Direct CP Violation in Charm:

Recent Results

Diego Guadagnoli LAPTh Annecy

First Things First: Data!

Short summary of data news: LHCb and CDF

CDF (1111.5023, 5.9/fb) measures <u>separately</u> $A_{CP} (D^{0} \rightarrow K^{+} K^{-})$ and $A_{CP} (D^{0} \rightarrow \pi^{+} \pi^{-})$, reporting $A_{CP} (D^{0} \rightarrow K^{+} K^{-}) = (-0.24 \pm 0.22 \pm 0.09)\%$ $A_{CP} (D^{0} \rightarrow \pi^{+} \pi^{-}) = (+0.22 \pm 0.24 \pm 0.11)\%$

CDF (1111.5023, 5.9/fb) measures <u>separately</u> $A_{CP} (D^{0} \to K^{+} K^{-})$ and $A_{CP} (D^{0} \to \pi^{+} \pi^{-})$, reporting $A_{CP} (D^{0} \to K^{+} K^{-}) = (-0.24 \pm 0.22 \pm 0.09)\%$ $A_{CP} (D^{0} \to \pi^{+} \pi^{-}) = (+0.22 \pm 0.24 \pm 0.11)\%$ CDF (Public Note 10784, 9.7/fb) also measures the A_{raw} difference, like LHCb, and reports: $A_{raw} (D^{0} \to K^{+} K^{-}) - A_{raw} (D^{0} \to \pi^{+} \pi^{-})$ $= (-0.62 \pm 0.21 \pm 0.10)\%$

For each final state f, the quantity A_{raw} is defined as:

$$A_{\rm raw}(D^0 \to f) = \underbrace{\frac{N_{\rm obs}(D^0 \to f) + N_{\rm obs}(\bar{D}^0 \to f)}{N_{\rm obs}(\bar{D}^0 \to f) + N_{\rm obs}(\bar{D}^0 \to f)}}$$

- Identify a decay event, occurring at time t, of a neutral D meson, tagged at t = 0 (prod'n) to be a D⁰
- Sum over all t (hence "time-integrated" asymmetry)

A

\checkmark For each final state *f*, the quantity A_{raw} is defined as:

$$_{\rm raw}(D^0 \to f) = \underbrace{\frac{N_{\rm obs}(D^0 \to f) + N_{\rm obs}(\bar{D}^0 \to f)}{N_{\rm obs}(\bar{D}^0 \to f) + N_{\rm obs}(\bar{D}^0 \to f)}}$$

- Identify a decay event, occurring at time t, of a neutral D meson, tagged at t = 0 (prod'n) to be a D^o
- Sum over all t (hence "time-integrated" asymmetry)

For each final state f, the quantity A_{raw} is defined as:

$$A_{\rm raw}(D^0 \to f) = \underbrace{\frac{N_{\rm obs}(D^0 \to f) + N_{\rm obs}(\bar{D}^0 \to f)}{N_{\rm obs}(\bar{D}^0 \to f) + N_{\rm obs}(\bar{D}^0 \to f)}}$$

- Identify a decay event, occurring at time t, of a neutral D meson, tagged at t = 0 (prod'n) to be a D^o
- Sum over all t (hence "time-integrated" asymmetry)

Z For each final state f, the quantity A_{raw} is defined as:

$$A_{\rm raw}(D^0 \to f) = \underbrace{\frac{N_{\rm obs}(D^0 \to f) + N_{\rm obs}(\bar{D}^0 \to f)}{N_{\rm obs}(\bar{D}^0 \to f) + N_{\rm obs}(\bar{D}^0 \to f)}}_{N_{\rm obs}(\bar{D}^0 \to f) + N_{\rm obs}(\bar{D}^0 \to f)}$$

- Identify a decay event, occurring at time t, of a neutral D meson, tagged at t = 0 (prod'n) to be a D^o
- Sum over all t (hence "time-integrated" asymmetry)

CDF (Public Note 10784) measures:

$$A_{raw}(D^0 \to K^+ K^-) - A_{raw}(D^0 \to \pi^+ \pi^-)$$

 $= (-0.62 \pm 0.21 \pm 0.10)\%$

► LHCb (1112.0938) measures:

$$A_{\text{raw}}(D^{0} \to K^{+}K^{-}) - A_{\text{raw}}(D^{0} \to \pi^{+}\pi^{-})$$

$$= (-0.82 \pm 0.21 \pm 0.11)\%$$

$$\simeq A_{CP}^{\text{dir}}(D^{0} \to K^{+}K^{-}) - A_{CP}^{\text{dir}}(D^{0} \to \pi^{+}\pi^{-})$$

CDF (Public Note 10784) measures:

$$A_{\text{raw}}(D^{0} \to K^{+}K^{-}) - A_{\text{raw}}(D^{0} \to \pi^{+}\pi^{-})$$

$$= (-0.62 \pm 0.21 \pm 0.10)\%$$

🥟 Comments

As mentioned, the ΔA_{raw} measurement is sensitive to ΔA_{CP}^{dir} plus a small contribution from A_{CP}^{ind} :

$$\Delta A_{\rm raw} = \Delta A_{CP}^{\rm dir} + \frac{\Delta \langle t \rangle}{\tau} A_{CP}^{\rm ind}$$

► LHCb (1112.0938) measures:

$$A_{\text{raw}}(D^0 \to K^+ K^-) - A_{\text{raw}}(D^0 \to \pi^+ \pi^-)$$

$$= (-0.82 \pm 0.21 \pm 0.11)\%$$

$$\simeq A_{CP}^{\text{dir}}(D^0 \to K^+ K^-) - A_{CP}^{\text{dir}}(D^0 \to \pi^+ \pi^-)$$

CDF (Public Note 10784) measures:

$$A_{raw}(D^0 \to K^+ K^-) - A_{raw}(D^0 \to \pi^+ \pi^-)$$

 $= (-0.62 \pm 0.21 \pm 0.10)\%$

Comments

As mentioned, the ΔA_{raw} measurement is sensitive to ΔA_{CP}^{dir} plus a small contribution from A_{CP}^{ind} :

$$\Delta A_{\text{raw}} = \Delta A_{CP}^{\text{dir}} + \frac{\Delta \langle t \rangle}{\tau} A_{CP}^{\text{ind}}$$
measured
q.ty of
interest

CDF (Public Note 10784) measures:

$$A_{raw}(D^0 \to K^+ K^-) - A_{raw}(D^0 \to \pi^+ \pi^-)$$

 $= (-0.62 \pm 0.21 \pm 0.10)\%$

Comments

As mentioned, the ΔA_{raw} measurement is sensitive to ΔA_{CP}^{dir} plus a small contribution from A_{CP}^{ind} :

Theory Implications

- CP violation in decay occurs when the decay rate $M \rightarrow f$ differs from the decay rate involving the CP-conjugate states.
- Since decay width ∞ | amplitude |², for this to occur, the amplitude needs consist of at least two terms, with a relative (hence convention-independent) weak (hence CP-odd) phase.

- CP violation in decay occurs when the decay rate $M \rightarrow f$ differs from the decay rate involving the CP-conjugate states.
- Since decay width ∞ | amplitude |², for this to occur, the amplitude needs consist of at least two terms, with a relative (hence convention-independent) weak (hence CP-odd) phase.
- So let's consider the amplitude for $D \rightarrow f$, where $f = K^+ K^-$ or $\pi^+ \pi^-$. It can be expanded into a leading + a sub-leading term as follows:

• Leading amplitude: its phase is taken to be zero

Sub-leading amplitude: it comes with a relative weak (ϕ_f) and strong (δ_f) phase

- CP violation in decay occurs when the decay rate $M \rightarrow f$ differs from the decay rate involving the CP-conjugate states.
- Since decay width ∝ | amplitude |², for this to occur, the amplitude needs consist of at least two terms, with a relative (hence convention-independent) weak (hence CP-odd) phase.
- So let's consider the amplitude for $D \rightarrow f$, where $f = K^+ K^-$ or $\pi^+ \pi^-$. It can be expanded into a leading + a sub-leading term as follows:

• Leading amplitude: its phase is taken to be zero

Sub-leading amplitude: it comes with a relative weak (ϕ_f) and strong (δ_f) phase

CPV in the decay $D \rightarrow f$ can be quantified by the direct CP asymmetry, defined as:

$$A_{CP}^{\text{dir}}(D \to f) = \frac{|A_f|^2 - |\bar{A}_{\bar{f}}|^2}{|A_f|^2 + |\bar{A}_{\bar{f}}|^2}$$

where $f = \overline{f}$ because K⁺ K⁻ or $\pi^+\pi^-$ are CP eigenstates.

- CP violation in decay occurs when the decay rate $M \rightarrow f$ differs from the decay rate involving the CP-conjugate states.
- Since decay width ∝ | amplitude |², for this to occur, the amplitude needs consist of at least two terms, with a relative (hence convention-independent) weak (hence CP-odd) phase.
- So let's consider the amplitude for $D \rightarrow f$, where $f = K^+ K^-$ or $\pi^+ \pi^-$. It can be expanded into a leading + a sub-leading term as follows:

$$A_f = (A_f^T) (1 + r_f e^{i(\delta_f + \phi_f)})$$

Leading amplitude: its phase is taken to be zero

Sub-leading amplitude: it comes with a relative weak (ϕ_f) and strong (δ_f) phase

CPV in the decay $D \rightarrow f$ can be quantified by the direct CP asymmetry, defined as:

$$A_{CP}^{dir}(D \to f) = \frac{|A_f|^2 - |\bar{A}_{\bar{f}}|^2}{|A_f|^2 + |\bar{A}_{\bar{f}}|^2}$$

To leading order in $r_{\star} \ll 1$, one gets:

$$A_{CP}^{dir}(D \rightarrow f) \simeq -2 r_f \sin \delta_f \sin \phi_f$$

where $f = \overline{f}$ because K⁺ K⁻ or $\pi^+\pi^-$ are CP eigenstates.

For large phases, the asymmetry goes down as the magnitude of the sub-leading / leading amplitude ratio.

 $a_{KK}^{T} \sim V_{cs}^{*} V_{us} T_{KK}$

D. Guadagnoli, Direct CPV in Charm

D. Guadagnoli, Direct CPV in Charm

$\Delta \mathbf{A}_{cP}$: heuristic estimate

• Now let us go back to the formula

$$A_{CP}^{dir}(D \rightarrow f) \simeq -2 r_f \sin \delta_f \sin \phi_f$$

with
$$f = K^+ K^-$$
 or $\pi^+ \pi^-$

- Recall that:
 - **1** The strong phase is expected to be large: sin $\delta = O(1)$
 - **2** The weak phase is minus $\gamma \simeq 67^{\circ}$: sin $\gamma = O(1)$
 - **3** In the U-spin symmetric limit (s \leftrightarrow d quarks), the only difference between the KK and the $\pi\pi$ amplitudes is the sign of the tree-level contribution. Hence:

$$r_{\pi^+\pi^-} \simeq -r_{K^+K^-}$$

$\Delta \mathbf{A}_{cP}$: heuristic estimate

• Now let us go back to the formula

$$A_{CP}^{dir}(D \rightarrow f) \simeq -2 r_f \sin \delta_f \sin \phi_f$$

with
$$f = K^+ K^-$$
 or $\pi^+ \pi^-$

- Recall that:
 - **1** The strong phase is expected to be large: sin $\delta = O(1)$
 - **2** The weak phase is minus $\gamma \simeq 67^{\circ}$: sin $\gamma = O(1)$
 - **3** In the U-spin symmetric limit (s \leftrightarrow d quarks), the only difference between the KK and the $\pi\pi$ amplitudes is the sign of the tree-level contribution. Hence:

$$r_{\pi^+\pi^-} \simeq -r_{K^+K^-}$$

It follows:

$$|A_{CP}^{dir}(D \to K^{+}K^{-}) - A_{CP}^{dir}(D \to \pi^{+}\pi^{-})| \approx -2(r_{K^{+}K^{-}} - r_{\pi^{+}\pi^{-}}) \approx -4 r_{K^{+}K^{-}} \sim 4 \cdot O(10^{-4})$$

Namely this (heuristic) estimate returns a figure about one order of magnitude below LHCb's measurement

۶......

$\Delta \mathbf{A}_{CP}$: heuristic estimate

Now let us go back to the formula

$$A_{CP}^{dir}(D \rightarrow f) \simeq -2 r_f \sin \delta_f \sin \phi_f$$

with
$$f = K^+ K^-$$
 or $\pi^+ \pi^-$

- Recall that:
 - **1** The strong phase is expected to be large: sin $\delta = O(1)$
 - The weak phase is minus $\gamma \simeq 67^{\circ}$: sin $\gamma = O(1)$
 - In the U-spin symmetric limit (s \leftrightarrow d quarks), the only difference between the KK and the $\pi\pi$ amplitudes is the sign of the tree-level contribution. Hence:

$$r_{\pi^+\pi^-} \simeq -r_{K^+K^-}$$

It follows:

$$|A_{CP}^{dir}(D \to K^{+}K^{-}) - A_{CP}^{dir}(D \to \pi^{+}\pi^{-})| \approx -2(r_{K^{+}K^{-}} - r_{\pi^{+}\pi^{-}}) \approx -4 r_{K^{+}K^{-}} \sim 4 \cdot O(10^{-4})$$

Namely this (heuristic) estimate returns a figure about one order of magnitude below LHCb's measurement

.....

Two main questions arise:

(a) Can this estimate be missing the actual SM order of magnitude? What enhancements are possible?

(b) How plausibly can non-SM physics explain this signal?

D. Guadagnoli, Direct CPV in Charm

Volume 222, number 3,4	PHYSICS LETTERS B	25 May 1989
ENHANCED CP VIOLAT	TIONS IN HADRONIC CHARM DECAYS	
Michell GOLDEN and Ber	njamin GRINSTEIN	
Fermi National Accelerator Labo	ratory, P.O. Box 500, Batavia, IL 60510, USA	
Received 6 March 1989		

The CKM structure responsible for large CPV in the $|\Delta C| = 1$ Hamiltonian ($V_{cb} * V_{ub}$) multiplies certain operators (transforming as triplets under SU(3)_{flavor}) whose matrix elements may be enhanced with respect to naïve expectations.

This resembles the " $\Delta I = \frac{1}{2}$ rule" in $K \rightarrow \pi \pi$ matrix elements, at work in ϵ'/ϵ

-irst: An old	observation to kee	p in mind	
	Volume 222, number 3,4	PHYSICS LETTERS B	25 May 1989
	ENHANCED CP VIOLATIONS IN HADRONIC CHARM DECAYS		
	Michell GOLDEN and Be	enjamin GRINSTEIN	
	Fermi National Accelerator Lab	ooratory, P.O. Box 500, Batavia, IL 60510, USA	
	Received 6 March 1989		
Observation	on:		

operators (transforming as triplets under $SU(3)_{flavor}$) whose matrix elements may be enhanced with respect to naïve expectations.

This resembles the " $\Delta I = \frac{1}{2}$ rule" in $K \rightarrow \pi \pi$ matrix elements, at work in ϵ'/ϵ

This observation warrants further investigation:

- on the Lattice QCD side: estimate of the triplet operators' matrix elements
- on the side of the assumptions specific to the Golden-Grinstein analysis. Let's look closer at this issue

Amplitudes' formula

For the decays of interest to us, they arrive at the following amplitudes:

 $\mathsf{A}(\mathsf{D}^{\scriptscriptstyle 0} \to \mathsf{K}^{\scriptscriptstyle +} \, \mathsf{K}^{\scriptscriptstyle -}) \ = \ a \ \Sigma \ + b \ \Delta$

 $A(D^0 \rightarrow \pi^+ \pi^-) = -a \Sigma + b \Delta$

with:		,		
a, b = operator matrix elements				
$\Sigma = \left(V_{cs}^* V_{us} - V_{cd}^* V_{ud} \right) / 2$	The second	approx. real		
$\Delta = \left(V_{cs}^* V_{us} + V_{cd}^* V_{ud} \right) / 2$	The second	small in magnitude, but with large phase		

Mathebre Amplitudes' formula

For the decays of interest to us, they arrive at the following amplitudes:

 $A(D^{0} \rightarrow K^{+} K^{-}) = a \Sigma + b \Delta$ $A(D^{0} \rightarrow \pi^{+} \pi^{-}) = -a \Sigma + b \Delta$

Crucial points

- Matrix elements from the lowest-dim irreps (= operator triplets) enter only in b, *not* in a
- Such matrix elements may well be enhanced with respect to naïve expectations, in analogy with the neutral-*K* case (Δ I = ½ rule).

Mathebre Amplitudes' formula

For the decays of interest to us, they arrive at the following amplitudes:

 $\begin{array}{rcl} \mathsf{A}(\mathsf{D}^{0} \rightarrow \mathsf{K}^{+} \, \mathsf{K}^{-}) &=& \mathsf{a} \, \Sigma \ + \, \mathsf{b} \, \Delta \\ \\ \mathsf{A}(\mathsf{D}^{0} \rightarrow \pi^{+} \, \pi^{-}) &=& -\mathsf{a} \, \Sigma \ + \, \mathsf{b} \, \Delta \end{array}$

Crucial points

- Matrix elements from the lowest-dim irreps (= operator triplets) enter only in b, *not* in a
- Such matrix elements may well be enhanced with respect to naïve expectations, in analogy with the neutral-K case (Δ I = ½ rule).

Conclusion

Since Δ has a large phase, and if b is indeed enhanced (say 10x)

 A_{CP} may be large enough to be observable. Ballpark: $A_{CP} = O(10^{-3})$

......

.....

Problem

Since $|\Sigma| / |\Delta| \sim 3000$, the above amplitudes would predict $\Gamma(D^0 \to K^+ K^-) \simeq \Gamma(D^0 \to \pi^+\pi^-)$.

On the other hand, experimentally, one finds: $\Gamma(D^0 \rightarrow K^+ K^-) \simeq 2.8 \cdot \Gamma(D^0 \rightarrow \pi^+\pi^-)$

More on Golden-Grinstein Problem Since $|\Sigma| / |\Delta| \sim 3000$, the above amplitudes would predict $\Gamma(D^0 \rightarrow K^+ K^-) \simeq \Gamma(D^0 \rightarrow \pi^+\pi^-)$. On the other hand, experimentally, one finds: $\Gamma(D^0 \rightarrow K^+ K^-) \simeq 2.8 \cdot \Gamma(D^0 \rightarrow \pi^+\pi^-)$ Expected solution: $SU(3)_{flavor}$ – breaking effects may well be large, and need be incorporated in the above analysis

.....

Problem

 $\left[\right]$

Since $|\Sigma| / |\Delta| \sim 3000$, the above amplitudes would predict $\Gamma(D^0 \to K^+ K^-) \simeq \Gamma(D^0 \to \pi^+ \pi^-)$.

On the other hand, experimentally, one finds: $\Gamma(D^0 \rightarrow K^+ K^-) \simeq 2.8 \cdot \Gamma(D^0 \rightarrow \pi^+ \pi^-)$

Expected solution: SU(3)_{flavor} – breaking effects may well be large, and need be incorporated in the above analysis

.....

Pirtskhalava-Uttayarat follow-up (1112.5451):

Inclusion of the leading $SU(3)_{flavor}$ – breaking effects into the Golden-Grinstein analysis

Main point

Under fairly general assumptions on the SU(3)_{flavor} – breaking terms, the Golden-Grinstein amplitudes are modified as follows:

 $A(D^{0} \rightarrow K^{+} K^{-}) = (a + c) \Sigma + b \Delta$ $A(D^{0} \rightarrow \pi^{+} \pi^{-}) = (-a + c) \Sigma + b \Delta$

D. Guadagnoli, Direct CPV in Charm

Problem

Since $|\Sigma| / |\Delta| \sim 3000$, the above amplitudes would predict $\Gamma(D^0 \to K^+ K^-) \simeq \Gamma(D^0 \to \pi^+ \pi^-)$.

On the other hand, experimentally, one finds: $\Gamma(D^0 \rightarrow K^+ K^-) \simeq 2.8 \cdot \Gamma(D^0 \rightarrow \pi^+ \pi^-)$

Expected solution: SU(3)_{flavor} – breaking effects may well be large, and need be incorporated in the above analysis

Pirtskhalava-Uttayarat follow-up (1112.5451):

Inclusion of the leading $SU(3)_{flavor}$ – breaking effects into the Golden-Grinstein analysis

Main point

Under fairly general assumptions on the SU(3)_{flavor} – breaking terms, the Golden-Grinstein amplitudes are modified as follows:

Note that:

SU(3)_{flavor} – breaking corrections affect only the term proportional to the CKM structure with large magnitude, Σ .

Problem

Since $|\Sigma| / |\Delta| \sim 3000$, the above amplitudes would predict $\Gamma(D^0 \to K^+ K^-) \simeq \Gamma(D^0 \to \pi^+ \pi^-)$.

On the other hand, experimentally, one finds: $\Gamma(D^0 \rightarrow K^+ K^-) \simeq 2.8 \cdot \Gamma(D^0 \rightarrow \pi^+ \pi^-)$

Expected solution: SU(3)_{flavor} – breaking effects may well be large, and need be incorporated in the above analysis

Pirtskhalava-Uttayarat follow-up (1112.5451):

Inclusion of the leading $SU(3)_{flavor}$ – breaking effects into the Golden-Grinstein analysis

Main point

Under fairly general assumptions on the SU(3)_{flavor} – breaking terms, the Golden-Grinstein amplitudes are modified as follows:

> Note that: $A(D^0 \rightarrow K^+ K^-) = (a + c) \Sigma + b \Delta$ $A(D^{0} \rightarrow \pi^{+} \pi^{-}) = (-a + c) \Sigma + b \Delta$

Therefore:

Inclusion of these corrections can explain the widths' discrepancy, without spoiling Golden-Grinstein's argument on A_{cp}

SU(3)_{flavor} – breaking corrections affect only the term proportional to the CKM structure with large magnitude, Σ .

Selected Theory Work after LHCb results

(Apologies for the not represented work)

D. Guadagnoli, Direct CPV in Charm

Results

The previous observations can be made more quantitative, and used to give an estimate of:

- The (formally) leading-power penguin amplitudes
- 2 The (formally) power-suppressed annihilation amplitudes
- for the D \rightarrow K⁺ K⁻ and D \rightarrow π^+ π^- decays

Results

The previous observations can be made more quantitative, and used to give an estimate of:

- The (formally) leading-power penguin amplitudes
- The (formally) power-suppressed annihilation amplitudes
- for the D \rightarrow K⁺ K⁻ and D \rightarrow π^+ π^- decays

D The (formally) leading-power penguin amplitudes

Use of:

- the ΔC = 1 effective Hamiltonian at NLO within the SM
- "naïve" factorization + $O(\alpha_s)$ corrections

Including renorm. scale variation, they get: $r_{K^{+}K^{-}} \approx (0.01 - 0.02)\%$ $r_{\pi^{+}\pi^{-}} \approx (0.015 - 0.028)\%$

.....

consistent with the heuristic estimate seen before

Results

The previous observations can be made more quantitative, and used to give an estimate of:

- The (formally) leading-power penguin amplitudes
- The (formally) power-suppressed annihilation amplitudes
- for the D \rightarrow K⁺ K⁻ and D \rightarrow $\pi^+ \pi^-$ decays

The (formally) leading-power penguin amplitudes

Use of:

- the ΔC = 1 effective Hamiltonian at NLO within the SM
- "naïve" factorization + $O(\alpha_s)$ corrections

Including renorm. scale variation, they get: $r_{wtw} \approx (0.01 - 0.02)\%$

$$r_{\pi^+\pi^-} \approx (0.015 - 0.028)\%$$

consistent with the heuristic estimate seen before

Beware: ✓ It is well known that the charm mass is too light for factorization theorems to hold (and much too heavy for chiral symmetry). Therefore, the 1/m_c expansion and factorization are, here and below, mostly used as guidance. ✓ The corresponding results require of course plenty of assumptions (e.g. on the matrix elements). Results should be taken with relative errors of O(1).

D. Guadagnoli, Direct CPV in Charm

D. Guadagnoli, Direct CPV in Charm

Main idea

Write down the most general $|\Delta C| = 1$ effective Hamiltonian (including non-SM operators).

Address the question of what operators may plausibly generate the LHCb signal,

taking into account the relevant constraints $(D^{0} - \overline{D}^{0})$ mixing and $\epsilon' \epsilon$

......

Main idea

Write down the most general $|\Delta C| = 1$ effective Hamiltonian (including non-SM operators). Address the question of what operators may plausibly generate the LHCb signal, taking into account the relevant constraints ($D^0 - \overline{D}^0$ mixing and ϵ'/ϵ)

Parameterizing non-SM contributions

Recall again the direct CP asymmetry formula for the channel $D \rightarrow f$, where $f = K^+ K^-$ or $\pi^+ \pi^-$:

D. Guadagnoli, Direct CPV in Charm

Constraint equation

The previous relation, written down explicitly for the K⁺K⁻ and π + π ⁻ decays, and after use of the ΔA_{CP} measurement, leads to the following equation:

Constraint equation

The previous relation, written down explicitly for the K⁺K⁻ and π + π ⁻ decays, and after use of the ΔA_{CP} measurement, leads to the following equation:

Constraint equation

The previous relation, written down explicitly for the K⁺K⁻ and π + π ⁻ decays, and after use of the ΔA_{CP} measurement, leads to the following equation:

Constraint equation

The previous relation, written down explicitly for the K⁺K⁻ and π + π ⁻ decays, and after use of the ΔA_{CP} measurement, leads to the following equation:

Constraint equation

The previous relation, written down explicitly for the K⁺K⁻ and π + π ⁻ decays, and after use of the ΔA_{CP} measurement, leads to the following equation:

D. Guadagnoli, Direct CPV in Charm

Full analysis

(a) Write down the most general $|\Delta C|$ = 1 effective Hamiltonian for non-SM contributions: $H_{|\Delta C|=1}^{\text{eff, NP}}$

·

(b) Include constraints from $D^{0} - \overline{D}^{0}$ mixing and ϵ'/ϵ

Conclusions

• Operators where the bilinear containing the charm quark is of V – A structure are severely constrained by $D^{o} - \overline{D}^{o}$ mixing and ϵ'/ϵ .

• In cases where non-SM contributions are allowed to be large, one expects correspondingly large contributions to CPV in $D^o - \overline{D}^o$ mixing and/or ϵ'/ϵ .

Conclusions

- Operators where the bilinear containing the charm quark is of V A structure are severely constrained by $D^{0} \overline{D}^{0}$ mixing and ϵ'/ϵ .
- In cases where non-SM contributions are allowed to be large, one expects correspondingly large contributions to CPV in $D^o \overline{D}^o$ mixing and/or ϵ'/ϵ .

However

Chromo-magnetic operators (at variance with 4-fermion ones) do actually largely circumvent this statement.

See the recent paper by *Giudice, Isidori and Paradisi* for a detailed account of this possibility

D. Guadagnoli, Direct CPV in Charm

D. Guadagnoli, Direct CPV in Charm