Baryon and lepton number violation at the LHC

Christopher Smith

Introduction

Definition: Leptons have $\mathcal{L} = 1$, Quarks have $\mathcal{B} = 1/3 \leftarrow p^+ \sim \varepsilon^{\alpha\beta\gamma} u_\alpha u_\beta d_\gamma$.

Theoretically: Renormalizability \Rightarrow no $\Delta\mathcal{B}, \Delta\mathcal{L} \neq 0$ couplings in \mathcal{L}_{SM} .

But, $\Delta\mathcal{B}, \Delta\mathcal{L} \neq 0$ effects expected beyond the SM.

(BAU, GUT, Majorana ν, \ldots)

Experimentally, $\Delta \mathcal{B} = 0$ is extremely well supported:

Proton decay: Lightest spin $\frac{1}{2}$ baryon \rightarrow must violate \mathcal{B} and \mathcal{L} :

$$p^+ \to \pi^0 e^+$$
: 8.2×10³³ yrs $\Leftrightarrow \Gamma \sim 10^{-60} GeV$
 $p^+ \to any$: 2.1×10²⁹ yrs $\Leftrightarrow \Gamma \sim 10^{-55} GeV$

Many others: $n^0 - \overline{n}^0$, $Z \to p^+ e^-$, $\tau^- \to e^+ \pi^- \pi^-$, $K^+ \to \pi^- e^+ e^+$,...

Could the LHC help resolve this puzzle?

Outline

- I. Strategy
- II. Effective interactions
- III. Supersymmetry

I. Strategy

A. The central question

Nikolidakis, CS '07, CS '11

If non-zero, why are $\mathcal B$ and $\mathcal L$ violations so small?

 ${\cal B}$ and ${\cal L}$ are intrinsically flavored since they refer to quarks & leptons.

Small $\mathcal B$ and $\mathcal L$ violation $\stackrel{?}{\longleftrightarrow}$ No NP effects at flavor factories

To answer this, use the techniques of Minimal Flavor Violation.

How large can \mathcal{B} and \mathcal{L} violation be in the absence of new flavor couplings?

How large can \mathcal{B} and \mathcal{L} violation be in the absence of new flavor couplings?

- Gauge interactions are flavor-blind ⇔ Invariance under:

$$U(3)^5 = U(3)_Q \times U(3)_U \times U(3)_D \times U(3)_L \times U(3)_E$$

Where
$$Q = (u_L \ d_L)^T$$
, $U = u_R^\dagger$, $D = d_R^\dagger$, $L = (v_L \ e_L)^T$, $E = e_R^\dagger$.

Chivukula, Georgi '87

- Flavor couplings = explicit breaking terms for this symmetry

In the SM,
$$Y_u \sim m_u V_{CKM}$$
, $Y_d \sim m_d$, $Y_e \sim m_e$.

How large can \mathcal{B} and \mathcal{L} violation be in the absence of new flavor couplings?

- \mathcal{B} and \mathcal{L} are combinations of the flavor U(1)'s:

$$U(3)^{5} = SU(3)^{5} \times U(1)_{Q} \times U(1)_{U} \times U(1)_{D} \times U(1)_{L} \times U(1)_{E}$$
$$= SU(3)^{5} \times U(1)_{\beta} \times U(1)_{\zeta} \times U(1)_{\gamma} \times U(1)_{PQ} \times U(1)_{E}$$

- $\Delta \mathcal{B}$ and $\Delta \mathcal{L}$ couplings break $U(1)_{\mathcal{B}} \times U(1)_{\mathcal{L}}$ and maybe also $SU(3)^5$.
- MFV = Any $SU(3)^5$ breaking required to be aligned with the Yukawas.

That's what works for FCNC.

Hall, Randall '90; D'Ambrosio, Giudice, Isidori, Strumia '02,...

Nikolidakis, CS '07 Colangelo, Nikolidakis, CS '08 CS '11

Nikolidakis, CS '07 Colangelo, Nikolidakis, CS '08 CS '11

Redundancy \Rightarrow MFV relation among flavor couplings:

$$\mathbf{A} = a_0 \mathbf{1} + a_1 \mathbf{Y} + a_2 \mathbf{Y}^2 \quad \text{with} \quad a_i \sim \mathcal{O}(1)$$

Nikolidakis, CS '07 Colangelo, Nikolidakis, CS '08 CS '11

In this way, NP couplings inherit the hierarchies of the Yukawas:

$$\mathbf{A} = a_0 \mathbf{1} + a_1 \mathbf{Y}_u^{\dagger} \mathbf{Y}_u + a_2 \mathbf{Y}_d^{\dagger} \mathbf{Y}_d + \dots \approx \begin{pmatrix} 1 & 10^{-4} & 10^{-3} \\ 10^{-4} & 1 & 10^{-2} \\ 10^{-3} & 10^{-2} & 1 \end{pmatrix} + i \begin{pmatrix} 0 & 10^{-4} & 10^{-3} \\ 10^{-4} & 0 & 10^{-4} \\ 10^{-3} & 10^{-4} & 0 \end{pmatrix}$$

II. Effective interactions

Step 1 - Only SM gauge interactions

Simplest operators breaking $U(1)_{\mathcal{B},\mathcal{L}}$ but not $SU(3)^5...$...without any spurions (only gauge interactions).

- Epsilon contractions must involve the same three SM fields, e.g.:

$$\varepsilon^{IJK}Q^IQ^JQ^K \to \varepsilon^{IJK}(g_QQ)^I(g_QQ)^J(g_QQ)^K = \det(g_Q)\varepsilon^{IJK}Q^IQ^JQ^K$$

- SM gauge invariance \Rightarrow at least four epsilon contractions:

$$\mathcal{H}_{eff} = \frac{1}{\Lambda^{14}} \left[c_1 (LQ^3)^3 + c_2 (EU^2D)^3 + c_3 (EUQ^{\dagger 2})^3 + c_4 (LQD^{\dagger}U^{\dagger})^3 \right]$$

This is the SM $\mathcal{B}+\mathcal{L}$ anomaly. t'Hooft `76

- Lower-dimensional $\Delta \mathcal{B}$ and $\Delta \mathcal{L}$ interactions must break $SU(3)^5$.

Step 2 - Introducing Yukawa couplings

Simplest operators breaking $U(1)_{\mathcal{B},\mathcal{L}}$ but not $SU(3)^5...$...with Yukawa spurions (massless/Dirac neutrinos).

- The Yukawas link the SU(3) spaces \Rightarrow New epsilon contractions:

$$SU(3)_{Q} \xrightarrow{Y_{u}} SU(3)_{U}$$

$$SU(3)_{L} \xrightarrow{Y_{e}} SU(3)_{E}$$

$$SU(3)_{L} \xrightarrow{Y_{e}} SU(3)_{E}$$

$$E.g.: \varepsilon^{IJK} Q^{\dagger I} (UY_{u})^{J} (DY_{d})^{K}$$

$$\varepsilon^{IJK} L^{\dagger I} L^{\dagger J} (EY_{e})^{K}$$

- There are three notable features:
 - Steps of three: $\Delta \mathcal{L} = \mathbb{Z}N_F$ but $\Delta \mathcal{B} = \mathbb{Z}N_F / N_C$ since $\mathcal{B}(p^+) \equiv 1$.
 - Three generations participate: $\varepsilon^{IJK} \neq 0$ iff $I \neq J \neq K$.
 - High-dimensional operators: At least six fermion fields.

Step 2 - Introducing Yukawa couplings

Simplest operators breaking $U(1)_{\mathcal{B},\mathcal{L}}$ but not $SU(3)^5...$...with Yukawa spurions (massless/Dirac neutrinos).

- Simplest operators:

$$\mathcal{H}_{eff} = \frac{1}{\Lambda^{5}} \left[\frac{c_{1}EL^{\dagger 2}U^{3} + c_{2}L^{\dagger 3}Q^{\dagger}U^{2} + c_{3}D^{4}U^{2} + c_{4}D^{3}UQ^{\dagger 2} + c_{5}D^{2}Q^{\dagger 4} \right]$$

$$\Delta \mathcal{B}, \Delta \mathcal{L} = 1, 3 \qquad \Delta \mathcal{B}, \Delta \mathcal{L} = 2, 0$$

can induce proton decay. can induce neutron oscillations.

- Bounds satisfied even for $\Lambda \approx 1 \text{ TeV}$:

$$L^{\dagger 3} \otimes Q^{\dagger} (U \underline{Y}_{u})^{2} + \dots \rightarrow \{ \overline{\nu}_{\mu} e_{L}^{c} \} \{ \overline{\nu}_{\tau} s_{L}^{c} \} \{ \overline{u}_{R} u_{R}^{c} \} \frac{m_{u}^{2}}{v^{2}} V_{ub} + \dots$$

$$\Rightarrow \Gamma \sim \frac{m_{p^{+}}^{11}}{\Lambda^{10}} (10^{-13})^{2} \approx (10^{-60} \, \text{GeV}) \times \left(\frac{1 \, \text{TeV}}{\Lambda} \right)^{10}$$

Step 3 - Introducing neutrino masses

Simplest operators breaking $U(1)_{\mathcal{B},\mathcal{L}}$ but not $SU(3)^5...$...with Yukawa & Majorana neutrino spurions.

- A $\Delta \mathcal{L} = \pm 2$ Majorana spurion breaks the $\Delta \mathcal{L} = \mathbb{Z}N_F$ selection rule:

- Simplest operators:
$$\mathcal{H}_{e\!f\!f} = \frac{1}{\Lambda^2} \Big[{\color{red}c_1} L Q^3 + {\color{red}c_2} E U^2 D + {\color{red}c_3} E U Q^{\dagger 2} + {\color{red}c_4} L Q D^{\dagger} U^{\dagger} \Big]$$
 Weinberg '79

Bounds satisfied for $\Lambda \gtrsim 5 \text{ TeV}$ (instead of $\Lambda \gtrsim 10^{16} \text{ GeV}$ when $c_i \sim 1$).

Consequences for the LHC

MFV → Epsilon contractions → Dominant channels involve the top!

E.g.,
$$\varepsilon^{LMN} u^L u^M u^N \rightarrow u + c + t$$
.

Dimension-six: Wilson coefficients suppressed by $m_{\nu} \rightarrow$ Negligible.

Trying to remove MFV for $\Delta \mathcal{L}$ brings back proton stability problems!

Hou, Nagashima, Soddu '05; Dong, Durieux, Gérard, Han, Maltoni '11

Dimension-nine: Some $\mathcal{O}(1)$ Wilson coefficients for top quark(s).

Proton stable enough for $\Lambda \approx 1 \text{ TeV} \dots$

Effective formalism inadequate for the LHC?

Effective operators cannot be used to compute cross-sections, but can be used to estimate ratios of cross-section.

Identify the flavor channels where $\Delta \mathcal{B}$ and $\Delta \mathcal{L}$ effects can be large. (this requires considering far more than the five dim-9 operators)

$\Delta \mathcal{B}, \Delta \mathcal{L} = 1,3$: Dilepton & top(s)	$\Delta \mathcal{B}, \Delta \mathcal{L} = 2,0$: Di-top & b's
$1: gu \to \overline{t} + \overline{c} + e^+ \mu^+ \overline{v}_{\tau}$	$1: dd \to \overline{t} \overline{t} + \overline{s} \overline{s}$
$\lambda^8 : gu \to \overline{t} \overline{t} + e^+ \mu^+ \overline{\nu}_{\tau}$	$\lambda^2 : dd \to \overline{t} \overline{t} + \overline{b} + \overline{s}$
$\lambda^9 : gg \to \overline{t} \overline{t} + \overline{c} + e^+ \mu^+ \overline{v}_{\tau} + h.c.$	$\lambda^4: dd \to \overline{t} \overline{t} + \overline{b} \overline{b}$
$\lambda^{11}: uu \to \overline{t} + e^+ \mu^+ \overline{\nu}_{\tau}$	$\lambda^{15}: gd \to \overline{t} \overline{t} + \overline{b} \overline{b} \overline{b}$
λ^{25} : $gg \rightarrow \overline{t} \overline{t} \overline{t} + e^+ \mu^+ \overline{\nu}_{\tau} + h.c.$	λ^{26} : $gg \rightarrow \overline{t} \overline{t} + \overline{b} \overline{b} \overline{b} \overline{b} + h.c.$

 $\lambda^3 \approx 1\%$

These ratios are approximate: Dynamical effects can be important!

III. Supersymmetry

A. What happens in supersymmetry?

Fayet '76

Simplest operators breaking $U(1)_{\mathcal{B},\mathcal{L}}$ but not $SU(3)^5...$...within the MSSM.

- Squarks/slepton carry \mathcal{B} and $\mathcal{L} \rightarrow \text{Renormalizable } \Delta \mathcal{B}, \Delta \mathcal{L}$ couplings exist:

$$\mathcal{W}_{RPV} = \underline{\mu'^I} L^I H_u + \underline{\lambda^{IJK}} L^I L^J E^K + \underline{\lambda'^{IJK}} L^I Q^J D^K + \underline{\lambda''^{IJK}} U^I D^J D^K$$

$$\Delta \mathcal{L} = 1$$

$$\Delta \mathcal{B} = 1$$

which induce proton decay at tree-level, e.g. via:

- Escape route 1: Invent R-parity to get rid of all these couplings.

A. What happens in supersymmetry?

Nikolidakis, CS '07

Simplest operators breaking $U(1)_{\mathcal{B},\mathcal{L}}$ but not $SU(3)^5...$...within the MSSM.

- Squarks/slepton carry \mathcal{B} and $\mathcal{L} \rightarrow \text{Renormalizable } \Delta \mathcal{B}, \Delta \mathcal{L}$ couplings exist:

$$\mathcal{W}_{RPV} = \underline{\mu'^I} L^I H_u + \underline{\lambda^{IJK}} L^I L^J E^K + \underline{\lambda'^{IJK}} L^I Q^J D^K + \underline{\lambda''^{IJK}} U^I D^J D^K$$

$$\Delta \mathcal{L} = 1$$

$$\Delta \mathcal{B} = 1$$

- Escape route 2: Minimal Flavor Violation

The $\Delta \mathcal{B} = 1$ couplings are allowed, but not the $\Delta \mathcal{L} = 1$ when $m_{\nu} = 0$.

$$\boldsymbol{\varepsilon}^{IJK}(U\mathbf{Y}_{\boldsymbol{u}}\mathbf{Y}_{\boldsymbol{d}}^{\dagger})^{I}D^{J}D^{K}, \, \boldsymbol{\varepsilon}^{IJK}(U\mathbf{Y}_{\boldsymbol{u}})^{I}(D\mathbf{Y}_{\boldsymbol{d}})^{J}(D\mathbf{Y}_{\boldsymbol{d}})^{K}, \dots$$

Proton decay is slow enough even for EW-scale squark masses.

A. What happens in supersymmetry?

Csaki, Grossman, Heidenreich '11

Simplest operators breaking $U(1)_{\mathcal{B},\mathcal{L}}$ but not $SU(3)^5...$...within the MSSM.

- Holomorphy: If Yukawas = VEVs of some chiral superfields:

No \mathbf{Y}_{i}^{\dagger} allowed in \mathcal{W}_{RPV} , only $\boldsymbol{\varepsilon}^{IJK}(U\mathbf{Y}_{u})^{I}(D\mathbf{Y}_{d})^{J}(D\mathbf{Y}_{d})^{K}$ permitted.

Less free parameters, and smaller couplings:

$$x \equiv \mathcal{O}(10^{-x})$$
, $\tan \beta = 50$

MFV instead of R parity: No sizeable \mathcal{L} violation ($\sim m_{\nu}$),

Dominant \mathcal{B} violation through $\lambda_{312}'' \leq \mathcal{O}(1)$.

Theoretically, this single coupling does not change much.

Experimentally, the whole phenomenology is modified.

The LSP quickly decays, so it needs not be colorless & neutral:

Displaced vertices with $\tan \beta = 10$, M = 300 GeV, from Csaki, Grossman, Heidenreich '11

Characteristic signals: - Most decay chains end in top(s) + jet final states.

- No missing E_T (except from neutrinos).

RPV: top(s) + jets

SUSY disappears from missing E_T channels (those used up to now), Instead, sparticles shows up as multi-jet resonances (displaced vertices?).

Characteristic signals: - Most decay chains end in top(s) + jet final states.

- No missing E_T (except from neutrinos).

Simplest channels → Look for two anti-tops

Large rate: $\sigma(dd \to \overline{t} \ \overline{t} + \overline{s} \ \overline{s}) \approx \sigma(dd \to \tilde{d}\tilde{d}) [\mathcal{B}(\tilde{d} \to \overline{t} \ \overline{s})]^2 \approx \sigma(dd \to \tilde{d}\tilde{d})$

SUSY disappears from missing E_T channels (those used up to now), Instead, sparticles shows up as multi-jet resonances (displaced vertices?).

Many theoretical studies dedicated to \mathcal{B} -violation at colliders:

Tevatron: Dimopoulos, Hall '88; Dreiner, Ross '91, Berger et al. '99, Chiappetta et al. '99; Chaichan et al. '00, Allanach et al. '01; ...

LHC: Choudhury, Datta, Maity '11, Csaki, Grossman, Heidenreich '11; ...

Experimentally, light SUSY with \mathcal{B} -violation could not have been seen yet.

Resonant gluino with RPV three-jet decay @ CMS: $m_{\tilde{g}} > 280\,\mathrm{GeV}$ with a 1.9σ bump around 390 GeV...

(to be compared to $m_{\tilde{g}} \gtrsim 1 \text{ TeV}$ in the CMSSM)

Resonant LSP stop: production rates relatively small for the LHC.

300 fb⁻¹ at 14 TeV would be needed to exclude $m_{\tilde{t}} > 650$ GeV . (searching for resonances in four jets)

Conclusion

Baryon and lepton number violation at the LHC?

- Low-energy ${\mathcal B}$ and ${\mathcal L}$ violating interactions are possible

Proton stability ensured by their non-trivial flavor structure.

No fine-tuning! Just Yukawa hierarchies + small neutrino masses.

These hierarchies favor processes with top quarks:

$$\Delta \mathcal{B}, \Delta \mathcal{L} = 1,3 : gu \to \overline{t} + \overline{c} + e^+ \mu^+ \overline{v}_{\tau}$$

$$\Delta \mathcal{B}, \Delta \mathcal{L} = 2,0 : dd \to \overline{t} \, \overline{t} + \overline{s} \, \overline{s}, \, \overline{t} \, \overline{t} + \overline{b} + \overline{s}, \, \overline{t} \, \overline{t} + \overline{b} \, \overline{b}$$

- In supersymmetry, the main motivation for R-parity disappears!

No sizable \mathcal{L} violation, but large \mathcal{B} violating couplings.

- → Bypass current bounds on sparticle masses.
- \rightarrow Look for resonances in top(s) + jets final states, especially in:

$$\Delta \mathcal{B}, \Delta \mathcal{L} = 2,0 : dd \rightarrow \overline{t} \, \overline{t} + \overline{s} \, \overline{s}, \, \overline{t} \, \overline{t} + \overline{b} + \overline{s}, \, \overline{t} \, \overline{t} + \overline{b} \, \overline{b}$$