

HIGH-ENERGY NEUTRINO SEARCHES FROM GRBs WITH ICECUBE

MATHIEU LABARE (FOR THE ICECUBE COLLABORATION)

LABARE.MATHIEU@GMAIL.COM

GDR NEUTRING - APC, PARIS

JUNE 21, 2012

HIGH-ENERGY NEUTRINO SEARCHES FROM GRBs WITH ICECUBE

- COSMIC RAYS AND GAMMA RAY BURSTS
 - . COSMIC RAYS
 - GRB : THE FIREBALL MODEL
- IceCube
 - THE ICECUBE DETECTOR
 - MOON SHADOW
- NEUTRING SEARCHES FROM GRBs
 - MODEL-DEPENDENT ANALYSIS
 - MODEL-INDEPENDENT ANALYSIS
 - DISCUSSION : FLUX MODELS
- SUMMARY

- ► BELOW 1 GEV
 - SOLAR ENERGETIC PARTICLES

- ▶ BELOW 1 GEV
 - ► SOLAR ENERGETIC PARTICLES
- ► IN THE GEV PEV (EEV?) REGION
 - ► GALACTIC CONTRIBUTION
 - ACCELERATION MECHANISMES ARE LIMITED :
 - $R > R_{gyr} = \frac{E}{B}$ $\longrightarrow E_{max} \sim 10^{15} \text{ eV}$ (knee)

- ▶ BELOW 1 GEV
 - ► SOLAR ENERGETIC PARTICLES
- ► IN THE GEV PEV (FEV?) REGION
 - ► GALACTIC CONTRIBUTION
 - ACCELERATION MECHANISMES ARE LIMITED :

$$R > R_{gyr} = \frac{E}{B}$$

 $\longrightarrow E_{max} \sim 10^{15} \text{ eV}$ (knee

- ULTRA HIGH ENERGY COSMIC RAY
 - EXTRA-GALACTIC ORIGIN
 - CHANGE IN SLOPE → CHANGE IN COMPOSITION ?
 - VIOLENT ACCELERATORS

Gamma Ray Bursts are (one of) the favorite candidates to explain cosmic rays observation above $10^{18}\ {\rm eV}$

Gamma Ray Bursts are (one of) the favorite candidates to explain cosmic rays observation above $10^{18}\ {\rm eV}$

THE FIREBALL MODEL

► COLLAPSE OF MASSIVE STAR, COMPACT OBJECT COLLISION,... → BLACK HOLE

Gamma Ray Bursts are (one of) the favorite candidates to explain cosmic rays observation above $10^{18}\ {\rm eV}$

THE FIREBALL MODEL

- ► COLLAPSE OF MASSIVE STAR, COMPACT OBJECT COLLISION,... → BLACK HOLE
- ► ELECTRONS ACCELERATION IN INTERNAL SHOCKS
 - ► KEV-MEV PHOTONS (GRB SIGNAL)
- PROTONS ACCELERATION VIA FERMI
- PROTON- γ INTERACTIONS PRODUCE PIONS
 - EMISSION OF HIGH ENERGY NEUTRINOS
 - EMISSION OF HIGH ENERGY PHOTONS

Gamma Ray Bursts are (one of) the favorite candidates to explain cosmic rays observation above $10^{18}\ {\rm eV}$

THE FIREBALL MODEL

- ► COLLAPSE OF MASSIVE STAR, COMPACT OBJECT COLLISION,... → BLACK HOLE
- ► ELECTRONS ACCELERATION IN INTERNAL SHOCKS
 - ► KEV-MEV PHOTONS (GRB SIGNAL)
- PROTONS ACCELERATION VIA FERMI
- PROTON- γ INTERACTIONS PRODUCE PIONS
 - EMISSION OF HIGH ENERGY NEUTRINOS
 - EMISSION OF HIGH ENERGY PHOTONS
 (GRB SIGNAL)

667 GRBs expected per year

THE ICECUBE COLLABORATION

THE MOON SHADOW (WITH IC-59)

- ► VERIFICATION OF THE ICECUBE POINTING ACCURACY
- ► USING DOWNGOING MUONS FROM AIR SHOWERS

- ▶ ANGULAR RESOLUTION \sim 0.8 DEG
- \blacktriangleright DEFICIT OBSERVED AT 12.7 σ

TWO TYPES OF ANALYSES

- ► MODEL DEPENDENT
 - ► UNBINNED MAXIMUM LIKELIHOOD
 - DIRECTION, ARRIVAL TIME, ENERGY
- ► MODEL INDEPENDENT
 - ► WIDER TIME SEARCH WINDOW
 - LOOSER EVENT SELECTION CRITERIA

TWO TYPES OF ANALYSES

- MODEL DEPENDENT
 - ► UNBINNED MAXIMUM LIKELIHOOD
 - DIRECTION, ARRIVAL TIME, ENERGY
- ► MODEL INDEPENDENT
 - ▶ WIDER TIME SEARCH WINDOW
 - LOOSER EVENT SELECTION CRITERIA

IC-40 ANALYSIS

PH.REV.LET 106(2011) 141101

- APRIL 5, 2008 UNTIL MAY 20, 2009
- ▶ 129 GRBs IN NORTHERN HEMISPHERE: 117 GRBs KEPT
- ▶ MD:UPPER LIMIT (90%CL): 82% OF THE EXPECTED FLUX IN THE 37 2400 TEV
- MI: NO EVENTS OBSERVED (4.2 EXPECTED) IN ± 2248 SEC WINDOW.

TWO TYPES OF ANALYSES

- MODEL DEPENDENT
 - ► UNBINNED MAXIMUM LIKELIHOOD
 - DIRECTION, ARRIVAL TIME, ENERGY
- ► MODEL INDEPENDENT
 - WIDER TIME SEARCH WINDOW
 - LOOSER EVENT SELECTION CRITERIA

IC-40 ANALYSIS

PH.REV.LET 106(2011) 141101

- ► APRIL 5, 2008 UNTIL MAY 20, 2009
- ▶ 129 GRBs IN NORTHERN HEMISPHERE: 117 GRBs KEPT
- \blacktriangleright MD :Upper Limit (90%CL) : 82% of the expected flux in the 37 2400 TeV
- \blacktriangleright MI: No events observed (4.2 expected) in \pm 2248 sec window.

IC-59 ANALYSIS

- ► MAY 21, 2009 UNTIL MAY 31, 2010
- ▶ 190(±2) GRBs (105(-9) IN NORTH, HEM.)

TWO TYPES OF ANALYSES

- MODEL DEPENDENT
 - ► UNBINNED MAXIMUM LIKELIHOOD
 - DIRECTION, ARRIVAL TIME, ENERGY
- ► MODEL INDEPENDENT
 - ► WIDER TIME SEARCH WINDOW
 - LOOSER EVENT SELECTION CRITERIA

COMBINED IC-40 + IC-59 ANALYSIS

NATURE 484 (2012) 351-353

IC-40 ANALYSIS

PH.REV.LET 106(2011) 141101

- APRIL 5, 2008 UNTIL MAY 20, 2009
- ▶ 129 GRBs IN NORTHERN HEMISPHERE : 117 GRBs KEPT
- \blacktriangleright MD :Upper Limit (90%CL) : 82% of the expected flux in the 37 2400 TeV
- \blacktriangleright MI: No events observed (4.2 expected) in \pm 2248 sec window.

IC-59 ANALYSIS

- ► MAY 21, 2009 UNTIL MAY 31, 2010
- ▶ 190(±2) GRBs (105(-9) IN NORTH, HEM.)

JUNE 21, 2012

MODEL-DEPENDENT ANALYSIS

- ► BACKGROUND: 24 EV. EXPECTED 21 EV. OBSERVED
- ► SIGNAL: 8.8 EV. EXPECTED No EVENT FOUND "ON-SOURCE/ON-TIME"
 - ▶ UPPER LIMIT (90%CL): 0.24 X PREDICTED FLUX
 - \blacktriangleright Burst model parameter constraint $\frac{\epsilon_p}{\epsilon_e}=10\longrightarrow 2.4$ (90%CL)

MODEL-INDEPENDENT ANALYSIS

TWO CANDIDATE EVENTS:

- ▶ 30 SEC AFTER GRB091026A (EVENT 1)
- ▶ 14 HRS BEFORE GRB091230A

MOST PROBABLY MUONS FROM COSMIC RAY AIR SHOWERS

GRB FIREBALL FLUX MODELS

THREE DIFFERENT MODELS

► GUETTA ET AL.

- ASTROP.PHYS.20 (2004) 429
- THE ONE USED (WITH SOME MODIFICATION) IN LATER ICECUBE RESULTS
- NORMALIZED ON INDIVIDUAL γ -RAY BURSTS OBSERVATION
- ALLOWS TO OBTAIN INFORMATION ON GRB INTERNAL PARAMETERS : $\Gamma_{iet},\,z,\,...$

GRB FIREBALL FLUX MODELS

THREE DIFFERENT MODELS

► GUETTA ET AL.

ASTROP.PHYS.20 (2004) 429

- THE ONE USED (WITH SOME MODIFICATION) IN LATER ICECUBE RESULTS
- NORMALIZED ON INDIVIDUAL γ-RAY BURSTS OBSERVATION
- ightharpoonup allows to obtain information on GRB internal parameters : $\Gamma_{iet},\,z,\,...$
- ► WAXMAN-BAHGALL

PHYS.REV.LETT.78 (1997) 2292

- ► GRBs are the Main Sources of Ultra High Energy Cosmic Ray
- ► PROTON FLUX NORMALIZED FROM LIHECR FLUX
- NIY AN AVERAGE-PER-BURST APPROACH

GRB FIREBALL FLUX MODELS

THREE DIFFERENT MODELS

► GUETTA ET AL.

ASTROP.PHYS.20 (2004) 429

- THE ONE USED (WITH SOME MODIFICATION) IN LATER ICECUBE RESULTS
- ► NORMALIZED ON INDIVIDUAL γ-RAY BURSTS OBSERVATION
- \triangleright allows to obtain information on GRB internal parameters : $\Gamma_{iet}, z,$
- ► WAXMAN-BAHGALL

PHYS.REV.LETT.78 (1997) 2292

- GRBS ARE THE MAIN SOURCES OF HITPA HIGH ENERGY COSMIC RAY
- PROTON FLUX NORMALIZED FROM LIHECR FLUX
- ONLY AN AVERAGE-PER-BURST APPROACH

ALHERS ET AL.

ASTROP.PHYS.35 (2011) 87

- "NEUTRON-ESCAPE" MODEL, PROTONS STAY CONFINED INSIDE THE FIREBALL
- ▶ UHECR FLUX DIRECTLY TRANSLATE INTO CHARGE PION, AND THEREFORE NEUTRING FLUX
- I ISING THE SHAPE OF ORSERVED LIHECR SPECTRUM INSTEAD OF INTEGRATED ENERGY

DISCUSSION: PARAMETERS

MODEL COMPATIBILITY WITH OBSERVATIONS

90.95)%CL of the ν flux vs. Neutrino break energy ε_b from the model-independent analysis with time window $|\Delta t|=$ 28 sec.

- $m{arepsilon}_b:\Delta ext{-resonance for P}\gamma$ in the shock frame
- FLUX : BROKEN LAW SPECTRA

DISCUSSION: PARAMETERS

MODEL COMPATIBILITY WITH OBSERVATIONS

90.95)%CL of the ν flux vs. Neutrino break energy ε_b from the model-independent analysis with time window $|\Delta t|=$ 28 sec.

- $m{arepsilon}_b:\Delta ext{-resonance for P}\gamma$ in the shock frame
- FLUX : BROKEN LAW SPECTRA

- ALL MODELS ASSUME $\Gamma \approx 300$
- lacktriangle Vertical axes related to accelerated proton flux by f_π
 - ightharpoonup Waxman : $f_\pi \sim \Gamma^{-4}$
 - ► RACHEN & AHLERS : INDEPENDENT

DISCUSSION: PARAMETERS

CONSTAINTS ON FIREBALL PARAMETERS

90% allowed region of the proton to electron energy ratio vs. Bulk Lorentz factor Γ from the model-dependent analysis.

THE FACTS

- ► ICECUBE HAVE SEEN NO NEUTRING IN CORRELATION WITH COSMIC RAY ACCELERATION IN GAMMA RAY BURSTS.
- ► FOR THE FIRST TIME, THE UPPER LIMIT ON THE EXPECTED FLUX OF NEUTRINOS IS WELL BELOW THE PREDICTIONS.

THE FACTS

- ► ICECUBE HAVE SEEN NO NEUTRING IN CORRELATION WITH COSMIC RAY ACCELERATION IN GAMMA RAY BURSTS.
- ► FOR THE FIRST TIME, THE UPPER LIMIT ON THE EXPECTED FLUX OF NEUTRINOS IS WELL BELOW THE PREDICTIONS.

THE FALLOUTS

- ► THE MODELS MUST BE REVISITED!
- THE PROTON DENSITY IN GRB FIREBALL IS BELOW WHAT IS NEEDED TO EXPLAIN LIHEGR
- ▶ THE GRB MECHANISMES ARE SIGNIFICANTLY DIFFERENT FROM THE CURRENT THEORIES

OTHER TOPICS WITH ICECUBE

COSMIC RAYS

MEASUREMENT OF C.R. ANISOTROPY ASTROPHYS.J. 746 (2012) 33 PHYS.REV.DB3 (2011) 012001

POINT SOURCES SEARCHES

► TIME-DEPENDENT SEARCH WITH IC-40 AND IC-22 ASTROPH, JOURNAL 744 (2012) 1

SUPERNOVAE

- ► CRAB NEBULA FLARE ANALYSIS ASTROPHYS. J. 745 (2012) 45
- CONSTRAINTS ON HE NEUTRING EMISSION FROM SN2008D ASTRON.ASTROPH. 527 (2011)

DARK MATTER

- MULTI-YEAR SEARCH FOR DARK MATTER ANNHILATIONS IN THE SUN WITH

 AMANDA-II/IGEGUBE PHys. Rev. D85(2012) 042002
- ► SEARCH FOR DARK MATTER FROM THE GALACTIC HALO PHYS.REV. DB4(2011) 022004

BUT ALSO

ATMOSPHERIC MUONS, DIFFUSE FLUXES, EXOTIC PARTICLES, TAU NEUTRINOS, CASCADES

BACK-UP: IC86 EHE

BACK-UP: DEEPCORE

BACK-UP: SIGNAL IN ICECUBE

BACK-UP: OTHER IC-59 RESULTS

Large scale Cosmic Ray anisotropy (59-string detector)

Top: 20 TeV Bottom: 400 TeV Astrophysical Journal 746 (2012) 33

Neutrino equatorial skymap 2008-2010 (40&59-strings)

Most significant excess : $\alpha=5$ h 1m 48s $\delta=-18.15^{\circ}$ P-value = $2.23\cdot10^{-5}$ Randomised α data sets \rightarrow post-trial : P-value=0.67

BACK-UP: POINT SOURCES IC-40

