Probing the supersymmetric inflaton and dark matter link

Jonathan Da Silva

Laboratoire d'Annecy-le-Vieux de Physique Théorique, France Institute for Particle Physics Phenomenology, Durham, UK

RPP Montpellier, France, May 15, 2012

In collaboration with C. Bœhm, A. Mazumdar and E. Pukartas, arXiv:1205.2815

Outline

2 Models chosen

3 Constraints and methods

Probing NUHM2

5 Probing $\widetilde{L}\widetilde{L}\widetilde{e}$ and $\widetilde{u}\widetilde{d}\widetilde{d}$

- 2) Models chosen
- 3) Constraints and methods
- 4) Probing NUHM2
- 5) Probing L̃L̃ẽ and ũdd̃

6 Conclusions

Inflation motivations

- Flatness problem (fine-tuning problem on Ω_k)
- Horizon problem
- Monopole problem (topological defect not seen)

 \Rightarrow Cosmic inflation (fast expansion phase in the early universe) embedded in Grand Unified Theories (GUT)

Inflation motivations

Dark matter (DM) motivations

- Galaxy scale : rotation curves of galaxies
- Galaxy clusters scale : example of the bullet cluster
- Cosmological scale (CMB), large scale structures, ...

K. G. Begeman, A. H. Broeils and R. H. Sanders, 1991, MNRAS, 249, 523 A direct empirical proof of the existence of dark matter, D. Clowe et al., Astrophys. J. 648 L109-L113, 2006

 $\Rightarrow \Omega_b h^2 = 0.0226 \pm 0.0005$ and $\Omega_{DM} h^2 = 0.1123 \pm 0.0035$ DM has to be stable and weakly charged under the standard model gauge group

- Inflation motivations
- Dark matter (DM) motivations
- Supersymmetry motivations
 - Hierarchy problem on Higgs boson mass
 - Unification at GUT scale
 - \Rightarrow cosmic inflation embedded in supersymmetric models
 - LSP/DM (supersymmetry breaking, R-Parity)

The lightest supersymmetric particle (LSP) is stable, at TeV scale, and can be weakly charged under the SM gauge group \Rightarrow DM candidates in supersymmetric models

Models chosen

3) Constraints and methods

4) Probing NUHM2

5 Probing LLe and udd

6 Conclusions

Jonathan Da Silva (LAPTh, IPPP) NUHM2 and LLe/udd inflaton candidates

NUHM2

- Supersymmetric model with gravity-mediated supersymmetry breaking based on the MSSM
- Most popular : mSUGRA, universal scalar masses is assumed, free parameters :

m₀, m_{1/2}, A₀, tan
$$eta$$
 and sign(μ)

- $\blacktriangleright\,$ Drawbacks : $m_h \sim 125~GeV$ not easy, LSP mostly bino
- We considered a non-universal scalar masses model, with m²₀ ≠ m²_{Hu} ≠ m²_{Hd} (see H. Baer et al [hep-ph/0504001], J. R. Ellis et al [hep-ph/0210205])
- ▶ ⇒ Easier to reach Higgs boson mass range not excluded yet by ALTAS and CMS ($m_h \in [115.5, 127]$ GeV), increase DM annihilation rates with higgsino LSP
- EWSB relations :

$$\begin{split} m_{H_d}^2(1 + \tan^2\beta) &= \mathsf{M}_{\mathsf{A}}^2 \tan^2\beta - \mu^2 (\tan^2\beta + 1 - \Delta_{\mu}^{(\mathsf{H}_u)}) - (\mathsf{c}_{\mathsf{H}_d} + \mathsf{c}_{\mathsf{H}_u} + 2\mathsf{c}_{\mu}) \tan^2\beta \\ &- \Delta_{\mathsf{A}} \tan^2\beta - \frac{1}{2}\mathsf{M}_{\mathsf{Z}}^2(1 - \tan^2\beta) - \Delta_{\mu}^{(\mathsf{H}_d)} \text{ and} \\ m_{H_u}^2(1 + \tan^2\beta) &= \mathsf{M}_{\mathsf{A}}^2 - \mu^2 (\tan^2\beta + 1 + \Delta_{\mu}^{(\mathsf{H}_u)}) - (\mathsf{c}_{\mathsf{H}_d} + \mathsf{c}_{\mathsf{H}_u} + 2\mathsf{c}_{\mu}) \\ &- \Delta_{\mathsf{A}} + \frac{1}{2}\mathsf{M}_{\mathsf{Z}}^2(1 - \tan^2\beta) + \Delta_{\mu}^{(\mathsf{H}_d)} \end{split}$$

NUHM2 free parameter :

$$\mathbf{m_0}, \, \mathbf{m_{1/2}}, \, \mathbf{A_0}, \, an eta, \, \mu \, \, ext{and} \, \, \mathbf{M_A}$$

- NUHM2 LLẽ and ũdd
 - Inflaton, scalar field whose flat direction potential (with a non-negligible slope) leads to the end of the inflation phase
 - Charged under the visible sector of the particle physics model considered, i.e. NUHM2
 - supersymmetric scalar potential :

Jonathan Da Silva (LAPTh, IPPP) NUHM2 and LLe/udd inflaton candidates

- NUHM2
 LLe and udd
 - Inflaton, scalar field whose flat direction potential (with a non-negligible slope) leads to the end of the inflation phase
 - Charged under the visible sector of the particle physics model considered, e.g. NUHM2

Constraints and methods

2) Models chosen

3 Constraints and methods

4 Probing NUHM2

5 Probing LLe and udd

6) Conclusions

Jonathan Da Silva (LAPTh, IPPP) NUHM2 and LLe/udd inflaton candidates

Constraints

- On inflation, explain the observed temperature anisotropy in the CMB with :
 - The amplitude of density perturbations $\delta_{\rm H} = \frac{8}{\sqrt{5}\pi} \frac{m_{\phi} M_{\rm P}}{\phi_{a}^2} \frac{1}{\Delta^2} \sin^2[\mathcal{N}_{\rm COBE}\sqrt{\Delta^2}]$,

$$\mathbf{\Delta}^2 \equiv 900 lpha^2 \mathcal{N}_{\mathsf{COBE}}^{-2} \Big(rac{\mathsf{M}_{\mathrm{P}}}{\phi_0} \Big)^4$$
 , $\mathcal{N}_{\mathsf{COBE}} \sim 50$

• The scalar spectral index n_s of the corresponding power spectrum $n_s = 1 - 4\sqrt{\Delta^2} \cot[\mathcal{N}_{COBE}\sqrt{\Delta^2}],$

Constraints

- On inflation, explain the observed temperature anisotropy in the CMB
- On our CDM candidate, χ_1^0 :
 - ▶ Dark matter relic density with Ω_{WIMP} h² = 0.1123 ± 0.0035 E. Komatsu et al, [arXiv :1001.4538 [astro-ph.CO]])
 - Spin independent direct detection cross section

Constraints

- On inflation, explain the observed temperature anisotropy in the CMB
- On our CDM candidate, χ_1^0
- On NUHM2 model in general :
 - ▶ $m_h \in [115.5, 127]$ GeV
 - B-physics : BR(b \rightarrow s γ), BR(B_s $\rightarrow \mu^+\mu^-$) and BR(B⁺ $\rightarrow \tau^+\bar{\nu}_{\tau})$
 - ► Electroweak observables : $(\mathbf{g}_{\mu} 2)$, $\Delta \rho$, $\mathbf{Z} \rightarrow \text{invisible}$, $\sigma_{\mathbf{e}^+\mathbf{e}^- \rightarrow \chi_1^0 \chi_{2,3}^0} \times \text{Br}(\chi_{2,3}^0 \rightarrow \mathbf{Z}\chi_1^0)$

In our study, SUSY contributions are not large so that both $(g_{\mu} - 2)$ and $BR(B^+ \rightarrow \tau^+ \bar{\nu}_{\tau})$ are well below the measured value

The other electroweak observables apply mainly for light LSP, not the case in this study

Methods

- $\bullet~$ Benchmark points on $(m_0,m_{1/2})$ plane, focus on specific m_h values
- Scanning the parameter space : Markov Chain Monte Carlo method

Constraint	Value/Range	Tolerance	Likelihood	
m _h (GeV)	[115.5, 127]	1	$\mathcal{L}_1(m_h, 115.5, 127, 1)$	
$Ω_{y0}^{0}h^{2}$	[0.1088, 0.1158]	0.0035	$\mathcal{L}_1(\Omega_{\chi_1^0} h^2, 0.1088, 0.1158, 0.0035)$	
Relaxing constraint on $\Omega_{\chi_1^0} h^2$	[0.01123, 0.1123]	0.0035	$\mathcal{L}_{1}(\Omega_{\chi_{1}^{0}}^{\wedge_{1}}h^{2}, 0.01123, 0.1123, 0.0035)$	
${\sf BR}({\sf b} o {\sf s}\gamma) imes 10^4$	3.55	exp: 0.24, 0.09	$\mathcal{L}_2(10^4 BR(b o s\gamma), 3.55,$	
		th : 0.23	$\sqrt{0.24^2 + 0.09^2 + 0.23^2})$	
$({f g}_\mu-2) imes 10^{10}$	28.7	8	$\mathcal{L}_{3}(10^{10}(extbf{g}_{\mu}- extbf{2}), 28.7, 8)$	
$BR(B_s o \mu^+ \mu^-) imes 10^9$	4.5	0.045	$\mathcal{L}_{3}(10^{9} { m BR}({ m B_s} o \mu^+ \mu^-), 4.5, 0.045)$	
$\Delta \rho$	0.002	0.0001	$\mathcal{L}_{3}(\Delta ho, 0.002, 0.0001)$	
$R_{B^+ \to \tau^+ \bar{\nu}_{\tau}}(\frac{NUHM2}{SM})$	2.219	0.5	$\mathcal{L}_3(\mathtt{R}_{\mathtt{B}^+ ightarrow au^+ ar{ u}_ au}, \mathtt{2.219}, \mathtt{0.5})$	
$Z o \chi^{m{0}}_1 \chi^{m{0}}_1$ (MeV)	1.7	0.3	$\mathcal{L}_{3}(Z ightarrow \chi_{1}^{0}\chi_{1}^{0}, 1.7, 0.3)$	
$\sigma_{e^+e^- \to \chi_1^0 \chi_{2,3}^0}$	1	0.01	$\mathcal{L}_{3}(\sigma_{e^{+}e^{-} \rightarrow \chi_{1}^{0}\chi_{2,3}^{0}})$	
$ imes$ Br $(\chi^0_{2,3} o$ Z $\chi^0_1)$ (pb)			$ imes Br(\chi^0_{2,3} o Z\chi^0_1), 1, 0.01)$	

Parameter	Range	Parameter	Range
<i>m</i> 0]0, 4] TeV	tan β	[2, 60]
$m_{1/2}$]0, 4] TeV	μ]0, 3] TeV
A ₀	[-6, 6] TeV	M _A]0, 4] TeV

3) Constraints and methods

6 Conclusions

Jonathan Da Silva (LAPTh, IPPP) NUHM2 and LLe/udd inflaton candidates

Probing NUHM2

• Hard to accommodate the correct LSP relic density with Higgs boson mass constraint for bino-like LSP (whose mass is close to $M_A/2$)

• $\Omega_{\chi_1^0}h^2$, χ_1^+ below LEP2 limits, $\tilde{\tau}_1$ LSP, tachyonic \tilde{t}

- Hard to accommodate the correct LSP relic density with Higgs boson mass constraint for bino-like LSP (whose mass is close to M_A/2)
- Get mainly higgsino-like LSP, degeneracy between $\chi_{1,2}^0$ and χ_1^{\pm}

- Hard to accommodate the correct LSP relic density with Higgs boson mass constraint for bino-like LSP (whose mass is close to $M_A/2$)
- Get mainly higgsino-like LSP, degeneracy between $\chi_{1,2}^0$ and χ_1^{\pm}
- m_h preferably above 122 GeV, constraining (A₀, tan(beta)) plane

- Hard to accommodate the correct LSP relic density with Higgs boson mass constraint for bino-like LSP (whose mass is close to M_A/2)
- Get mainly higgsino-like LSP, degeneracy between $\chi^0_{1,2}$ and χ^\pm_1
- m_h preferably above 122 GeV, constraining (A₀, tan(beta)) plane
- NUHM2 scenarios within LHCb and XENON1T experiments sensitivity

Probing $\widetilde{L}\widetilde{L}\widetilde{e}$ and $\widetilde{u}\widetilde{d}\widetilde{d}$

Motivations

- 2) Models chosen
- 3) Constraints and methods
- 4) Probing NUHM2

5 Probing \widetilde{LLe} and \widetilde{udd}

6 Conclusions

Jonathan Da Silva (LAPTh, IPPP) NUHM2 and $\widetilde{LLe}/\widetilde{udd}$ inflaton candidates

Probing LLe and udd

Probing $\widetilde{L}\widetilde{L}\widetilde{e}$ and $\widetilde{u}\widetilde{d}\widetilde{d}$

- With δ_{H} and n_s constraints \Rightarrow inflation scale linked to low (LHC) scale
- Keys on inflaton mass if we discover lightest stop/stau at LHC
- $\Omega_{\chi_1^0}h^2$ with $m_h = 119$ GeV, χ_1^+ below LEP2 limits, $\Omega_{\chi_1^0}h^2$ with $m_h = 125$ GeV, satisfy δ_H and n_s constraints

Conclusions

- 2) Models chosen
- 3) Constraints and methods
- 4) Probing NUHM2
- 5 Probing LLe and udd

Jonathan Da Silva (LAPTh, IPPP) NUHM2 and $\widetilde{LLe}/\widetilde{udd}$ inflaton candidates

Conclusions

- We searched NUHM2 parameter space regions compatible with DM relic density, Higgs boson mass and inflationary potential required to match CMB
- Sparticle and Higgs searches at LHC combined with Planck satellite measurements could give us huge constraints on inflaton mass
- B-physics constraints will constrain more and more the model since all scenarios are within the LHCb sensitivity
- Probing these scenarios would be possible with forthcoming XENON1T experiment

Jonathan Da Silva (LAPTh, IPPP) NUHM2 and $\widetilde{LLe}/\widetilde{udd}$ inflaton candidates

RPP, May 15, 2012 24 / 24

Likelihood method

• For the Higgs mass and relic density, we define the likelihood as a function \mathcal{L}_1 which decays exponentially at the edges of the $[x_{min}, x_{max}]$ range, according to

$$\mathcal{L}_1(x, x_{min}, x_{max}, \sigma) = e^{-\frac{(x - x_{min})^2}{2\sigma^2}} \text{ if } x < x_{min},$$
$$= e^{-\frac{(x - x_{max})^2}{2\sigma^2}} \text{ if } x > x_{max}$$
$$= 1 \text{ for } x \in [x_{min}, x_{max}].$$

with σ = variance and x the observable which corresponds in that case to either the Higgs mass or the LSP relic density.

 $\bullet~$ For an observable with a preferred value μ and error $\sigma,$ we use a Gaussian distribution \mathcal{L}_2 :

$$\mathcal{L}_2(x,\mu,\sigma) = e^{-rac{(x-\mu)^2}{2\sigma^2}}.$$

• For an observable with a lower or upper bound (set experimentally), we will take the function \mathcal{L}_3 with a positive or negative variance σ :

$$\mathcal{L}_3(x,\mu,\sigma) = rac{1}{1+e^{-rac{x-\mu}{\sigma}}}.$$

BACKUP

MCMC method

Jonathan Da Silva (LAPTh, IPPP) NUHM2 and LLe/udd inflaton candidates

More informations on results :

0.7 0.8 0.9

³m₇ [TeV]⁴

Scan with $\Omega_{\chi_1^0}h^2$ constaint :

24 / 24

