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e |l. Connection with queues, last passage percolation, and random matrices.
e |Il. Some results.
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Tasep

The Totally Asymmetric Simple Exclusion Process (TASEP) is a non-reversible interacting
particle system: configuration of particles n; € {0,1}%, t > 0

n:(¢) = 1 : there is a particle at site ¢ at time ¢;

There is at most one particle at each site. Given 7,, the dynamics is defined as follows:
Particles can jump to the neighboring right site only (Simple and Asymmetric)

provided that the site is empty (Exclusion). m

Figure 1: Allowed jumps

Jumps are independant and take place after an exponential waiting time with mean 1,
which is counted from the time instant when the right neighbor site is empty.
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Standard initial conditions

-step initial condition : 7,(¢) =0 if ¢ > 0 and 1,(¢) =1 if i < 0;
-flat initial condition : 7n,(¢) = 0 if ¢ is odd and 7,(¢) = 1 if © is even.
-Invariant measures:

e 1,(7), i € Zi.i.d. Bernoulli with a given density p € [0, 1] (translation invariant) known
as equilibrium Tasep

e blocking measure (all sites occupied to the right of some site 1)

-two sided initial condition: Bernoulli independent random variables with density p_ (resp.
p+) on Z_ (resp. Z.).
What is the large time behavior ?

A lot of results using hydrodynamic approach (Ferrari-Fontes (94) e.g.)
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: : Review

Some quantities of interest |

The height function

ht<j) —
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I (1—=2n,(t)),  forj>1,
for 5 =0,
0 )
i—ip1(1—2n;(t)), forj < -1,

where N; is the number of particles which jumped from site 0 to site 1 during the

time-span [0, ¢].

Assign label O to the particle sitting at the smallest positive integer site initially. Then use
the ordering - -- < x5(0) < x1(0) < 0 < x0(0) < x_1(0) < ---. Then xx(t) > xx11(t)

for all t > 0.

PNy {he, (e — yr) > o +yr}) = P(OR 1 {xy, (tk) = 21 — yr}).
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Random matrix limiting distribution

One fundamental result: for step initial condition.

Limiting shape (Rost (81)): ;

(v) :== lim

t— 00 t

he(ot) 502 +1), if ju] <1,
vl if v > 1.

Theorem Johansson ('98) Let v € [0, 1),

t— s

1 2 1 — 2\2/3
lim P (ht(vt) > v (L—v) t1/3>

t— 00

where Fgyg(z) is the GUE Tracy-Widom distribution.

Reminder: let H = H* be a complex N x N Hermitian random matrix with i.i.d.
N(0,1) entries above the diagonal. The suitably rescaled largest eigenvalue of \/% has
Tracy-Widom Fy g fluctuations as N — oo
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Connections with queues, LPP and
random matrices
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: : Connections

Queues

Suppose that there are infinitely many servers with FIFO policy:

e the service time of customers at each server i.i.d. Exp(1).

e once a customer is served at the server ¢, she joins at the (¢ 4+ 1)th queue.

Consider a fixed time ¢ = 0 (if not given) and (arbitrary) select one customer labeled O:
the queue where she is the Oth queue. We assign labels to the other customers so that
the labels decrease for the customers ahead in the queues.

Let );(t) denote the label of the queue in which the jth customer is in at time ¢.
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: : Connections

Tasep and queues

L ® ® L L ®
Figure 2: Black dots = customers; at every white dots one changes to the next counter.

Basic relationship between Tasep and Queues: step Tasep, stationnary queue=stationnary

Tasep.
x;j(t) = Q;(t) — J.

Call also E;(¢) be the time the jth customer exits the queue 7, then we find that

P(Mroi{ By (xr — 1) <t }) = PN {Qy, (tk) = @x}) = PNl {xy, (tk) > Tk — Yi ).
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: : Connections

Last passage percolation
At each site (7,7) € N?, a random variable w;; is attached. The w;;'s are independent

(waiting time) not necessarily identically distributed.

An up-right path 7 from (0,0) to (z,y) € N? is a sequence of points
(m, €Z%,k=0,...,z+vy), with mp = (0,0) and 7,4, = (z,y), and satisfying
1 — Tk € {(1,0),(0,1)}.

Set L(m) = >_(; jyex Wi,j- Then, the last passage time is defined by

G —= L(m).
@y) = _ max L

o = N .
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Figure 3: An upright path.
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: : Connections

Tasep and LPP

Let w; j, 4,7 >0, 7,7 € Z, be independent random variables with

wo,0 = 0,

wp,; ~ exponential with mean 1/p™, j > 1,

w;i o ~ exponential with mean (1 —p™)~% 4> 1"
w; j ~ exponential with mean 1, 4,5 > 1.

Exp(l)

0 Exp( L(1-pt))

Associated last passage time : G(x,y) = max,.(0,0)—(z,y) L(7).

Two sided Tasep: initial configuration 1, is the Bernoulli p* product measure.

I Lk, Y — OQ,

lim P(MZL {xy, (tk) = 2k — yi}) = ImP(MEL{ G (2, yi) < ti}).
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: : Connections

Explanation: two sided boundary condition
Assume that 7, is the product measure of Bernoulli with parameter p* on Z7.

Theorem Praehofer-Spohn (2001)
Let (T (resp. (7) be ind. geometric random variables with parameter 1 — p™ (resp. p_).

The {w(i,j), (i,7) € N?} are independent as follows

Define @(aj,y) to be the last passage time to (z,y) in this LPP model. Then,

PNy {xy, (te) > 2k — yi}) = P(MT_1{G (zr, yie) < tr}).

Think of w(i, ) as the time needed for particle at ¢ — 5 — 1 to jump to ¢ — 5 (counted
from the moment of time where i — j is free)
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: : Connection

LPP and random matrices

Let (w; ), ¢,j € N independent exponentials r.v with parameter 7;, ¢ € N.
Rate of exponentials depends on the row index only (or column only).

Let X = (X@]) be a (N -+ 1) X (p—l— 1) matrix
Xij I.i.d N(O, 1) complex

and

Y =diag(mg w1t TN ).

Theorem: Johansson (2000) G(N,p) and A, (X2 X™) have the same distribution.
XX X" is a complex Wishart matrix whose joint eigenvalue density is well known.

Proof: explicit computation of the two distributions (matrix integrals Harisch-Chandra-
ltzykson-Zuber, RSK correspondance for the LPP with geometric instead of exponentials).

If > = Id then A\, has Tracy-Widom fluctuations: step Tasep.
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Some results
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Summarizing picture for two-sided TASEP
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Explanations: the two sided Tasep

“Competition” of two one source models.

Define Q(a,b) = G((a,b), (z,y)) to be the passage time from (a,b) to (x,y). Then

G(z,y) = max{Q(0,1),Q(L,0)}.

Q(0,1) cannot “see” the first line thus one source model: LPP with exponential r.v. with
mean 1 except on the first column only.

Q(0,1) has the same distribution as the largest eigenvalue of a well-chosen Wishart
random matrix X2 X7,

A crucial role for Q(0,1) and Q(1,0) is played by the critical directions

0?

— fYc(p) — (1 — p)27 with p = ,Oj:-

Yy
x
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Gaussian/Tracy-Widom fluctuations

N N Y 1 1 7y 1
Setx =——, y=-—-",0c = + , = ——(1+—)%
1+7 7T 1470 1+7<p— 7(1—0—)) ! ( )

Theorem Baik-GBA-Peche (2005) There exist constants cs, ¢, such that

1 5 2
- < 1/2y & —z%/2 — - -
]\}1_{%0@(@(1»0) < 1N + cosN*9) \/%/_OO dx e O(s), if v>~v(p),
Jim P(Q(1,0) < ¢ N + chsN?/?) = Fqug(s), Tracy-Widom, if v < v.(p7).
—» 00

As ¢} < ¢1 we get that if v > ~.(p7),
lim P(G(z,y) < ciN + casNY?2) = B(s).

N — o0

Y=Y (P-)
C

=Y (P +)
C

T™W
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Two sided Tasep Il
Two sided TASEP with 0 < p; < p_ < 1, the asymptotic macroscopic density is

’

P— 1f€§1_2p—7
p=q1=¢&/2 iffe[l-2p_,1-2p,],
P+ if{>1—2py.

Let £ € [1—2p_,1—2py], then hy,q(&) = (1 4+ £2)/2. Set

X(r) = [£T + 7(2(1 = €)' /3177,

_1+&

H(r, s) = 5 T+ &7(2(1 — 52))1/3T2/3 + (17 — s)(l —
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Two sided Tasep Il

Theorem Corwin-Ben Arous (2009) Corwin-Ferrari-Peche (2010)
Fix meN,andany 1y <9 <--- <7y, and sq,...,S,,, We have:
(al) If £ € (1 —2p_,1 —2p,), then

lim P <ﬂ{hT<X(Tk)> 2 H(Tk,sk)}> =P <ﬂ{A2(Tk) S Sk}> .

k=1 =

lim P (ﬂ{hT(X<Tk)) Z H(Tk,sk)}> =P (ﬁ{ABM—ﬂ(Tk) S Sk}> .

k=1

(a3) If € < 1 —2p_, then limy oo P (N {hoy7(E:05T) > hina(&)0kT — 25, T/2})

— P (ﬂ (B —20 —&)(p_(1—p)) < sk}> .

k=1
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Other initial conditions

e Brownian e One pt: Fj
B [11, 67]
MT,TX)=T/2 .
: e Multi pt: Airy,,,,
(10]
e Flat e One pt: Fgog
B [12, 13, 68, 143]
MT,TX)=T/2 . .
WAA e Multi pt: Airy,
[29, 30]
e Wedge—Brownian | A(T,TX) = e One pt: (Foog)?
~X  X<-1 | [1,s8,134, 17
X2
TI+T X € [_1’0] e Multi pt: Ail'y2_>B.\.1
T/2 X >0 88, 44]




Extensions
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: : Extensions

Slow decorrelation

To compute joint distributions (determinants formulae), needs the points (z(7),y(7)) to
be on a line y = CteT'.

Nevertheless: multipoint fluctuation theorem for TASEP unchanged with
X(1,0) = |&(T + 0T") + 7(2(1 — €2))/°T%/?],
1+ &2

H(t,0,s) = (T 4 0T") 4+ £7(2(1 — E2)V/372/3 4 (72 — s)( _

for any v € [0,1) and any real 6.

Meaning: Fluctuations then differ by a deterministic constant when 0 — 6.
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The meaning of slow decorrelation
Ay

oT”)

V-

Figure 1: Assume that the black dots are O(T") for some v < 1 away
from the line y = CteT. Then, the fluctuations of the passage time at
the locations of the black dots are, on the T%/2 scale, the same as those
of their projection along the critical direction to the line y = CteT,
the white dots.



: » Extensions

Asep

Given 1,, the dynamics is defined as follows:
Particles can jump to the neighboring site only (Simple) provided that the site is empty
(Exclusion).

s¢ o o

Particles try to jump to the right with prob. p (resp. left with prob. ¢) and jump if
allowed. Here 0 < p=1—-—¢ < 1.

Jumps are governed by independent Poisson processes with rate 1: each particle has its
own clock ringing after an exponential waiting time with mean one and reseting.

Asep cannot be mapped to a LPP model (surface not " growing” only).
Neither to queuing model (customers go back and forth).
No known connection to RMT ...
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: » Extensions

Asep and the formulas of Tracy and Widom

T-W (2008) compute transition probability Py (X,t) for N-Asep, i.e. P that N particles
startedat Y = (V1 <Yo < - <Yy)areat X = (X7 < Xo < -+ < Xy) at time ¢.

Theorem: Tracy-Widom (2008)

vt =3 j[ j[ P01 1 (E)

ceSyN

. p_'_qfo- 7 50’ ] _50'7;
with (&) =p/&+4q& — 1, and Ao =]] (_p+qgo((i))€a((j'))_£o'((j))) '
o(i)>o(j)

For step Asep: obtain a Fredholm determinant expression for the rightmost particle!

This formula is obtained through a few magic formulas (Cauchy determinants identities....)
Not so simple formulas for the mth particle from the left m > 1.
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: » Extensions

Magic formulas

Theorem Tracy-Widom (2009)
Let m = [ot], ¥ = p — q > 0 fixed, then

lim P (xm(t/v) > c1(o)t — 02(0)3751/3) = F5(s),

t— 00

uniformly for o in compact subsets of (0,1) where ¢;(0) =1 — 2/, ca(0) = o~ 1/6(1 —
\/5)2/3.

Asymptotic shape : Liggett (2005)

If ¢ = 0 then one recovers Johansson's result. Speeded up by ~ the same fluctuations as
step Tasep.

TW (2009): fluctuations for step Bernoulli Asep.

Major corollary: Amir-Corwin-Quastel (2010), Sasamoto-Spohn (2010) The KPZ equation
is in the KPZ universality class.
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: » Extensions

Conclusion

A lot of open questions:

e general initial condition:
-connection to RMT?
-explicit formulae?
-determinantal formulae?

e Asep: same questions essentially...
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