Unlocking the Standard Model

the 1-generation case

B. Machet

LPTHE, Paris

Rencontres de Physique des Particules, Montpellier May 16 th, 2012

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons The occords of the masses of gauge bosons The composite multiplets and the masses of gauge bosons The composite multiplets and the masses of gauge bosons and the composite multiplets are composed and the composed

Preliminary

- Pseudoscalar J = 0 mesons have nice ordering / symmetry pattern scalar mesons = anarchy
- Higgs boson likely to be composite
- Standard Higgs boson = scalar ; can it be $\simeq J = 0$ scalar meson ?
- Could it be that [Higgs mystery] \in [scalar maze] ?
- If Higgs $\propto \bar{u}u + \bar{d}d$, what are the 3 Goldstones in the Higgs multiplet? scalars? pseudoscalars? combinations of the two?

• If Goldstones
$$= \vec{\pi} \Rightarrow m_W = gf_{\pi}$$
 \otimes

- Technicolor intricate and unaesthetic ⊖
- So what to do ? Start by something unknown (to me) but likely to be simple enough :

find the sets of bilinear fermion operators stable by $SU(2)_L$ \odot

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons The occords of the masses of gauge bosons The control of the masses of gauge bosons of the masses of gauge bosons of the masses of gauge bosons and the masses of gauge bosons of the masses

Results

- The Standard Model with 1 generation of quarks is naturally endowed with 2-Higgs (complex) doublets H_1 and H_2 as soon as the scalar fields are considered (to transform) as $\bar{q}_i q_j / \bar{q}_i \gamma_5 q_j$ bilinears
 - I construct H_1 and H_2 , which are parity transformed of each other
- Quark condensation < ūu >≠ 0, < dd >≠ 0 is the *catalyst* of both chiral symmetry breaking and electroweak symmetry breaking
 - There are 2 Higgs bosons *h* and ξ , with VEV's $v = f_{\pi}$ and $\sigma \approx \frac{2\sqrt{2}m_W}{\sigma}$
 - The pions keep being the (massive pseudo-)Goldstone bosons of the broken chiral *SU*(2)_{*L*} × *SU*(2)_{*R*} symmetry down to its diagonal *SU*(2)_{*V*} subgroup
 - The couplings of h, ξ to \vec{W} , quarks, pions, leptons are determined
 - $\mathbf{m}_{h}^{2} = \lambda_{H_{1}} f_{\pi}^{2} m_{\pi}^{2} < (2m_{\pi})^{2}; \text{ 4-pions coupling } \left| \frac{\lambda_{H_{1}}}{4} \right| \leq .162 \times 4\pi \approx 2$
 - $h \stackrel{?}{=}$ candidate for dark matter
 - $\xi\simeq$ "standard", $m_{\xi}=$? \otimes

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons The occords of the masses of gauge bosons The composite multiplets and the masses of gauge bosons The composite multiplets and the masses of gauge bosons and the composite multiplets are composed and the composed

Results

- The Standard Model with 1 generation of quarks is naturally endowed with 2-Higgs (complex) doublets H_1 and H_2 as soon as the scalar fields are considered (to transform) as $\bar{q}_i q_j / \bar{q}_i \gamma_5 q_j$ bilinears
 - I construct H_1 and H_2 , which are parity transformed of each other
 - Quark condensation < u
 u >≠ 0, < d
 d >≠ 0 is the catalyst of both chiral symmetry breaking and electroweak symmetry breaking
 - There are 2 Higgs bosons *h* and ξ , with VEV's $v = f_{\pi}$ and $\sigma \approx \frac{2\sqrt{2}m_W}{\sigma}$
 - The pions keep being the (massive pseudo-)Goldstone bosons of the broken chiral *SU*(2)_{*L*} × *SU*(2)_{*R*} symmetry down to its diagonal *SU*(2)_{*V*} subgroup
 - The couplings of h, ξ to \vec{W} , quarks, pions, leptons are determined
 - $m_h^2 = \lambda_{H_1} f_{\pi}^2 m_{\pi}^2 < (2m_{\pi})^2; \text{ 4-pions coupling } \left| \frac{\lambda_{H_1}}{4} \right| \le .162 \times 4\pi \approx 2$
 - $h \stackrel{?}{=}$ candidate for dark matter
 - $\xi\simeq$ "standard", $m_{\xi}=$? \otimes

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons The occords of the masses of gauge bosons The control of the masses of gauge bosons of the masses of gauge bosons of the masses of gauge bosons and the masses of gauge bosons of the masses

Results

■ The Standard Model with 1 generation of quarks is naturally endowed with 2-Higgs (complex) doublets H_1 and H_2 as soon as the scalar fields are considered (to transform) as $\bar{q}_i q_j / \bar{q}_i \gamma_5 q_j$ bilinears

I construct H_1 and H_2 , which are parity transformed of each other

- Quark condensation < ūu >≠ 0, < dd >≠ 0 is the *catalyst* of both chiral symmetry breaking and electroweak symmetry breaking
 - There are 2 Higgs bosons h and ξ , with VEV's $v = f_{\pi}$ and $\sigma \approx \frac{2\sqrt{2}m_W}{\sigma}$
 - The pions keep being the (massive pseudo-)Goldstone bosons of the broken chiral *SU*(2)_{*L*} × *SU*(2)_{*R*} symmetry down to its diagonal *SU*(2)_{*V*} subgroup
 - The couplings of h, ξ to \vec{W} , quarks, pions, leptons are determined

$$m_h^2 = \lambda_{H_1} f_{\pi}^2 - m_{\pi}^2 < (2m_{\pi})^2; \text{ 4-pions coupling } \left| \frac{\lambda_{H_1}}{4} \right| \le .162 \times 4\pi \approx 3$$

• $h \stackrel{?}{=}$ candidate for dark matter

•
$$\xi\simeq$$
 "standard", $m_{\xi}=$? \otimes

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons The occords of the masses of gauge bosons The composite multiplets and the masses of gauge bosons The composite multiplets and the masses of gauge bosons and the composite multiplets are composed and the composed

Results

- The Standard Model with 1 generation of quarks is naturally endowed with 2-Higgs (complex) doublets H_1 and H_2 as soon as the scalar fields are considered (to transform) as $\bar{q}_i q_j / \bar{q}_i \gamma_5 q_j$ bilinears
 - I construct H_1 and H_2 , which are parity transformed of each other
- Quark condensation < u
 ūu > ≠ 0, < *d* d > ≠ 0 is the *catalyst* of both chiral symmetry breaking and electroweak symmetry breaking
 - There are 2 Higgs bosons h and ξ , with VEV's $v = f_{\pi}$ and $\sigma \approx \frac{2\sqrt{2}m_W}{\sigma}$
 - The pions keep being the (massive pseudo-)Goldstone bosons of the broken chiral *SU*(2)_{*L*} × *SU*(2)_{*R*} symmetry down to its diagonal *SU*(2)_{*V*} subgroup
 - The couplings of h, ξ to \vec{W} , quarks, pions, leptons are determined

$$m_h^2 = \lambda_{H_1} f_{\pi}^2 - m_{\pi}^2 < (2m_{\pi})^2; \text{ 4-pions coupling } \left| \frac{\lambda_{H_1}}{4} \right| \le .162 \times 4\pi \approx 10^{-10}$$

• $h \stackrel{?}{=}$ candidate for dark matter

•
$$\xi\simeq$$
 "standard", $m_{\xi}=$? \otimes

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons The occords of the masses of gauge bosons The composite multiplets and the masses of gauge bosons The composite multiplets and the masses of gauge bosons and the composite multiplets are composed and the composed

Results

- The Standard Model with 1 generation of quarks is naturally endowed with 2-Higgs (complex) doublets H_1 and H_2 as soon as the scalar fields are considered (to transform) as $\bar{q}_i q_i / \bar{q}_i \gamma_5 q_i$ bilinears
 - I construct H_1 and H_2 , which are parity transformed of each other
- Quark condensation < ūu >≠ 0, < dd >≠ 0 is the *catalyst* of both chiral symmetry breaking and electroweak symmetry breaking
 - There are 2 Higgs bosons h and ξ , with VEV's $v = f_{\pi}$ and $\sigma \approx \frac{2\sqrt{2}m_W}{\sigma}$
 - The pions keep being the (massive pseudo-)Goldstone bosons of the broken chiral *SU*(2)_{*L*} × *SU*(2)_{*R*} symmetry down to its diagonal *SU*(2)_{*V*} subgroup
 - The couplings of h, ξ to \vec{W} , quarks, pions, leptons are determined

•
$$m_h^2 = \lambda_{H_1} f_\pi^2 - m_\pi^2 < (2m_\pi)^2$$
; 4-pions coupling $\left|\frac{\lambda_{H_1}}{4}\right| \le .162 \times 4\pi \approx 2$

• $h \stackrel{?}{=}$ candidate for dark matter

•
$$\xi\simeq$$
 "standard", $m_{\xi}=$? \otimes

Ou	line The Glashow-Salam-Weinberg Model and its unique Higgs doublet 000	Composite multiplets	The masses of gauge bosons	Τŀ
1	 The Glashow-Salam-Weinberg Model and its unique Higgs doublet The SU(2)_L group and its generators The Higgs doublet H (and its alter ego H̃) Transforming H by SU(2)_L 			
2	Composite multiplets The chiral group $U(2)_L \times U(2)_R$ The two quadruplets stable by $SU(2)_L$ and $SU(2)_R$ The two composite Higgs doublets In the 4-bases $(h_1^0, h_1^3, h_1^+, h_1^-)$ and $(h_2^0, h_2^3, h_2^+, h_2^-)$			
3	The masses of gauge bosons The masses of $SU(2)_L$ gauge bosons The unitary gauge The breaking pattern			
4	The masses of fermions and pions			
5	Coupling of the Higgs bosons Coupling of Higgs bosons to gauge bosons Coupling of Higgs bosons to quarks			
6	The scalar potential. The masses of the Higgs bosons <i>h</i> and ξ ■ The scalar potential ■ The masses of the Higgs bosons			
7	$W_{\parallel}W_{\parallel}$ scattering			
8	 Yukawa couplings Yukawa couplings Couplings between leptons and Higgs bosons 			
9	The <i>h</i> Higgs boson. A candidate for light dark matter ?			
10	More generations, a few remarks			
11	Is the Standard Model self-contained ?			
12	To investigate			

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons The occorrect on the masses of gauge bosons The masses of gauge b

GSW. The $SU(2)_L$ group and its generators

• $SU(2)_L$ transformation

$$\mathcal{U}_L = e^{-i lpha_i T_L^i}$$

• Lie Algebra

$$T_{L}^{3} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, T_{L}^{+} = T_{L}^{1} + iT_{L}^{2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, T_{L}^{-} = T_{L}^{1} - iT_{L}^{2} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$[T_{L}^{i}, T_{L}^{j}] = +i\epsilon_{ijk}T_{L}^{k}, \quad i, j = 1, 2, 3$$

• $u_L, d_L \in doublet$ in the fundamental representation of $SU(2)_L$

$$\psi = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \quad T_L^i \cdot \psi = T_L^i \psi$$

pause

▶ commut2

GSW. The Higgs doublet H (and its alter ego H)

• Let
$$\chi^0, \chi^1, \chi^2, k^3$$
 be real and $\chi^3 = ik^3$

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} \chi^1 + i\chi^2 \\ \chi^0 - \chi^3 \end{pmatrix}, \quad \tilde{H} = \frac{i}{2}T^2H^* = \frac{1}{\sqrt{2}} \begin{pmatrix} \chi^0 + \chi^3 \\ -(\chi^1 - i\chi^2) \end{pmatrix}$$

$$< \chi^0 >= v \Rightarrow < H >= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}, \quad < \tilde{H} >= \frac{1}{\sqrt{2}} \begin{pmatrix} v \\ 0 \end{pmatrix}$$
• Defining $T_L^i \cdot \chi^\alpha$ and $(T_L^i T_L^j) \cdot \chi^\alpha$ by

$$T_L^i \cdot H = \frac{1}{\sqrt{2}} \left(\begin{array}{c} T_L^i \cdot \chi^1 + i T_L^i \cdot \chi^2 \\ T_L^i \cdot \chi^0 - T_L^i \cdot \chi^3 \end{array} \right), \quad (T_L^i T_L^j) \cdot H = \frac{1}{\sqrt{2}} \left(\begin{array}{c} (T_L^i T_L^j) \cdot \chi^1 + i (T_L^i T_L^j) \cdot \chi^2 \\ (T_L^i T_L^j) \cdot \chi^0 - (T_L^i T_L^j) \cdot \chi^3 \end{array} \right)$$

the laws of transformations of the χ 's satisfy \bullet commut \bullet commut2 \bullet rep1 \bullet rep2

$$[T_L^i, T_L^j].\chi^{\alpha} = +i\epsilon_{ijk}T_L^k.\chi^{\alpha}$$

$$\Leftrightarrow \qquad T_L^i.(T_L^j.\chi^{\alpha}) - T_L^j.(T_L^i.\chi^{\alpha}) = -i\epsilon_{ijk}T_L^k.\chi^{\alpha} = -[T_L^i,T_L^j].\chi^{\alpha}$$

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons TH

GSW. Transforming H by $SU(2)_L$

They write

$$\begin{split} T_L^1 \cdot \chi^0 &= +\frac{i}{2} \chi^2, \qquad T_L^2 \cdot \chi^0 = +\frac{i}{2} \chi^1, \qquad T_L^3 \cdot \chi^0 = +\frac{1}{2} \chi^3, \\ T_L^1 \cdot \chi^1 &= -\frac{1}{2} \chi^3, \qquad T_L^2 \cdot \chi^1 = -\frac{i}{2} \chi^0, \qquad T_L^3 \cdot \chi^1 = +\frac{i}{2} h^2, \\ T_L^1 \cdot \chi^2 &= -\frac{i}{2} \chi^0, \qquad T_L^2 \cdot \chi^2 = +\frac{1}{2} \chi^3, \qquad T_L^3 \cdot \chi^2 = -\frac{i}{2} \chi^1, \\ T_L^1 \cdot \chi^3 &= -\frac{1}{2} \chi^1, \qquad T_L^2 \cdot \chi^3 = +\frac{1}{2} \chi^2, \qquad T_L^3 \cdot \chi^3 = +\frac{1}{2} \chi^0. \end{split}$$

Calling

$$\chi^{0} = -\zeta^{3}, \quad \chi^{1} = \zeta^{1}, \quad \chi^{2} = -\zeta^{2}, \quad \chi^{3} = \zeta^{0}$$

they rewrite

$$T_L^i \cdot \zeta^j = -\frac{1}{2} \left(i \epsilon_{ijk} \zeta^k + \delta_{ij} \zeta^0 \right)$$
$$T_L^i \cdot \zeta^0 = -\frac{1}{2} \zeta^i$$

 \equiv laws of transformations of composite multiplets (see \bullet transf2)

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons TH

$ar{q}_i(\gamma_5)q_j$. Action of the chiral group $U(2)_L imes U(2)_R$ (I)

Left- and right- transformations :

$$\mathcal{V}_L = e^{-ieta_j\mathbb{T}_L^j}, \quad \mathcal{V}_R = e^{-i\kappa_j\mathbb{T}_R^j}$$

with generators $\mathbb{T}_L^j = \{\mathbb{I}_L, ec{\mathcal{T}}_L^j\}$ (the same for \mathbb{T}_R^j)

2 Any quark bilinear can be represented as $\bar{\psi}\mathbb{M}\psi$ or $\bar{\psi}\mathbb{M}\gamma_5\psi$, or $\bar{\psi}\frac{1+\gamma_5}{2}\mathbb{M}\psi$ or $\bar{\psi}\frac{1-\gamma_5}{2}\mathbb{M}\psi$, where \mathbb{M} is a 2 × 2 matrix

B The action of the chiral group on such bilinears is

$$(\mathcal{V}_L \times \mathcal{V}_R) \cdot \bar{\psi} \frac{1+\gamma_5}{2} \mathbb{M}\psi = \bar{\psi} \mathcal{V}_L^{-1} \mathbb{M} \mathcal{V}_R \frac{1+\gamma_5}{2}\psi$$
$$(\mathcal{V}_L \times \mathcal{V}_R) \cdot \bar{\psi} \frac{1-\gamma_5}{2} \mathbb{M}\psi = \bar{\psi} \mathcal{V}_R^{-1} \mathbb{M} \mathcal{V}_L \frac{1-\gamma_5}{2}\psi$$

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons TH

$\bar{q}_i(\gamma_5)q_j$. Action of the chiral group $U(2)_L imes U(2)_R$ (I)

1 Left- and right- transformations :

$$\mathcal{V}_L = e^{-i\beta_j \mathbb{T}_L^j}, \quad \mathcal{V}_R = e^{-i\kappa_j \mathbb{T}_R^j}$$

with generators $\mathbb{T}_{L}^{j} = \{\mathbb{I}_{L}, \vec{T}_{L}^{j}\}$ (the same for \mathbb{T}_{R}^{j})

2 Any quark bilinear can be represented as $\bar{\psi}\mathbb{M}\psi$ or $\bar{\psi}\mathbb{M}\gamma_5\psi$, or $\bar{\psi}\frac{1+\gamma_5}{2}\mathbb{M}\psi$ or $\bar{\psi}\frac{1-\gamma_5}{2}\mathbb{M}\psi$, where \mathbb{M} is a 2 × 2 matrix

3 The action of the chiral group on such bilinears is

$$(\mathcal{V}_L \times \mathcal{V}_R) \cdot \bar{\psi} \frac{1+\gamma_5}{2} \mathbb{M}\psi = \bar{\psi} \mathcal{V}_L^{-1} \mathbb{M} \mathcal{V}_R \frac{1+\gamma_5}{2}\psi$$
$$(\mathcal{V}_L \times \mathcal{V}_R) \cdot \bar{\psi} \frac{1-\gamma_5}{2} \mathbb{M}\psi = \bar{\psi} \mathcal{V}_R^{-1} \mathbb{M} \mathcal{V}_L \frac{1-\gamma_5}{2}\psi$$

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons TH

$\bar{q}_i(\gamma_5)q_j$. Action of the chiral group $U(2)_L \times U(2)_R$ (I)

1 Left- and right- transformations :

$$\mathcal{V}_L = e^{-ieta_j\mathbb{T}_L^j}, \quad \mathcal{V}_R = e^{-i\kappa_j\mathbb{T}_R^j}$$

with generators $\mathbb{T}_{L}^{j} = \{\mathbb{I}_{L}, \vec{\mathcal{T}}_{L}^{j}\}$ (the same for \mathbb{T}_{R}^{j})

2 Any quark bilinear can be represented as $\bar{\psi}\mathbb{M}\psi$ or $\bar{\psi}\mathbb{M}\gamma_5\psi$, or $\bar{\psi}\frac{1+\gamma_5}{2}\mathbb{M}\psi$ or $\bar{\psi}\frac{1-\gamma_5}{2}\mathbb{M}\psi$, where \mathbb{M} is a 2 × 2 matrix

3 The action of the chiral group on such bilinears is

$$(\mathcal{V}_L \times \mathcal{V}_R) \cdot \bar{\psi} \frac{1+\gamma_5}{2} \mathbb{M}\psi = \bar{\psi} \mathcal{V}_L^{-1} \mathbb{M} \mathcal{V}_R \frac{1+\gamma_5}{2}\psi$$
$$(\mathcal{V}_L \times \mathcal{V}_R) \cdot \bar{\psi} \frac{1-\gamma_5}{2} \mathbb{M}\psi = \bar{\psi} \mathcal{V}_R^{-1} \mathbb{M} \mathcal{V}_L \frac{1-\gamma_5}{2}\psi$$

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons TH

$\bar{q}_i(\gamma_5)q_j$. Action of the chiral group $U(2)_L \times U(2)_R$ (I)

1 Left- and right- transformations :

$$\mathcal{V}_L = e^{-i\beta_j \mathbb{T}_L^j}, \quad \mathcal{V}_R = e^{-i\kappa_j \mathbb{T}_R^j}$$

with generators $\mathbb{T}_{L}^{j} = \{\mathbb{I}_{L}, \vec{\mathcal{T}}_{L}^{j}\}$ (the same for \mathbb{T}_{R}^{j})

2 Any quark bilinear can be represented as $\bar{\psi}\mathbb{M}\psi$ or $\bar{\psi}\mathbb{M}\gamma_5\psi$, or $\bar{\psi}\frac{1+\gamma_5}{2}\mathbb{M}\psi$ or $\bar{\psi}\frac{1-\gamma_5}{2}\mathbb{M}\psi$, where \mathbb{M} is a 2 × 2 matrix

3 The action of the chiral group on such bilinears is

$$\begin{aligned} \left(\mathcal{V}_L \times \mathcal{V}_R\right) \cdot \bar{\psi} \frac{1+\gamma_5}{2} \mathbb{M}\psi &= \bar{\psi} \ \mathcal{V}_L^{-1} \ \mathbb{M} \ \mathcal{V}_R \ \frac{1+\gamma_5}{2}\psi \\ \left(\mathcal{V}_L \times \mathcal{V}_R\right) \cdot \bar{\psi} \frac{1-\gamma_5}{2} \mathbb{M}\psi &= \bar{\psi} \ \mathcal{V}_R^{-1} \ \mathbb{M} \ \mathcal{V}_L \ \frac{1-\gamma_5}{2}\psi \end{aligned}$$

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons TH

$\bar{q}_i(\gamma_5)q_j$. Action of the chiral group $U(2)_L \times U(2)_R$ (II)

• Expanding the exponentials and using $\mathbb{T}_{L}^{i} \cdot \psi = \mathbb{T}_{L}^{i} \psi : \bullet \mathfrak{su}_{(2)}$

$$\begin{split} \mathbb{T}_{L}^{j} \cdot \bar{\psi} \frac{1+\gamma_{5}}{2} \mathbb{M}\psi &= -\bar{\psi} \,\mathbb{T}^{j}\mathbb{M} \,\frac{1+\gamma_{5}}{2}\psi \\ \mathbb{T}_{L}^{j} \cdot \bar{\psi} \frac{1-\gamma_{5}}{2}\mathbb{M}\psi &= +\bar{\psi} \,\mathbb{M}\mathbb{T}^{j} \,\frac{1-\gamma_{5}}{2}\psi \\ \mathbb{T}_{R}^{j} \cdot \bar{\psi} \frac{1+\gamma_{5}}{2}\mathbb{M}\psi &= +\bar{\psi} \,\mathbb{M}\mathbb{T}^{j} \,\frac{1+\gamma_{5}}{2}\psi \\ \mathbb{T}_{R}^{j} \cdot \bar{\psi} \frac{1-\gamma_{5}}{2}\mathbb{M}\psi &= -\bar{\psi} \,\mathbb{T}^{j}\mathbb{M} \,\frac{1-\gamma_{5}}{2}\psi \end{split}$$

These relations satisfy in particular

▶ commut1

pause

$$[T_{L,R}^{i},T_{L,R}^{j}].\,\bar{\psi}\frac{1\pm\gamma_{5}}{2}\mathbb{M}\psi=+\epsilon_{ijk}T_{L,R}^{k}.\bar{\psi}\frac{1\pm\gamma_{5}}{2}\mathbb{M}\psi$$

and

$$\left(T_{L,R}^{i}.(T_{L,R}^{j}-T_{L,R}^{j}.(T_{L,R}^{i}),\bar{\psi}\frac{1\pm\gamma_{5}}{2}\mathbb{M}\psi\right)=-i\epsilon_{ijk}T_{L,R}^{k}.\bar{\psi}\frac{1\pm\gamma_{5}}{2}\mathbb{M}\psi$$

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons TH

$\bar{q}_i(\gamma_5)q_j$. Action of the chiral group $U(2)_L \times U(2)_R$ (III)

$$[L, R] = 0 : \left(T_{L,R}^{i} \cdot (T_{R,L}^{j} - T_{R,L}^{j} \cdot (T_{L,R}^{j}) \cdot \bar{\psi} \frac{1 \pm \gamma_{5}}{2} \mathbb{M} \psi \right) = 0 = [T_{L,R}^{i}, T_{R,L}^{j}] \cdot \bar{\psi} \frac{1 \pm \gamma_{5}}{2} \mathbb{M} \psi$$

The diagonal subgroup acts as expected by commutation

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons Th

 $\bar{q}_i(\gamma_5)q_i$. Action of the chiral group $U(2)_L \times U(2)_R$ (IV). $U(1)_L \times U(1)_R \to U(1)_V$ and parity

$$\mathbb{I}_{R} \cdot \bar{\psi} \frac{1 \pm \gamma_{5}}{2} \mathbb{M} \psi = \pm \bar{\psi} \frac{1 \pm \gamma_{5}}{2} \mathbb{M} \psi, \quad \mathbb{I}_{L} \cdot \bar{\psi} \frac{1 \mp \gamma_{5}}{2} \mathbb{M} \psi = \pm \bar{\psi} \frac{1 \mp \gamma_{5}}{2} \mathbb{M} \psi$$

$$\Leftrightarrow \qquad \mathbb{I}_L . (S, P) = -(P, S) , \quad \mathbb{I}_R . (S, P) = +(P, S)$$

$$\Leftrightarrow \quad (\mathbb{I}_R - \mathbb{I}_L) . (S, P) \equiv \gamma_5 \mathbb{I} . (S, P) = (P, S)$$
$$(\mathbb{I}_R + \mathbb{I}_L) . (S, P) \equiv \mathbb{I} . (S, P) = 0$$

 $U(1)_I \times U(1)_R \xrightarrow{breaking} U(1) \equiv breaking of (scalar \leftrightarrow pseudo)$ symmetry Which Goldstone boson ?

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons The conception on the masses of gauge bosons The conception of th

The two composite quadruplets stable by $SU(2)_{L,R}$ (I)

One has

$$T_{L}^{i} \cdot \bar{\psi} \mathbb{I} \psi = -\frac{1}{2} \, \bar{\psi} \, \gamma_{5} \, 2 \, T^{i} \, \psi$$
$$T_{L}^{i} \cdot \bar{\psi} \, \gamma_{5} \, 2 \, T^{j} \, \psi = -\frac{1}{2} \, \left(i \epsilon_{ijk} \, \bar{\psi} \, \gamma_{5} \, 2 \, T^{k} \, \psi + \delta_{ij} \, \bar{\psi} \mathbb{I} \psi \right)$$

and

$$\begin{aligned} T_L^i \cdot \bar{\psi} \gamma_5 \mathbb{I} \psi &= -\frac{1}{2} \, \bar{\psi} \, 2 T^i \psi \\ T_L^i \cdot \bar{\psi} \, 2 T^j \psi &= -\frac{1}{2} \, \left(i \epsilon_{ijk} \, \bar{\psi} \, 2 T^k \psi + \delta_{ij} \, \bar{\psi} \, \gamma_5 \mathbb{I} \, \psi \right) \end{aligned}$$

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons TH

The two composite quadruplets stable by $SU(2)_{L,R}$ (II). Transformation laws

 \Rightarrow the two quadruplets (parity-transformed of each other)

$$\Phi = (\phi^0, \vec{\phi}) = \bar{\psi} \left(\mathbb{I}, 2\gamma_5 \vec{T} \right) \psi$$
$$\Xi = (\xi^0, \vec{\xi}) = \bar{\psi} \left(\gamma_5 \mathbb{I}, 2\vec{T} \right) \psi$$

are stable by $SU(2)_L$ and have the same laws of transformation as $\equiv H$ • transf

$$T_L^i \cdot \phi^j = -\frac{1}{2} \left(i \epsilon_{ijk} \phi^k + \delta_{ij} \phi^0 \right)$$
$$T_L^i \cdot \phi^0 = -\frac{1}{2} \phi^i$$

Likewise, by $SU(2)_R$

$$T_R^i \cdot \phi^j = -\frac{1}{2} \left(i \epsilon_{ijk} \phi^k - \delta_{ij} \phi^0 \right)$$

$$T_R^i \cdot \phi^0 = +\frac{1}{2} \phi^i$$

Hermitian conjugation $(\phi^0)^{\dagger} = \phi^0$, $(\xi^0)^{\dagger} = -\xi^0$, $(\vec{\phi})^{\dagger} = -\vec{\phi}$, $(\vec{\xi})^{\dagger} = \vec{\xi}$

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons Th 000000000 The two composite Higgs doublets (I) The two composite doublets isomorphic to H are mhmxi pause $H_{1} = \frac{1}{\sqrt{2}} \frac{v}{\mu^{3}} \begin{pmatrix} \phi^{1} - i\phi^{2} \\ -(\phi^{0} + \phi^{3}) \end{pmatrix} = \frac{v\sqrt{2}}{\mu^{3}} \begin{pmatrix} d\gamma_{5}u \\ -\frac{1}{2}(\bar{u}u + \bar{d}d) - \frac{1}{2}(\bar{u}\gamma_{5}u - \bar{d}\gamma_{5}d) \end{pmatrix}$ $\tilde{H}_{1} = \frac{1}{\sqrt{2}} \frac{v}{\mu^{3}} \begin{pmatrix} \phi^{0} - \phi^{3} \\ -(\phi^{1} + i\phi^{2}) \end{pmatrix} = \frac{v\sqrt{2}}{\mu^{3}} \begin{pmatrix} \frac{1}{2}(\bar{u}u + \bar{d}d) - \frac{1}{2}(\bar{u}\gamma_{5}u - \bar{d}\gamma_{5}d) \\ -\bar{u}\gamma_{5}d \end{pmatrix}$ $H_{2} = \frac{1}{\sqrt{2}} \frac{\sigma}{\nu^{3}} \begin{pmatrix} \xi^{1} - i\xi^{2} \\ -(\xi^{0} + \xi^{3}) \end{pmatrix} = \frac{\sigma\sqrt{2}}{\nu^{3}} \begin{pmatrix} \bar{d}u \\ -\frac{1}{2}(\bar{u}\gamma_{5}u + \bar{d}\gamma_{5}d) - \frac{1}{2}(\bar{u}u - \bar{d}d) \end{pmatrix}$ $1 \sigma (c^0 c^3) = \sigma \sqrt{2} (\frac{1}{2}(\overline{u}_{0r}u + \overline{d}_{0r}d) - \frac{1}{2}(\overline{u}u - \overline{d}d))$

$$\tilde{H}_2 = \frac{1}{\sqrt{2}} \frac{\sigma}{\nu^3} \begin{pmatrix} \xi^0 - \xi^3 \\ -(\xi^1 + i\xi^2) \end{pmatrix} = \frac{\sigma\sqrt{2}}{\nu^3} \begin{pmatrix} \frac{1}{2}(\bar{u}\gamma_5 u + d\gamma_5 d) - \frac{1}{2}(\bar{u}u - dd) \\ -\bar{u}d \end{pmatrix}$$

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons TH

The two composite Higgs doublets (II)

$$\begin{array}{ll} <\phi^0>=<\bar{u}u+\bar{d}d>=\mu^3, & <\xi^3>=<\bar{u}u-\bar{d}d>=\nu^3 & \Rightarrow \\ =-\frac{1}{\sqrt{2}}\left(\begin{array}{c}0\\\nu\end{array}\right) & , & =-\frac{1}{\sqrt{2}}\left(\begin{array}{c}0\\\sigma\end{array}\right) \\ <\tilde{H}_1>=\frac{1}{\sqrt{2}}\left(\begin{array}{c}v\\0\end{array}\right) & , & <\tilde{H}_2>=-\frac{1}{\sqrt{2}}\left(\begin{array}{c}\sigma\\\sigma\end{array}\right) \\ \end{array}$$

• Usual shift(s) for $h_1^0 = \frac{1}{\sqrt{2}} \frac{v}{\mu^3} \phi^0$ and $h_2^3 = \frac{1}{\sqrt{2}} \frac{\sigma}{\nu^3} \xi^3$ $h_1^0 = -\frac{v}{\sqrt{2}} + h, \quad h_2^3 = -\frac{\sigma}{\sqrt{2}} + \xi$ Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons The occord occord

In the 4-bases $(h_1^0, h_1^3, h_1^+, h_1^-)$ and $(h_2^0, h_2^3, h_2^+, h_2^-)$

• The three generators of $SU(2)_L$ and those of $SU(2)_R$ are 4×4 "Pauli-like" matrices which satisfy

$$\{T_L^i, T_L^j\} = \frac{1}{2}\delta_{ij}\mathbb{I}_L, \quad \{T_R^i, T_R^j\} = \frac{1}{2}\delta_{ij}\mathbb{I}_R$$

• The generators of the diagonal $SU(2)_V$ are $\vec{T} = \vec{T}_L + \vec{T}_R$

 $T^3 = Q = T_L^3 + T_R^3$ and $Y = Q - T_L^3 \Rightarrow Y = T_R^3$

• $(h_1^0, h_1^3, h_1^+, h_1^-)$ and $(h_2^0, h_2^3, h_2^+, h_2^-)$ are *not* eigenvectors of $\vec{T}_{L,R}$, only invariant subsets. They are (singlet + triplet) of $SU(2)_V$

end

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons TH

Kinetic terms ; the masses of $SU(2)_L$ gauge bosons

They appear in the kinetic terms

$$\frac{1}{2}\left((D_{\mu}H_1)^{\dagger}D^{\mu}H_1+(D_{\mu}H_2)^{\dagger}D^{\mu}H_2\right)$$

$$m_W^2 = g^2 \ \frac{v^2 + \sigma^2}{8}$$

We shall see

$$v = f_{\pi} \quad \Rightarrow \quad \sigma \approx 2\sqrt{2} \frac{m_W}{g}$$

such that

$$rac{< h_1^0>}{< h_2^3>} = rac{g f_\pi}{2\sqrt{2}m_W} = f_\pi \sqrt{G_f/\sqrt{2}} pprox rac{1}{4200}$$

sigma

pause

▶ hw

The unitary gauge

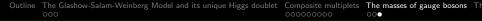
▶ invest ▶ pause

Crossed terms occur in the kinetic Lagrangian, for example • leptons • WWscat

$$rac{i g f_\pi}{2 \sqrt{2}} W^3_\mu \, \partial^\mu \pi^0 \quad ext{and} \quad rac{i g \sigma}{2 \sqrt{2}} W^3_\mu \, \partial^\mu h^0_2$$

• The first term accounts for *leptonic pion decays* in agreement with PCAC and should not be "gauged away"

• So, the pseudoscalar singlet h_2^0 and the two scalars h_2^+ , h_2^- are the 3 Goldstones doomed to become the longitudinal W's.



The breaking pattern

- The scalar potential lives in an 8-dimensional space. There are 6 "flat" directions and 2 massive ones which are the 2 Higgs bosons
- $< \bar{u}u + \bar{d}d > \neq 0$ fully breaks $SU(2)_L$, $SU(2)_R$, but not $SU(2)_V$. The 3 Goldstones of this $SU(2)_L$ breaking can be the same as those of $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$: the 3 pions
- $\langle \bar{u}u \bar{d}d \rangle \neq 0$ fully breaks $SU(2)_L$, $SU(2)_R$, but $SU(2)_V$ is only broken down to $U(1)_{em}$ with generator $Q = T^3$. The 3 Goldstones of $SU(2)_L$ breaking yield the 3 longitudinal W_{\parallel}
- $S \leftrightarrow P$ symmetry $U(1)_L \times U(1)_R$ broken down to $U(1)_V$. Goldstone = $h_1^0 \equiv \frac{f_{\pi}}{\sqrt{2}} + h$ or more traditionally $h_2^0 \propto \eta$? Goldst
- Yukawa couplings + PCAC + Gell-Mann-Oakes-Renner \rightarrow pion masses by soft $SU(2)_L$ invariant breaking of $SU(2)_L \times SU(2)_R$
- Only $SU(2)_L$ or $SU(2)_R$ can get gauged if one wants to keep physical pions : not enough Goldstones to break $SU(2)_L \times SU(2)_R$ • invest • pause

Yukawa couplings

pause
 lambda

Yukawa couplings between u, d and H_1 , H_2 HIH2 trigger

fermion masses

$$m_u = rac{v
ho_u + \sigma \lambda_u}{\sqrt{2}}, \quad m_d = rac{v
ho_d + \sigma \lambda_d}{\sqrt{2}}$$

other couplings

$$\frac{1}{2\sqrt{2}}\frac{\nu}{\mu^3}\left((\rho_u+\rho_d)(\bar{u}\gamma_5 d\,\phi^-+\bar{d}\gamma_5 u\,\phi^+)+(\rho_u-\rho_d)(\bar{d}u\,\phi^+-\bar{u}d\,\phi^-)\right.\\\left.+(\rho_u+\rho_d)(\bar{u}\gamma_5 u-\bar{d}\gamma_5 d)\,\phi^3+(\rho_u-\rho_d)(\bar{u}\gamma_5 u+\bar{d}\gamma_5 d)\,\phi^3\right)$$

and

$$-\frac{1}{2\sqrt{2}}\frac{\sigma}{\nu^{3}}\left((\lambda_{u}+\lambda_{d})(\bar{d}\gamma_{5}u\xi^{+}-\bar{u}\gamma_{5}d\xi^{-})+(\lambda_{u}-\lambda_{d})(\bar{d}u\xi^{+}+\bar{u}d\xi^{-})\right.\\\left.-(\lambda_{u}+\lambda_{d})(\bar{u}\gamma_{5}u-\bar{d}\gamma_{5}d)\xi^{0}-(\lambda_{u}-\lambda_{d})(\bar{u}\gamma_{5}u+\bar{d}\gamma_{5}d)\xi^{0}\right)$$

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons Th

Yukawa couplings ; the masses of fermions and pions (I)

PCAC

$$\partial^\mu A^{1+i2}_\mu = i(m_u+m_u) ar u \gamma_5 d = \sqrt{2} f_\pi m_\pi^2 \pi^+$$

+ Gell-Mann-Oakes-Renner (GMOR)

$$(m_u+m_d)<\bar{u}u+\bar{d}d>=2f_\pi^2m_\pi^2$$

• $\frac{i}{\sqrt{2}}\frac{v}{\mu^3}\phi^+ \equiv i\sqrt{2}\frac{v}{\mu^3}\bar{u}\gamma_5 d \equiv \pi^+$ with $\bar{u}\gamma_5 d \stackrel{PCAC}{=} -i\frac{\sqrt{2}m_\pi f_\pi^2}{m_u+m_d}\pi^+$ compatible with GMOR ($\langle \bar{u}u + \bar{d}d \rangle = \mu^3$) \Leftrightarrow • mw • minV

$$v = f_{\pi}$$

• Can we set $\frac{i}{\sqrt{2}} \frac{v}{\mu^3} \phi^+ = \pi^+$? Yukawa couplings \ni pions mass terms \Leftrightarrow

$$\sqrt{2f_{\pi}(\rho_u+\rho_d)}=m_u+m_d$$

■ Cancel classical (scalar ↔ pseudoscalar) transitions

$$\rho_u = \rho_d = \frac{m_u + m_d}{2\sqrt{2}f_\pi}$$

ha

invest

▶ pi+pi0

Yukawa couplings ; the masses of fermions and pions (II)

• $v \text{ small} \Rightarrow$ the mass of W comes mostly from σ

$$\sigma \approx 2\sqrt{2} \frac{m_W}{g}$$

• One gets from the expressions of the fermion masses

$$\lambda_u = g \frac{3m_u - m_d}{8m_W}, \quad \lambda_d = g \frac{3m_d - m_u}{8m_W}$$

- The Yukawa couplings $\propto \lambda_{u,d}$ are "quasi-standard" and describe transitions between fermion pairs and ξ Goldstones that can be gauged away
- So, we can indeed identify

$$\vec{\pi} = \vec{h}_1 = \frac{i}{\sqrt{2}} \frac{v}{\mu^3} \vec{\phi}$$

▶ minV

ha

mw

mfpi

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons The constraints of the masses of gauge bosons The constraints of the masses of gauge bosons and the constraints of the cons

Kinetic terms : coupling of Higgs bosons to gauge bosons

pause

dark

The couplings of Higgs bosons to gauge bosons come from the kinetic terms •kin and write •WWscat

$$\frac{gm_W}{2}W_{\mu}^2\xi, \quad \frac{g^2f_{\pi}}{4\sqrt{2}}W_{\mu}^2h$$

- ξ couples in a "standard" way $\simeq gm_W$ to two W's
- h's coupling $\mathcal{O}(g^2 f_{\pi})$ are much smaller by a factor $\mathcal{O}(10^{-3})$

Yukawa couplings : coupling of Higgs bosons to quarks

Yukawa couplings include

$$-h\left(\rho_{u}\overline{u}u+\rho_{d}\overline{d}d\right)-\xi\left(\lambda_{u}\overline{u}u+\lambda_{d}\overline{d}d\right),$$

that is using the values of $\rho_u=\rho_d$ and $\lambda_{u,d}$, ${\scriptstyle \rm P\,lambda}$, ${\scriptstyle \rm P\,rho}$

$$-\frac{m_u+m_d}{2\sqrt{2}f_{\pi}}h\left(\overline{u}u+\overline{d}d\right)-g\xi\left(\left(\frac{3m_u-m_d}{8m_W}\right)\overline{u}u+\left(\frac{3m_d-m_u}{8m_W}\right)\overline{d}d\right)$$

 $\xi \text{ has ``quasi-standard'' couplings} \qquad \textcircled{has potentially large couplings} \qquad \textcircled{has potentially large couplings}$

pause

Veff

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons Th

What follows is evolving. Take it with care

The scalar potential $V(H_1, H_2)$

The most general V includes

- $= -\frac{m_{H_1}^2}{2}H_1^{\dagger}H_1, \frac{\lambda_{H_1}}{4}(H_1^{\dagger}H_1)^2, -\frac{m_{H_2}^2}{2}H_2^{\dagger}H_2, \frac{\lambda_{H_2}}{4}(H_2^{\dagger}H_2)^2, \text{ with real} \\ m_{H_1}, m_{H_2}, \lambda_{H_1}, \lambda_{H_2}$
- $(m^2 H_1^{\dagger} H_2 + h.c)$, with *m* complex: induces classical scalar \leftrightarrow pseudoscalar transitions. Set it to 0
- $\lambda_3(H_1^{\dagger}H_2)^2 + h.c., \lambda_4(H_1^{\dagger}H_1)(H_1^{\dagger}H_2) + h.c., \lambda_5(H_2^{\dagger}H_2)(H_1^{\dagger}H_2) + h.c.$ with complex $\lambda_3, \lambda_4, \lambda_5$: set it to 0 for the same reasons
- $\lambda_1(H_1^{\dagger}H_1)(H_2^{\dagger}H_2)$, $\lambda_2(H_1^{\dagger}H_2)(H_2^{\dagger}H_1)$, with real λ_1, λ_2 : the first induces $m_{\pi}^2 \propto \lambda_1 \sigma^2$ and the second $m_{\pi^0}^2 \propto \lambda_2 \sigma^2$; wrong $\pi^+\pi^0$ mass difference and wrong origin of π mass \Rightarrow set $\lambda_1 = 0 = \lambda_2$
- $\Rightarrow V(H_1, H_2) = V_1(H_1^{\dagger} H_1) + V_2(H_2^{\dagger} H_2)$ $= -\frac{m_{H_1}^2}{2} H_1^{\dagger} H_1 + \frac{\lambda_{H_1}}{4} (H_1^{\dagger} H_1)^2 - \frac{m_{H_2}^2}{2} H_2^{\dagger} H_2 + \frac{\lambda_{H_2}}{4} (H_2^{\dagger} H_2)^2$

The scalar potential $V(H_1, H_2)$

The most general V includes

$$= -\frac{m_{H_1}^2}{2}H_1^{\dagger}H_1, \frac{\lambda_{H_1}}{4}(H_1^{\dagger}H_1)^2, -\frac{m_{H_2}^2}{2}H_2^{\dagger}H_2, \frac{\lambda_{H_2}}{4}(H_2^{\dagger}H_2)^2, \text{ with real } m_{H_1}, m_{H_2}, \lambda_{H_1}, \lambda_{H_2}$$

- $(m^2 H_1^{\dagger} H_2 + h.c)$, with *m* complex: induces classical scalar \leftrightarrow pseudoscalar transitions. Set it to 0
- $\lambda_3(H_1^{\dagger}H_2)^2 + h.c., \lambda_4(H_1^{\dagger}H_1)(H_1^{\dagger}H_2) + h.c., \lambda_5(H_2^{\dagger}H_2)(H_1^{\dagger}H_2) + h.c.$ with complex $\lambda_3, \lambda_4, \lambda_5$: set it to 0 for the same reasons
- $\lambda_1(H_1^{\dagger}H_1)(H_2^{\dagger}H_2)$, $\lambda_2(H_1^{\dagger}H_2)(H_2^{\dagger}H_1)$, with real λ_1, λ_2 : the first induces $m_{\pi}^2 \propto \lambda_1 \sigma^2$ and the second $m_{\pi^0}^2 \propto \lambda_2 \sigma^2$; wrong $\pi^+\pi^0$ mass difference and wrong origin of π mass \Rightarrow set $\lambda_1 = 0 = \lambda_2$
- $\Rightarrow V(H_1, H_2) = V_1(H_1^{\dagger}H_1) + V_2(H_2^{\dagger}H_2)$ $= -\frac{m_{H_1}^2}{2} H_1^{\dagger}H_1 + \frac{\lambda_{H_1}}{4} (H_1^{\dagger}H_1)^2 - \frac{m_{H_2}^2}{2} H_2^{\dagger}H_2 + \frac{\lambda_{H_2}}{4} (H_2^{\dagger}H_2)^2$

The scalar potential $V(H_1, H_2)$

The most general V includes

$$= -\frac{m_{H_1}^2}{2}H_1^{\dagger}H_1, \frac{\lambda_{H_1}}{4}(H_1^{\dagger}H_1)^2, -\frac{m_{H_2}^2}{2}H_2^{\dagger}H_2, \frac{\lambda_{H_2}}{4}(H_2^{\dagger}H_2)^2, \text{ with real} \\ m_{H_1}, m_{H_2}, \lambda_{H_1}, \lambda_{H_2}$$

- $(m^2 H_1^{\dagger} H_2 + h.c)$, with *m* complex: induces classical scalar \leftrightarrow pseudoscalar transitions. Set it to 0
- $\lambda_3(H_1^{\dagger}H_2)^2 + h.c., \lambda_4(H_1^{\dagger}H_1)(H_1^{\dagger}H_2) + h.c., \lambda_5(H_2^{\dagger}H_2)(H_1^{\dagger}H_2) + h.c.$ with complex $\lambda_3, \lambda_4, \lambda_5$: set it to 0 for the same reasons
- $\lambda_1(H_1^{\dagger}H_1)(H_2^{\dagger}H_2), \lambda_2(H_1^{\dagger}H_2)(H_2^{\dagger}H_1)$, with real λ_1, λ_2 : the first induces $m_{\vec{\pi}}^2 \propto \lambda_1 \sigma^2$ and the second $m_{\pi^0}^2 \propto \lambda_2 \sigma^2$; wrong $\pi^+ \pi^0$ mass difference and wrong origin of π mass \Rightarrow set $\lambda_1 = 0 = \lambda_2$ GMOR
- $\Rightarrow V(H_1, H_2) = V_1(H_1^{\dagger}H_1) + V_2(H_2^{\dagger}H_2)$ $= -\frac{m_{H_1}^2}{2} H_1^{\dagger}H_1 + \frac{\lambda_{H_1}}{4} (H_1^{\dagger}H_1)^2 - \frac{m_{H_2}^2}{2} H_2^{\dagger}H_2 + \frac{\lambda_{H_2}}{4} (H_2^{\dagger}H_2)^2$

The scalar potential $V(H_1, H_2)$

The most general V includes

$$= -\frac{m_{H_1}^2}{2}H_1^{\dagger}H_1, \frac{\lambda_{H_1}}{4}(H_1^{\dagger}H_1)^2, -\frac{m_{H_2}^2}{2}H_2^{\dagger}H_2, \frac{\lambda_{H_2}}{4}(H_2^{\dagger}H_2)^2, \text{ with real} \\ m_{H_1}, m_{H_2}, \lambda_{H_1}, \lambda_{H_2}$$

- $(m^2 H_1^{\dagger} H_2 + h.c)$, with *m* complex: induces classical scalar \leftrightarrow pseudoscalar transitions. Set it to 0
- $\lambda_3(H_1^{\dagger}H_2)^2 + h.c., \ \lambda_4(H_1^{\dagger}H_1)(H_1^{\dagger}H_2) + h.c., \ \lambda_5(H_2^{\dagger}H_2)(H_1^{\dagger}H_2) + h.c.$ with complex $\lambda_3, \lambda_4, \lambda_5$: set it to 0 for the same reasons
- $\lambda_1(H_1^{\dagger}H_1)(H_2^{\dagger}H_2), \ \lambda_2(H_1^{\dagger}H_2)(H_2^{\dagger}H_1), \ \text{with real } \lambda_1, \lambda_2 : \text{the first induces}$ $m_{\pi}^2 \propto \lambda_1 \sigma^2 \text{ and the second } m_{\pi^0}^2 \propto \lambda_2 \sigma^2; \ \text{wrong } \pi^+\pi^0 \ \text{mass difference and}$ wrong origin of π mass \Rightarrow set $\lambda_1 = 0 = \lambda_2$ • GMOR
- $\Rightarrow V(H_1, H_2) = V_1(H_1^{\dagger}H_1) + V_2(H_2^{\dagger}H_2)$ $= -\frac{m_{H_1}^2}{2} H_1^{\dagger}H_1 + \frac{\lambda_{H_1}}{4} (H_1^{\dagger}H_1)^2 - \frac{m_{H_2}^2}{2} H_2^{\dagger}H_2 + \frac{\lambda_{H_2}}{4} (H_2^{\dagger}H_2)^2$

The scalar potential $V(H_1, H_2)$

The most general V includes

$$= -\frac{m_{H_1}^2}{2}H_1^{\dagger}H_1, \frac{\lambda_{H_1}}{4}(H_1^{\dagger}H_1)^2, -\frac{m_{H_2}^2}{2}H_2^{\dagger}H_2, \frac{\lambda_{H_2}}{4}(H_2^{\dagger}H_2)^2, \text{ with real } m_{H_1}, m_{H_2}, \lambda_{H_1}, \lambda_{H_2}$$

- $(m^2 H_1^{\dagger} H_2 + h.c)$, with *m* complex: induces classical scalar \leftrightarrow pseudoscalar transitions. Set it to 0
- $\lambda_3(H_1^{\dagger}H_2)^2 + h.c., \ \lambda_4(H_1^{\dagger}H_1)(H_1^{\dagger}H_2) + h.c., \ \lambda_5(H_2^{\dagger}H_2)(H_1^{\dagger}H_2) + h.c.$ with complex $\lambda_3, \lambda_4, \lambda_5$: set it to 0 for the same reasons
- $\lambda_1(H_1^{\dagger}H_1)(H_2^{\dagger}H_2)$, $\lambda_2(H_1^{\dagger}H_2)(H_2^{\dagger}H_1)$, with real λ_1, λ_2 : the first induces $m_{\pi}^2 \propto \lambda_1 \sigma^2$ and the second $m_{\pi^0}^2 \propto \lambda_2 \sigma^2$; wrong $\pi^+ \pi^0$ mass difference and wrong origin of π mass \Rightarrow set $\lambda_1 = 0 = \lambda_2$ GMOR
- $\Rightarrow V(H_1, H_2) = V_1(H_1^{\dagger}H_1) + V_2(H_2^{\dagger}H_2)$ $= -\frac{m_{H_1}^2}{2}H_1^{\dagger}H_1 + \frac{\lambda_{H_1}}{4}(H_1^{\dagger}H_1)^2 - \frac{m_{H_2}^2}{2}H_2^{\dagger}H_2 + \frac{\lambda_{H_2}}{4}(H_2^{\dagger}H_2)^2$

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons Th

The scalar potential $V(H_1, H_2)$

The most general V includes

$$= -\frac{m_{H_1}^2}{2}H_1^{\dagger}H_1, \frac{\lambda_{H_1}}{4}(H_1^{\dagger}H_1)^2, -\frac{m_{H_2}^2}{2}H_2^{\dagger}H_2, \frac{\lambda_{H_2}}{4}(H_2^{\dagger}H_2)^2, \text{ with real } m_{H_1}, m_{H_2}, \lambda_{H_1}, \lambda_{H_2}$$

- $(m^2 H_1^{\dagger} H_2 + h.c)$, with *m* complex: induces classical scalar \leftrightarrow pseudoscalar transitions. Set it to 0
- $\lambda_3(H_1^{\dagger}H_2)^2 + h.c., \ \lambda_4(H_1^{\dagger}H_1)(H_1^{\dagger}H_2) + h.c., \ \lambda_5(H_2^{\dagger}H_2)(H_1^{\dagger}H_2) + h.c.$ with complex $\lambda_3, \lambda_4, \lambda_5$: set it to 0 for the same reasons
- $\lambda_1(H_1^{\dagger}H_1)(H_2^{\dagger}H_2)$, $\lambda_2(H_1^{\dagger}H_2)(H_2^{\dagger}H_1)$, with real λ_1, λ_2 : the first induces $m_{\pi}^2 \propto \lambda_1 \sigma^2$ and the second $m_{\pi^0}^2 \propto \lambda_2 \sigma^2$; wrong $\pi^+ \pi^0$ mass difference and wrong origin of π mass \Rightarrow set $\lambda_1 = 0 = \lambda_2$ GMOR

$$\Rightarrow V(H_1, H_2) = V_1(H_1^{\dagger}H_1) + V_2(H_2^{\dagger}H_2) = -\frac{m_{H_1}^2}{2} H_1^{\dagger}H_1 + \frac{\lambda_{H_1}}{4} (H_1^{\dagger}H_1)^2 - \frac{m_{H_2}^2}{2} H_2^{\dagger}H_2 + \frac{\lambda_{H_2}}{4} (H_2^{\dagger}H_2)^2$$

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons Th

V_{eff} and the masses of the Higgs bosons (I)

pause

Goldst

Since in H_1 , $H_2 \rightarrow H1H2$

$$ar{u}u+ar{d}d=rac{\sqrt{2}\mu^3}{v}h_1^0,\quad ar{u}u-ar{d}d=rac{\sqrt{2}
u^3}{\sigma}h_2^3$$

Yukawa couplings \bullet rewrite as quadratic terms in the Higgs bosons which add to the potential $V \Rightarrow$

$$V_{eff}(H_1, H_2) = -\frac{m_{H_1}^2}{2} H_1^{\dagger} H_1 + \frac{\lambda_{H_1}}{4} (H_1^{\dagger} H_1)^2 - \frac{m_{H_2}^2}{2} H_2^{\dagger} H_2 + \frac{\lambda_{H_2}}{4} (H_2^{\dagger} H_2)^2 + \delta_1 (h_1^0)^2 + \delta_{12} h_2^3 h_1^0 + \delta_2 (h_2^3)^2$$

with $\delta_1 = m_\pi^2$, $\delta_{12} = g \frac{f_\pi m_\pi^2}{2\sqrt{2}m_W}$, $\delta_2 = g^2 (m_u - m_d) \frac{\nu^3}{8m_W^2}$

V_{eff} must have its minimum at

$$< h_1^0 >= rac{f_\pi}{\sqrt{2}}, \quad < h_2^3 >= rac{2m_W}{g}$$

Diagonalize 2 × 2 matrix to get Higgs bosons and their masses

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons TI

V_{eff} and the masses of the Higgs bosons (II)

The masses of the two Higgs bosons h and ξ are

$$\begin{split} m_h^2 &\approx 2\lambda_{H_1} < h_1^0 >^2 -\delta_{12} \frac{< h_2^3 >}{< h_1^0 >} &= \lambda_{H_1} f_\pi^2 - m_\pi^2 \\ m_\xi^2 &\approx 2\lambda_{H_2} < h_2^3 >^2 -\delta_{12} \frac{< h_1^0 >}{< h_2^3 >} &= \lambda_{H_2} \frac{8m_W^2}{g^2} - m_\pi^2 \frac{f_\pi^2}{8m_W^2/g^2} \end{split}$$

• $\vec{h}_1 \equiv \vec{\pi} \Rightarrow \frac{\lambda_{H_1}}{4} = 4$ -pions effective coupling

- Mahanthappa-Riazuddin (1966) $\rightarrow \frac{\lambda_{H_1}}{4} \approx 4\pi (.17) \approx 2.13 \Rightarrow m_h \approx 234 \, MeV < 2m_\pi$
- Auberson-Mahoux-Simão (1976)

$$ightarrow -2 < rac{\lambda_{H_1}}{4} < +2 \Rightarrow 0 \leq m_h < 226 \ MeV < 2m_\pi$$

$$m_{\xi} = ???$$

Goldst

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons The occords of the masses of gauge bosons The composite multiplets and the masses of gauge bosons The composite multiplets and the masses of gauge bosons and the composite multiplets are composed and the composed

$W_{\parallel}W_{\parallel}$ scattering

• Internal line with ξ or h

▶ hw

- Even when $m_{\xi} \to \infty$, *h* should tame the growth in *s* of the amplitude and restore perturbative unitarity $A \simeq G_F\left(s \frac{s^2}{s m_{\chi}^2}\right)$
- What about renormalizability ?
- Do we get a spontaneously broken gauged linear σ -model for $(h, \vec{\pi})$?

Note: the equivalence theorem now includes Goldstones (h_2^0, h_2^+, h_2^-) and pions \bullet crossed

Leptons : Yukawa couplings

Do the same jobs as for quarks \Rightarrow

$$m_e =
ho_e rac{f_\pi}{\sqrt{2}} + \lambda_e rac{2m_W}{g}, \quad m_
u =
ho_
u rac{f_\pi}{\sqrt{2}} + \lambda_
u rac{2m_W}{g}$$

• One generates couplings between $\vec{\pi}$ and leptons

$$\frac{1}{2\sqrt{2}} \frac{v}{\mu^3} \left((\rho_\nu + \rho_e)(\bar{e}\gamma_5\nu\phi^- + \bar{\nu}\gamma_5e\phi^+) + (\rho_\nu - \rho_e)(\bar{e}\nu\phi^- - \bar{\nu}e\phi^+) \right. \\ \left. + (\rho_\nu + \rho_e)(\bar{\nu}\gamma_5\nu - \bar{e}\gamma_5e)\phi^3 + (\rho_\nu - \rho_e)(\bar{\nu}\gamma_5\nu + \bar{e}\gamma_5e)\phi^3 \right)$$

and between ξ^0, ξ^+, ξ^- and leptons

$$\frac{1}{2\sqrt{2}} \frac{\sigma}{\nu^3} \left((\lambda_{\nu} + \lambda_e) (\bar{e}\gamma_5 \nu \xi^- - \bar{\nu}\gamma_5 e \xi^+) + (\lambda_{\nu} - \lambda_e) (\bar{e}\nu \xi^- + \bar{\nu} e \xi^+) \right. \\ \left. + (\lambda_{\nu} + \lambda_e) (\bar{\nu}\gamma_5 \nu - \bar{e}\gamma_5 e) \xi^0 + (\lambda_{\nu} - \lambda_e) (\bar{\nu}\gamma_5 \nu + \bar{e}\gamma_5 e) \xi^0 \right)$$

No extra leptonic pion decays ⇔

$$\rho_e = 0 = \rho_\nu, \quad \lambda_e = g \frac{m_e}{2m_W}, \quad \lambda_\nu = g \frac{m_\nu}{2m_W}$$

 \Rightarrow the Yukawa couplings λ_e and λ_ν of ${\it H}_2$ are "standard"

crossed

pause

▶ invest → dark

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons Th

Leptons : couplings to Higgs bosons

pause

Yukawa couplings also generate couplings between h, ξ and leptons

$$h(\rho_{\nu}\overline{\nu_{L}}\nu_{R}+\rho_{e}\overline{e_{L}}e_{R})+\xi(\lambda_{\nu}\overline{\nu_{L}}\nu_{R}+\lambda_{e}\overline{e_{L}}e_{R})$$

- $\rho_{e,\nu} = 0 \Rightarrow h$ is not coupled to leptons (or very weakly \rightarrow invest)
- ξ is coupled in the standard way

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons TH

$$m_h^2 = \lambda_{H_1} f_\pi^2 - m_\pi^2 ; m_h < 2m_\pi \\ \left| \frac{\lambda_{H_1}}{4} \right| \simeq |4-\text{pions coupling}| \le 2$$

• *hWW* coupling: $\frac{g^2}{4\sqrt{2}}f_{\pi}$ very small

- $h(\overline{e_L}e_R + \overline{\nu_L}\nu_R)$ coupling: vanishing or very small ■ $h(\overline{u_L}u_R + \overline{u_L}\nu_R)$ coupling: $\frac{m_u + m_d}{m_u + m_d}$ small (potentially large)
- $h\pi\pi \text{ coupling: } \lambda_{H_1} \frac{f_{\pi}}{\sqrt{2}}$ $h\pi\pi \text{ coupling: } \lambda_{H_1} \frac{f_{\pi}}{\sqrt{2}}$ $hh\pi\pi \text{ coupling: } \frac{\lambda_{H_1}}{2}$ $hhhh \text{ coupling: } \frac{\lambda_{H_1}}{4}$
- h is light, very stable, difficult to detect, present wherever there is hadronic matter ⇒ scalar MeV dark matter ?

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons TH

$$m_h^2 = \lambda_{H_1} f_\pi^2 - m_\pi^2 ; m_h < 2m_\pi \\ \left| \frac{\lambda_{H_1}}{4} \right| \simeq |4-\text{pions coupling }| \le 2$$

■ *hWW* coupling: $\frac{g^2}{4\sqrt{2}} f_{\pi}$ very small ■ *h*($\overline{e_L}e_R + \overline{\nu_L}\nu_R$) coupling: vanishing or very small ■ *h*($\overline{u_L}u_R + \overline{d_L}d_R$) coupling: $\frac{m_u + m_d}{2\sqrt{2}t_{\pi}}$ small (potentially large) *h* $\pi\pi$ coupling: $\lambda_{H_1} \frac{f_{\pi}}{\sqrt{2}}$ *hh* $\pi\pi$ coupling: $\frac{\lambda_{H_1}}{2}$ *hhhh* coupling: $\frac{\lambda_{H_1}}{2}$

■ h is light, very stable, difficult to detect, present wherever there is hadronic matter ⇒ scalar MeV dark matter ?

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons Th

$$m_h^2 = \lambda_{H_1} f_\pi^2 - m_\pi^2 ; m_h < 2m_\pi \\ \left| \frac{\lambda_{H_1}}{4} \right| \simeq |4-\text{pions coupling }| \le 2$$

• *hWW* coupling: $\frac{g^2}{4\sqrt{2}}f_{\pi}$ very small

- $h(\overline{e_L}e_R + \overline{\nu_L}\nu_R) \text{ coupling: vanishing or very small} \\ h(\overline{u_L}u_R + \overline{d_L}d_R) \text{ coupling: } \frac{m_u + m_d}{2\sqrt{2}f_{\pi}} \text{ small (potentially large)} \\ h\pi\pi \text{ coupling: } \lambda_{H_1} \frac{f_{\pi}}{\sqrt{2}} \\ hh\pi\pi \text{ coupling: } \frac{\lambda_{H_1}}{2} \\ hhhh \text{ coupling: } \frac{\lambda_{H_1}}{4} \\ \end{pmatrix}$
- h is light, very stable, difficult to detect, present wherever there is hadronic matter ⇒ scalar MeV dark matter ?

▶ hw

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons Th

$$m_h^2 = \lambda_{H_1} f_\pi^2 - m_\pi^2 ; m_h < 2m_\pi \\ \left| \frac{\lambda_{H_1}}{4} \right| \simeq |4-\text{pions coupling}| \le 2$$

• *hWW* coupling: $\frac{g^2}{4\sqrt{2}}f_{\pi}$ very small

- $h(\overline{e_L}e_R + \overline{\nu_L}\nu_R)$ coupling: vanishing or very small
- $h(\overline{u_L}u_R + \overline{d_L}d_R)$ coupling: $\frac{m_u + m_d}{2\sqrt{2}f_{\pi}}$ small (potentially large) $h\pi\pi$ coupling: $\lambda_{H_1} \frac{f_{\pi}}{\sqrt{2}}$ $hh\pi\pi$ coupling: $\frac{\lambda_{H_1}}{2}$ hhhh coupling: $\frac{\lambda_{H_1}}{4}$
- h is light, very stable, difficult to detect, present wherever there is hadronic matter ⇒ scalar MeV dark matter ?

▶ hw

leptons

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons Th

$$m_h^2 = \lambda_{H_1} f_\pi^2 - m_\pi^2 ; \ \frac{m_h}{4} < 2m_\pi \\ \left| \frac{\lambda_{H_1}}{4} \right| \simeq |4-\text{pions coupling}| \le 2$$

hhhh coupling: $\frac{\lambda_{H_1}}{\Lambda}$

 hWW coupling: g²/4√2 f_π very small
 h(ē_Le_R + ν̄_Lν_R) coupling: vanishing or very small
 h(ū_Lu_R + d̄_Ld_R) coupling: m_u+m_d/2√2f_π small (potentially large) hππ coupling: λ_{H1} f_{π/2}/√2 hhππ coupling: λ_{H1} λ_{H2}/2

h is light, very stable, difficult to detect, present wherever there is hadronic matter ⇒ scalar MeV dark matter ?

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons TI

$$m_h^2 = \lambda_{H_1} f_\pi^2 - m_\pi^2 ; m_h < 2m_\pi \\ \left| \frac{\lambda_{H_1}}{4} \right| \simeq |4-\text{pions coupling}| \le 2$$

• *hWW* coupling:
$$\frac{g^2}{4\sqrt{2}}f_{\pi}$$
 very small

- $h(\overline{e_L}e_R + \overline{\nu_L}\nu_R)$ coupling: vanishing or very small ■ $h(\overline{u_L}u_R + \overline{d_L}d_R)$ coupling: $\frac{m_u + m_d}{2\sqrt{2}f_{\pi}}$ small (potentially large) $h\pi\pi$ coupling: $\lambda_{H_1} \frac{f_{\pi}}{\sqrt{2}}$ $hh\pi\pi$ coupling: $\frac{\lambda_{H_1}}{2}$ hhhh coupling: $\frac{\lambda_{H_1}}{4}$
- h is light, very stable, difficult to detect, present wherever there is hadronic matter ⇒ scalar MeV dark matter ?

pause

▶ hw

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons Th

More generations, a few remarks

- $2N^2$ Higgs doublets $\rightarrow 8N^2$ bilinears, N scalar $\langle \bar{q}_i q_i \rangle$ condensates $\Rightarrow N$ Higgs bosons
- N = 3: 18 Higgs doublets, 72 (scalars + pseudoscalars). 6 Higgs bosons, 3 Goldstones eaten by the 3 *W*'s.
- Diagonalize the 6 × 6 Higgs mass matrix
- Among the 6 Higgs bosons, presumably scalars, 1 will presumably have mass O(m_W); among the 5 others some may be "physical" and some maybe "dark", depending on their masses, couplings ...
- Conjecture : among the 72 J = 0 mesons, three W_{\parallel} 's and some "dark Higgses" cannot be observed. If W^3 has eaten a neutral pseudoscalar (singlet ?) this one cannot be observed \Rightarrow 35 observable pseudoscalars. Observable scalars : 36 two W_{\parallel}^{\pm} 's d dark Higgses = (34 d)

More generations, a few remarks

- $2N^2$ Higgs doublets $\rightarrow 8N^2$ bilinears, N scalar $\langle \bar{q}_i q_i \rangle$ condensates $\Rightarrow N$ Higgs bosons
- N = 3: 18 Higgs doublets, 72 (scalars + pseudoscalars). 6 Higgs bosons, 3 Goldstones eaten by the 3 *W*'s.
- Diagonalize the 6 × 6 Higgs mass matrix
- Among the 6 Higgs bosons, presumably scalars, 1 will presumably have mass O(m_W); among the 5 others some may be "physical" and some maybe "dark", depending on their masses, couplings ...
- Conjecture : among the 72 J = 0 mesons, three W_{\parallel} 's and some "dark Higgses" cannot be observed. If W^3 has eaten a neutral pseudoscalar (singlet ?) this one cannot be observed \Rightarrow 35 observable pseudoscalars. Observable scalars : 36 two W_{\parallel}^{\pm} 's d dark Higgses = (34 d)

More generations, a few remarks

- $2N^2$ Higgs doublets $\rightarrow 8N^2$ bilinears, N scalar $\langle \bar{q}_i q_i \rangle$ condensates $\Rightarrow N$ Higgs bosons
- N = 3: 18 Higgs doublets, 72 (scalars + pseudoscalars). 6 Higgs bosons, 3 Goldstones eaten by the 3 *W*'s.
- Diagonalize the 6 × 6 Higgs mass matrix
- Among the 6 Higgs bosons, presumably scalars, 1 will presumably have mass O(m_W); among the 5 others some may be "physical" and some maybe "dark", depending on their masses, couplings ...
- Conjecture : among the 72 J = 0 mesons, three W_{\parallel} 's and some "dark Higgses" cannot be observed. If W^3 has eaten a neutral pseudoscalar (singlet ?) this one cannot be observed \Rightarrow 35 observable pseudoscalars. Observable scalars : 36 two W_{\parallel}^{\pm} 's d dark Higgses = (34 d)

More generations, a few remarks

- $2N^2$ Higgs doublets $\rightarrow 8N^2$ bilinears, N scalar $\langle \bar{q}_i q_i \rangle$ condensates $\Rightarrow N$ Higgs bosons
- N = 3: 18 Higgs doublets, 72 (scalars + pseudoscalars). 6 Higgs bosons, 3 Goldstones eaten by the 3 *W*'s.
- Diagonalize the 6×6 Higgs mass matrix
- Among the 6 Higgs bosons, presumably scalars, 1 will presumably have mass O(m_W); among the 5 others some may be "physical" and some maybe "dark", depending on their masses, couplings ...
- Conjecture : among the 72 J = 0 mesons, three W_{\parallel} 's and some "dark Higgses" cannot be observed. If W^3 has eaten a neutral pseudoscalar (singlet ?) this one cannot be observed \Rightarrow 35 obervable pseudoscalars. Observable scalars : 36 two W_{\parallel}^{\pm} 's d dark Higgses = (34 d)

More generations, a few remarks

- $2N^2$ Higgs doublets $\rightarrow 8N^2$ bilinears, N scalar $\langle \bar{q}_i q_i \rangle$ condensates $\Rightarrow N$ Higgs bosons
- N = 3: 18 Higgs doublets, 72 (scalars + pseudoscalars). 6 Higgs bosons, 3 Goldstones eaten by the 3 W's.
- Diagonalize the 6×6 Higgs mass matrix
- Among the 6 Higgs bosons, presumably scalars, 1 will presumably have mass $\mathcal{O}(m_W)$; among the 5 others some may be "physical" and some maybe "dark", depending on their masses, couplings ...
- Conjecture : among the 72 J = 0 mesons, three W_{||}'s and some "dark Higgses" cannot be observed. If W³ has eaten a neutral pseudoscalar (singlet ?) this one cannot be observed ⇒ 35 obervable pseudoscalars. Observable scalars : 36 two W_{||}[±]'s d dark Higgses = (34 d)

More generations, a few remarks

- $2N^2$ Higgs doublets $\rightarrow 8N^2$ bilinears, N scalar $\langle \bar{q}_i q_i \rangle$ condensates $\Rightarrow N$ Higgs bosons
- N = 3: 18 Higgs doublets, 72 (scalars + pseudoscalars). 6 Higgs bosons, 3 Goldstones eaten by the 3 W's.
- Diagonalize the 6×6 Higgs mass matrix
- Among the 6 Higgs bosons, presumably scalars, 1 will presumably have mass $\mathcal{O}(m_W)$; among the 5 others some may be "physical" and some maybe "dark", depending on their masses, couplings ...
- Conjecture : among the 72 J = 0 mesons, three W_{\parallel} 's and some "dark Higgses" cannot be observed. If W^3 has eaten a neutral pseudoscalar (singlet ?) this one cannot be observed \Rightarrow 35 observable pseudoscalars. Observable scalars : 36 two W_{\parallel}^{\pm} 's d dark Higgses = (34 d)

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons The occords of the masses of gauge bosons The composite multiplets and the masses of gauge bosons The composite multiplets are composed on the composite multiplets are composed on the composed on the

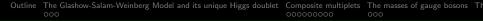
Is the Standard Model self-contained ?

This avatar of the Standard Model is (very close to being) self-contained. No need of extra fermions, extra interactions. Composite Higgs multiplets provide enough degrees of freedom to account for physical masses and energy scales *except* m_{ξ}

Naturalness, simplicity, economy, no fancy "BSM physics"

It also has its "dark sides"... ©©

Still only a sketch Much work lies ahead to make accurate predictions and tests



To investigate

. . .

- make precise calculations of well chosen processes
- write the hadronic Lagrangian in terms of bosonic fields only
- \blacksquare what to do with large ρ Yukawa couplings if any ?
- deviations from GSW: coupling $\xi q \bar{q} \cdot m$, leptonic π decays ...
- light Higgs h contribution to g 2?
- what is m_{ξ} ??? Unitarity ? Renormalizability ? Decoupling limit

•
$$\xi^0 \simeq W^3_{\parallel} =$$
 pseudoscalar / $\xi^{\pm} \simeq W^{\pm}_{\parallel} =$ scalars

•
$$W_{\parallel}$$
 composite $\stackrel{?}{\Rightarrow} W$ composite

- which Goldstone for which breaking ?
- production, abundance and detection of h dark matter
- realistic case of N = 3 generations, FCNC etc ...
- why does only the $SU(2)_L$ subgroup of $U(2N) \times U(2N)$ get local ? gauged

Thanks for your attention !

▶ 4-base → pause

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons TI

Appendix : the fundamental representation of SU(2) (I)

 $V = \begin{pmatrix} a \\ b \end{pmatrix}$ in the fundamental representation of SU(2) :

$$T^i.V = T^iV$$

Defining $T^i.a$ and $T^i.b$ by

$$T^i.V = \left(\begin{array}{c} T^i.a\\ T^i.b \end{array}\right)$$

gives

$$T^{1}.a = \frac{b}{2}, \quad T^{1}.b = \frac{a}{2}, \quad T^{2}.a = -\frac{ib}{2}, \quad T^{2}.b = \frac{ia}{2}, \quad T^{3}.a = \frac{a}{2}, \quad T^{3}.b = -\frac{b}{2}$$

such that

$$T^{1}.(T^{2}.a) - T^{2}.(T^{1}.a) = -\frac{ia}{2} = -iT^{3}.a = -[T^{1}, T^{2}].a$$
$$T^{1}.(T^{2}.b) - T^{2}.(T^{1}.b) = -\frac{ib}{2} = +iT^{3}.b = -[T^{2}, T^{1}].b$$

▶ commut

pause

▶ SU(2)

commut1

Appendix : the fundamental representation of SU(2) (II)

pause

commut1

$$[T^{i}, T^{j}].V = (T^{i}T^{j} - T^{j}T^{i}).V$$

= $i\epsilon_{ijk}T^{k}.V = i\epsilon_{ijk}T^{k}V$

$$\Leftrightarrow (T^i T^j) . V = (T^i T^j) V$$

Defining $(T^i T^j).a$ and $(T^i T^j).b$ by

$$(T^{i}T^{j}).V = \left(\begin{array}{c} (T^{i}T^{j}).a\\ (T^{i}T^{j}).b\end{array}\right)$$

one gets

$$(T^{i}T^{j}).a = -T^{i}.(T^{j}.a), (T^{i}T^{j}).b = -T^{i}.(T^{j}.b)$$

such that

$$T^{i}.(T^{j}.a) - T^{j}.(T^{i}.a) = -[T^{i}, T^{j}].a, T^{i}.(T^{j}.b) - T^{j}.(T^{i}.b) = -[T^{i}, T^{j}].b$$

Appendix : a Goldstone paraphernalia (I)

■ because
$$\langle h_1^3 \rangle = 0$$
, $\nexists W^3_\mu \partial^\mu h_1^0$ coupling $\Rightarrow W^3_{\parallel} \neq h_1^0$
 $\Rightarrow W^3_{\parallel} = h_2^0 \simeq \eta$ which can be gauged away

liadification: the Goldstone of $U(1)_L \times U(1)_R \to U(1)$ (broken parity) is also $h_2^0 \simeq \eta$ which disappears from the spectrum; h_1^0 has no special status but could be dark matter

dering: Goldstone of broken parity $= h_1^0 \propto \overline{u}u + \overline{d}d = \frac{f_2}{\sqrt{2}} + h = \text{light}$ (MeV) dark matter $<< m_W$; $h_2^0 \simeq \eta$ is *not* the "U(1) Goldstone"

■ crazy: Goldstone of broken parity $= h_2^3 \propto \bar{u}u - dd = \frac{2m_W}{g} + \xi$ gets mass $\mathcal{O}(\text{scale of parity violation} \approx m_W)$; parity restoration at $\Lambda \gg m_W$; $h_2^0 \simeq \eta$ is *not* the "U(1) Goldstone"; h_1^0 has no special status but could be dark matter

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons The concerned on the con

Appendix : a Goldstone paraphernalia (I)

■ because
$$\langle h_1^3 \rangle = 0$$
, $\nexists W^3_\mu \partial^\mu h_1^0$ coupling $\Rightarrow W^3_{\parallel} \neq h_1^0$
 $\Rightarrow W^3_{\parallel} = h_2^0 \simeq \eta$ which can be gauged away

- traditional: the Goldstone of $U(1)_L \times U(1)_R \to U(1)$ (broken parity) is also $h_2^0 \simeq \eta$ which disappears from the spectrum; h_1^0 has no special status but could be dark matter
 - daring Goldstone of broken parity $= h_1^0 \propto \bar{u}u + dd = \frac{4\pi}{\sqrt{2}} + h =$ light (MeV) dark matter $<< m_W$; $h_2^0 \simeq \eta$ is *not* the "U(1) Goldstone"
 - crazy: Goldstone of broken parity $= h_2^3 \propto \overline{u}u \overline{d}d = \frac{2m_W}{g} + \xi$ gets mass $\mathcal{O}(\text{scale of parity violation} \approx m_W)$; parity restoration at $\Lambda \gg m_W$; $h_2^9 \simeq \eta$ is not the "U(1) Goldstone"; h_1^0 has no special status but could be dark matter

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons The concerned on the con

Appendix : a Goldstone paraphernalia (I)

■ because
$$\langle h_1^3 \rangle = 0$$
, $\nexists W^3_\mu \partial^\mu h_1^0$ coupling $\Rightarrow W^3_{\parallel} \neq h_1^0$
 $\Rightarrow W^3_{\parallel} = h_2^0 \simeq \eta$ which can be gauged away

- *traditional:* the Goldstone of $U(1)_L \times U(1)_R \to U(1)$ (broken parity) is also $h_2^0 \simeq \eta$ which disappears from the spectrum; h_1^0 has no special status but could be dark matter
- daring: Goldstone of broken parity $= h_1^0 \propto \overline{u}u + \overline{d}d = \frac{f_{\pi}}{\sqrt{2}} + h = \text{light}$ (MeV) dark matter $<< m_W$; $h_2^0 \simeq \eta$ is not the "U(1) Goldstone"

crazy: Goldstone of broken parity $= h_2^2 \propto \bar{u}u - dd = \frac{2m_W}{g} + \xi$ gets mass $O(\text{scale of parity violation } \approx m_W)$; parity restoration at $\Lambda \gg m_W$; $h_2^2 \simeq \eta$ is not the "U(1) Goldstone"; h_1^2 has no special status but could be dark matter

Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons The concerned on the con

Appendix : a Goldstone paraphernalia (I)

■ because
$$\langle h_1^3 \rangle = 0$$
, $\nexists W^3_\mu \partial^\mu h_1^0$ coupling $\Rightarrow W^3_{\parallel} \neq h_1^0$
 $\Rightarrow W^3_{\parallel} = h_2^0 \simeq \eta$ which can be gauged away

- *traditional:* the Goldstone of $U(1)_L \times U(1)_R \to U(1)$ (broken parity) is also $h_2^0 \simeq \eta$ which disappears from the spectrum; h_1^0 has no special status but could be dark matter
- daring: Goldstone of broken parity $= h_1^0 \propto \bar{u}u + \bar{d}d = \frac{f_{\pi}}{\sqrt{2}} + h = \text{light}$ (MeV) dark matter $<< m_W$; $h_2^0 \simeq \eta$ is not the "U(1) Goldstone"
- *crazy:* Goldstone of broken parity $= h_2^3 \propto \bar{u}u \bar{d}d = \frac{2m_W}{g} + \xi$ gets mass $\mathcal{O}(\text{scale of parity violation} \approx m_W)$; parity restoration at $\Lambda \gg m_W$; $h_2^0 \simeq \eta$ is *not* the "U(1) Goldstone"; h_1^0 has no special status but could be dark matter

Unlocking the Standard Model

breaking

mhmxi

parity

crossed

RPP 2012, Montpellier

pause

40 / 41

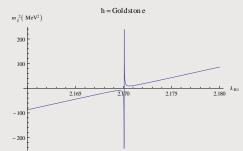
Outline The Glashow-Salam-Weinberg Model and its unique Higgs doublet Composite multiplets The masses of gauge bosons The concerned on the con

Appendix : a Goldstone paraphernalia (II)

For h = Goldstone of $U(1)_L imes U(1)_R
ightarrow U(1)$

 $H_1=(h_1^0,ec{\pi})
i 4$ (pseudo)Goldstones of $U(2)_L imes U(2)_R o U(2)_V$

$$\lambda_{H_1} \approx \frac{m_{\pi}^2}{f_{\pi}^2} + \frac{g^2 f_{\pi}^2 m_{\pi}^2}{4m_W^2 m_{\xi}^2} \approx 2.17 \stackrel{m_{\xi}=115 \, GeV}{+} 1.63 \, 10^{-13}$$



To escape from $m_{\xi} = \infty$, λ_{H_1} must be tuned at 10^{-13} if $m_{\xi} \to \infty$, what is the role of H_2 ?