu o e\gamma)$ for 3 different values of m_N for inverse and linear seesaw

Ratio:

 ${
m Br}(au o \mu \gamma)/{
m Br}(au o e \gamma)$ for inverse and linear seesaw assuming exact TBM mixing as function of

$$\alpha = \frac{\Delta m_{\odot}^2}{\Delta m_{\rm Atm}^2}$$

Discrete sym's and $0\nu\beta\beta$

Hirsch, Morisi & Valle, 2009: Inverse and linear seesaw both A₄ based TBM

A4 is spontaneously broken in

Z3 in the charged sector Z2 in the neutrino sector

Discrete Dark Matter

Hirsch, Morisi, Peinado & Valle arXiv:1007.0871 Boucenna et al. arXiv:1101.2874

Discrete Dark Matter

Hirsch, Morisi, Peinado & Valle arXiv:1007.0871 Boucenna et al. arXiv:1101.2874

> Boucenna et al. arXiv:1204.4733

0.35

 $\sin^2 \theta_{12}$

Summary

- \Rightarrow Neutrino oscillations show LF is violated
- \Rightarrow last neutrino angle θ_{13} has been measured
- \Rightarrow Charged LVF not seen
- \Rightarrow CLVF interesting model discriminator
- \Rightarrow Discrete symmetries may help, but \cdots
- \Rightarrow Flavour problem not understood!
- \Rightarrow New ideas needed!