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@ Long-range messengers: no interactions (or weak ones) with ambient matter,
no deflection by magnetic fields:
GW and HEN travel undeflected over cosmological distances

@ Deep-source messengers: carry information on the internal processes of the
astrophysical engines, unaccessible through photons or hadrons

@ Plausible common sources: galactic (SGRs) & extragalactic (GRBs: short, long,
low-luminosity, failed, choked,...)

@ Discovery potential for hidden/unknown sources (difficult o detect through
photon/cosmic ray astronomy

@ Main requirements for joint GW/HEN detection:

massive, compact & 4+  sudden + baryon 4 close & frequent
relativistic objects (< 1s) loaded enough




The fireball model

Short-Hard GRBs: \

coalescing binaries involving
BH and/or neutron stars.

— GW associated to
coalescence process (inspiral)
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Long-Soft GRBs: /

associated to core-collapse
supernovae (collapsars)

— GW burst during collapse
( faint ?, unmodelled)
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HEN emitted in baryon-loaded jets during
prompt (TeV-PeV) & afterglow (PeV - EeV) phases

expected neutrino spectrum ~ E™




A case study: long GRBs B. Baret et al., AstroPart. Phys. 35 (2011), 1-7
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Observational benchmarks:
® y-ray emission: t ~150 s
based on the oo distribution
in BATSE bursts
(consistent with Fermi

’

central engme active _E 54 centrciﬂ engine active 4 HE -r‘ay emission)
cec u\'so‘ : GRB . 210-20% of GRBs have
P lc) 250s | e 150s . precursors:
| gamma | tprecursor ~250 s from
en BATSE GRBs
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#* HEN emission from internal shocks in relativistic outflow
(also BEFORE it emerges from the stellar envelope, At ~100s) | connected to

* GW emission associated to the activity of central engine y-ray emission

(BH ringdown + gravitational instabilities in accretion disk + ... )
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At ~+500s

» i

Observational benchmarks:
® y-ray emission: t ~150 s
based on the oo distribution
in BATSE bursts
(consistent with Fermi

central engme active _: :4 centrai engine active HE -r‘qy emission)
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(a)  100s (b) 18 100s  (b) (d)gamma > 100 MeV!

#% HEN emission from internal shocks in relativistic outflow
(also BEFORE it emerges from the stellar envelope: At ~100s) | connected to
' y-ray emission

* GW emission associated to the activity of central engine
(BH ringdown + gravitational instabilities in accretion disk + ... )




Michelson interferometers:
suspended mirrors act as free test masses
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> LIGO Hanford: 4 km (+ 2 km) arms
» LIGO Livingston: 4 km arms
» VIRGO (Pisa, Italy): 3 km arms

current sensitivity to GW amplitude
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The detectors: neutrino telescope

Detection principle

“We propose getting up an apparatus .
in an underground lake or deep in the ocean %EDte cto rf.

in order to separate charged particle direction array ot

by Cherenkov radiations” M. Markov 1060 photomultipliers

Main Signal = up-going muons
Cherenkov

cone

WATER/ICE

Track selection and reconstruction based on
local coincidences compatible with Cherenkov

M
* light front:

ROCK

V. Van Elewvck GDR neutrinos. Paris 21/06/2012
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Physical backgrounds:

"Signal: cosmic 48

* Afmospheric muons: ~ 10°%/yr
O-few/year

mostly down-going (BUT can be
misreconstructed as up-going)

=) detectors are buried deep

mmm) detectors look downwards

- cut on zenith angle > 90°
- cut on track quality

X

- 's from atmospheric neutrinos: ~10°/yr
irreducible background

o — cosmic heutrino identification:
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o) atmospheric muons | | ==) |ocalized excess in skymap (point source)
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Periods of concomitant data taking:

2007 | 2008 | 2009 | 2010 | 2011

ANTARES KM3NeT

2012 2013 | 2014
KM3NeT I R

12
VIRGO ‘;g Advanced VIRGO
LIGO “ Advanced LIGO

First-generation detectors: '

GW horizon for standard binary sources
~ 15 Mpc (~1 binary merger/ 100 years...)
ANTARES 5 active lines

Recent upgrades (VIRGO+/eLIGO) :
GW sensitivity x 2 (expected)
Full ANTARES 12 lines, ~0,04 km® instrumented

Advanced detectors ~2015:

GW sensitivity x 10 — probed volume x 1000

(~ 1 Gpcd for BH mergers, ~ 40 mergers/yr)
/\'A%\ KM3NeT: (few) km?® instrumented volume




Periods of concomitant data taking:

2012 | 2013 | 2014

ANTARES
KM3NeT

KM3NeT
I B

VIRGO

Advanced VIRGO

LIGO

Advanced LIGO

First joint
analysis:

104 days of
concomitant data taking
(Feb - Sept 2007)

VIRGO + LIGO + ANTARES
instantaneous sky coverage ~ 30%
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* 6W/HEN common challenge: faint & rare signals on top of abundant noise
or background events.

general search methodology: combination of GW/HEN event lists
+ search for coincidences in predefined time windows
( independant detectors — low combined False Alarm Rate )

ANTARES LIGO and VIRGO

* « HEN-triggered » search: HEN event list Neutrino Data Fo1| iFo2| [Fon

as an external input for GW burst search v « 1
Trigger List Combined Data

® on-source coincidence time window: o cidence Time Window
*+ 500 s around HEN arrival time

[ 3. ] GLOSED BOX s

+ GW spatial search box defined by tune search parameters

(event-by-event) HEN angular accuracy — on off-source.

¥ Closed-box analysis: parameters W‘
tuned on off-source, time-shifted GW data @G‘Uiﬂm

optimal pa




Hit selection and reconstruction using Bbfit: fast online algorithm
- simplified detector geometry (straight lines, 1 OM at the center of each storey)

- reconstruction algorithm based on x? minimization (time residuals + charge distribution)
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- degeneracy of events reconstructed with 2 lines:
2 mirror tracks with same zenith, different azimuths
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Skymap of HEN events:

(equatorial coordinates)

—a Elines <4 198 events (x2)
3 lines <« 18 events

2
...........

DEC (deg)

Among them:

o B 29 events with 2 IFOs
RA (h) 65 events with 3 IFOs
63 events with 4 IFOs

157 exploitable events
for a GW coherent search




time
HEN event direction

information angular accuracy
energy estimators (N N_

4

Off-Source Off-Source
Background On-Source Background

estimates GW search

-500s +500s

@ HEN-triggered GW search using X-pipeline:
analysis chain looking for unmodelled GW bursts
from external triggers (e.g. GRB alerts)

- closed-box (blind) analysis: background estimation
& parameter tuning on off-source region

- gain in efficiency w.r.t. all-sky untriggered searches:

factor 2.5 (4) at 50% (90%) C.L.

estimates

Time

Detection eﬁlclency [complete network)

Trlggered

?| (time+space) 'E;’

—— GW-HEN analysis | .. _|
—— un-triggered search|

hrss amplitude [Hz(-0.5]]




- Hanford + Livingston + Virgo data streams
coherently combined - tfime-frequency maps

- high frequency cutoff for GW signal: 500 Hz
+ additional HF search (500 Hz - 2 kHz)
for HEN events with N =3

Signals coherently summed up
Signals in 2 IFOs for assumed direction

- assume known direction of signals
— known delay between IFOs

- define event-by-event angular search window
— weighted scan using log-normal parameterization
of HEN PSF (in bins of declination & N, )
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Analysis of time-frequency maps obtained from combining IFOs data streams:
- optimize thresholds using of f-source background + injected template GW signals

. inspiral sine-gaussian
(binary mergers: NS-NS, NS-BH) (generic, possibly core-collapse ?)

Ringdown |

. 1 . 1 . 1 . I .
50 100 150 200 250 300

time

- estimate significance of on-source events by comparing to
expected off-source distribution

mmmp amplitude upper limits

mmm) cxclusion distances




Search for a cumulative excess: binomial test
accounts for trial factor due to the large sample of tested HEN triggers:

1) compute false alarm probability (p-value) for each HEN trigger
2) sort by loudest event ( — by smallest p-value)

3) for the loudest 5% of events: compute binomial cumulative probability
P (p): that i or more events have a p-value smaller than p,

4) compare to null hypothesis (uniform distribution of p-values)

o2 | -===null hy;uothﬁis
10" 1 ——measured LF (60-500 Hz) search:
—— S.sigma excursion
% no significant excess found
5
g 10 - . . .
E (largest deviation from null hypothesis:
= | occurs in 64% of pseudo-experiments under
same background conditions)
10° ¢ . . . . :
10" 10" 10" 10" 10* 10°

local probability p




Search for a cumulative excess: binomial test

accounts for trial factor due to the large sample of tested HEN triggers:
1) compute false alarm probability (p-value) for each HEN trigger
2) sort by loudest event ( — by smallest p-value)

3) for the loudest 5% of events: compute binomial cumulative probability
P (p): that i or more events have a p-value smaller than p,

4) compare to null hypothesis (uniform distribution of p-values)

- = —null hylpﬂlhesis
10' || —e—5-sigma excursion| LF (500-2000 Hz) search:
—e—measured
0
Z . . .
' no significant excess found
5
E (largest deviation from null hypothesis:
2 occurs in 66% of pseudo-experiments under
same background conditions)
10° e , | :
10° 107° 107 107 10"

probability p




Exclusion distances

Estimate the detection horizon for each injected GW template signal:

1) vary the amplitude of injected signal

2) determine the threshold amplitude for producing, in 90% of the cases,
a louder event than observed in data

3) convert amplitude — distance:

Typical GW horizon for
inspiral ~ 5-10 Mpc

NSBH |
| —— NS-NS

.
o

.
=

[=]
o
T

(o]
(=]

[n*
w
T

[
(=]

number of neutrino triggers

—_
o
T

PRSI . S N BN -

10° 10 10° 10 10°
exclusion distance (Mpc)

Typical GW horizon for sine-gaussian ~ 5-20 Mpc
(assuming total emitted energy E_ = 10° M_ c2)

number of neutrine triggers

407

= cine-Gaussian 100 Hz
EEEgine-Gaussian 150 Hz
===sine-Gaussian 300 Hz | -

sof

100~ .

10’ 10’ 10 10°
exclusion distance (Mpc)



@ First joint search for HEN and GW performed with
(sub-optimal) detectors ANTARES 5L + LIGO S5 + VIRGO VSRI:
No evidence for coincident events found

@ Common sources of GW and HEN are likely to exist
combined GW+HEN observations can provide new constraints on astrophysical mechanisms:

e.g. on the population of common sources within observation horizon:
No event found s N <23at90%CL.inT =104 days

GWHEN ~

mmmp CONStrains the density of joint

GW+HEN emitters: N /(V T.)

pGWHEN ~ " V6WHEN GWHEN ' obs

effective volume:
depends on GWHEN horizon
d = min (d

GWHEN HEN' dGW)

@ Next step: analyze data from 2009-2010: ANTARES 12L/LIGO S6/VIRGO VSR2-3

~ new 6W software (suitable for joint simulations)
® new HEN reconstruction strategy (smaller error boxes)
mmm) first fully optimized GWHEN search
mmmd nrobe realistic astrophysical models of common source population
(e.g. long GRBs) ?




More (speculative) suspects among GRBs

Low-Iluminosity GRBs (lIGRBs)

T ne . SN “Failed” GRB GRB
% y-ray luminosity few orders of magnitude smaller ---
% Observational evidence for [IGRB/SN connection *lerg > erg
— produced by a particularly energetic population | ] g

Ratefgal | ~1072yr~! =07y
of core-collapse SNe ?

% larger event rate predicted in local universe -_ ~3-100 ~100-10°

* BUT mechanism debated, presence of jets "I'I l':l*
IS uncertain (Bromberg, Nakar & Piran, 2011)

Failed GRBs: takan from Ancla (2003)
from mildly relativistic, baryon-rich and optically
thick jets ?

— missing link between (long) GRBs and SNe ?
(Ando & Beacom, 2005)

Choked GRBs:

successfull jets unable to break through the stellar envelope ?
(Eichler & Levinson, 1999, Mészaros & Waxman, 2001)

(S potentially strong HEN/GW emitters;
- not (or difficultly) observable in photons

— models poorly constrained and still debated
. J

Similar kinetic energy

\




PCWHEN for SGRB and LGRB

o poSRE = 1.1 x 1072/Mpc3/yr
— to be compared with typical merger rates...
o ptSRE . = 1.0 x 103/Mpc3/yr

= to be compared with typical star collapse rates...

Binary merger Rates

@® Omerger ,ﬁ 1.5 x 10—6/Mpc3/yr =~ PSCGRB
— B. Belczynski et al., arXiv:1106.0397v1

® powieN = 1.1 x 1072/Mpc?/yr

@ Need 4 order of magnitudes!

@ With Tohs ~ 1lyr, need improvement of factor 10 on dpen

= Not possible with 2009-2010 12 Lines data
— Need bigger km® HEN telescope and Advanced GW
interferometers...

Type Il /Type Ib/c SN Rates

@ psNII ~ 2 x 1074 /Mpc3/yr
= G. Bazin et al., A&A, 2009

@ PSN Ibe ~ 2 x 1075/Mpc3/yr
—> D. Guetta et al., ApJ, 2007

il

e pESGRE.n = 1.0 x 1003 /Mpc3/yr = only need a factor 5-50...

e With T,ps ~ lyr, need improvement of only up to factor 2 on dggnN
= Seems feasible with 2009-2010 data!!




3Lines HEN for an extended High-Frequency Search
e Additional search from 500Hz up to 2kHz for the 14 3 Line events
@ Misreconstructed muons : 12.3% (2L) vs 3.7% (3L) (wrt atm. v)

@ 3L events more energetic
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@ « skymask cWB »= same analysis as c(WB
= but restricted to a limited time segment and a small sky area defined
by a mask
@ Segment and mask computed from neutrino candidate
= event time + 500s, position + lognormal fit of the angular search
window
@ Enable joint search for 2-detector networks :

= Events are reconstructed over a ring in the sky
= Mask application allows to select events in this ring consistent with

the neutrino direction

Wgth mask Without mask

theta, deg.




Ongoing: ANTARES 12L/LTI60 S6/VIRGO VSR243 (2009-2010)

* independent lists of GW and HEN candidates

¥+ search for time-coincident events %\ntares Data} EVirQO/LIGOj
Data

¥ test spatial correlation by combining
GW/HEN likelihood skymaps

\ v Event List ’ \GW Trigger List’

. (Scrambling \ \ Time Shift 1
o : \ Background estimation \
VIRGO/LIGO coherent HEN telescope v v
. anal?lsns. - 'ry.plcal PSF Compare triggers in predefined
* estimate significance by comparing to the time window
distribution of accidental coincidences obtained

with time-shifted GW data streams
& scrambled (or simulated) HEN event lists

% Allows full optimization of selection strategies ! Detection
critical parameter: combined false alarm rate or
FAR(coinc) = T x FAR(GW) x FAR(HEN) Upper limit




@ ANTARES 5L /LIGO S5/VIRGO VSR1 (2007) data analysis
* « HEN-triggered » search: HEN event list

as an external input for GW burst search HEN list time
(obtained with direction

*uses specific analysis chain looking predefined angular accuracy

for unmodelled GW bursts from external quality criteria) = energy estimator (N, )

triggers (e.g. GRB alerts): X-pipeline

P. Sutton et al., New J. Phys. 12 (2010) *

(a variant with inspiral templates also GW combined data streams

being developed: STAMP)

¥+ on-source time window: + 500 s

around HEN arrival time off-source  on- off-source
l source l

* GW spatial search box defined by \J

(event-by-event) HEN angular accuracy (l' ime shiﬁ;s>

¥ Closed-box analysis: parameters

tuned on off-source, time-shifted GW data

* high computational cost:
O(100) neutrinos  O(month)

processing with X-pipeline ‘ Background estimation

* Analysis nearly completed

Analysis
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