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Overview

• Statistical approach

• Model and parameters

• Covariances and systematic effects

• Nuisance parameters

• Mixed approach

• Diagnostics

Disclaimer: this talk is not a statistical course. The goal is to show 
the general idea of the statistical analysis performed in Double 
Chooz. Some specificities are not addressed here.



Statistical approach

• Double Chooz statistics is large (i.e. >>1 event)

• Double Chooz collaboration chose a χ2 approach:

• Given large statistics, χ2 is equivalent to a binned Likelihood 
Ratio

• Compared to an event by event Likelihood, need less care on 
the development at current stage.

• Selected events are binned in energy intervals.

• A non-constant binning is chosen to ensure sufficient statistic per 
bin.

• Binning was fixed prior to data release.



Model and parameters

• Physical parameters, a single one: θ13 
(i.e. sin2(2θ13)).

• Neutrino event rates prediction: 
Ni(θ13).

• Background events which mimic 
neutrino events: accidentals, fast-n 
and Li9.

• Systematic effects induce extra 
uncertainties on Ni(θ13) and 
background subtraction to data.

• Two possibilities:

• take directly into account the 
systematic induced uncertainties 
in the χ2 through a covariance 
matrix;

• model the systematic effects as 
nuisance parameters.



List of systematics

Example of list of systematics and uncertainties for Double Chooz 
1st publication (Phys.Rev.Lett. 108 (2012) 131801, arXiv:1112.6353 [hep-ex])

All these systematics affect the rate. There are other systematics 
which affect the shape: background shape uncertainties, reactor 
spectrum uncertainties and energy scale uncertainty.



Goal of any parameter estimation

• The goal of any parameter estimation is to transform the 
information we have from data into summarized information on 
parameters  of the model
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χ2 with covariance approach

Here, we take directly into account the systematic induced 
uncertainties in the χ2 through a covariance matrix:
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i.e. there are correlations among the residuals due to systematic 
effects, background subtraction uncertainties...

The associated χ2 (i.e. statistical quantity which should follow a χ2 
distribution if hypotheses are correct) is then of the form:
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The V matrix is an estimate of the covariance matrix of the errors εi.

and
or

This χ2 depends on θ13. Minimizing this χ2 w.r.t. θ13 gives the best 
estimate on θ13 according to data Y, models N and B and covariance 
estimate V.



χ2 with nuisance parameters approach

Here we model the systematic effects with nuisance parameters:
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Equivalence between linear nuisance parameters 
and covariance matrix approaches
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Nuisance parameters approach follow a class of fitting models known since a long 
time as Mixed Effects Models (i.e. fixed and random effects).

minimized over all αk is 
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with V expressed as function of Si,k
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Formalism corrrect even with non-diagonal Σ matrix, i.e. it is 
possible to mix covariance and nuisance parameters approaches!

The covariance χ2 is the same as the nuisance parameter χ2 
already minimized on nuisance parameters.
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Current choice in Double Chooz

A mixed covariance-pull approach

• pull parameters take into account

• backgrounds

• energy scale

• Δm2 uncertainty

• The rest is in covariance matrix:

• normalization

• reactor simulation: fuel and burn-up uncertainties, Bugey-4 anchor, power 
uncertainty,

• x-section uncertainty

• efficiencies



Some comments about pull approach

• The pull distribution should follow a normal law (if hypotheses correct)
values of nuisance parameters at best fit ~ N(0,1)

• QQ-plots, Normality tests, correlation tests (Durbin-Watson,...), etc.

• Can allow to point out tension in fits: statistical tests on best fit 
parameters possible.

• Comment on the number of degrees of freedom:

• Each extra αk/σk term can be considered as an extra bin compared 
to data points Yi. 
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Note on covariances:
they capture only linear relationships!

Several sets of (x, y) points, with the Pearson correlation coefficient of x and y 
for each set. Note that the correlation reflects the noisiness and 
direction of a linear relationship (top row), but not the slope of that 
relationship (middle), nor many aspects of nonlinear relationships (bottom). 
N.B.: the figure in the center has a slope of 0 but in that case the correlation 
coefficient is undefined because the variance of Y is zero. [ source: Wikipedia ]
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Nuisance parameters

• I advocate use of nuisance parameters approach instead of covariance approach:

• Because the covariance approach is just the remaining χ2 after the minimization over α’s.

• Information on best fit values α is lost in covariance approach and both formalisms are equivalent.

• Using a linear minimizer can solve very quickly the χ2 minimization w.r.t. α parameters first before 
eventually tackling non-linear physical parameters.

• It means:

• if you use Minuit as a fitter, provide Minuit with the gradient estimate otherwise, this nuisance 
parameter approach suffers from the curse of dimensionality (difficulty of convergence in high 
parameter dimension spaces)

• or use a linear fitter (ROOT has one inside for instance TLinearFitter,...) to first solve the χ2 
w.r.t. linear parameters.

• The best fit value of nuisance parameters and deviance from a priori information give you interesting 
diagnostic on the model.

• Possible compatibility tests on nuisance parameters between a priori values and data driven values 
(residuals normality test, Fischer tests, t-tests, etc. + diagnostics described in next slides)



MultiSim approach

• Take into account detector 
response through a MC 
simulation for each sample.

• Draw n samples

• Draw deposited energy from 
incident particle energy taking 
into account correlations (among 
energy bins)

• For each deposited energy 
computes the reconstructed 
energy through MC simulation.

• Computes the covariances 
among the reconstructed energy 
bins

=> Get the covariance matrix in 
the reconstructed energy bins.

Parameter covariances

true energy
spectra

Bin to bin correlations

Monte Carlo
simulation

reconstructed
energy spectra
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Migration matrix

• Models the detector response 
through a matrix once and for all.

• Do a MC simulation for a given 
input energy spectrum (no 
correlations among energy), for 
instance a flat spectrum (assures 
same MC statistics whatever the 
energy).

• For each input energy deposited in 
the detector the MC computes 
the reconstructed energy

• Performs a 2D histogram of 
(Etrue,Ereco)

• => Gives the migration matrix 
from a bin j in true energy to a bin 
i in reconstructed energy Mi,j

Example of migration matrix

True energy 
binning
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Rate Only / Shape Only / Rate and Shape

χ2 definitions
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Some references

• Kendall, M., Stuart, A., Ord, J.K., Arnold, S. (1999) Kendall's Advanced 
Theory of Statistics, Volume 2A: Classical Inference and and the 
Linear Model,Oxford University Press. 6th Edition.

• James, F. (2006) Statistical methods in experimental physics,  World 
Scientific.



Extra information on χ2 
statistics

Going further into χ2 analysis: not all the 
information have the same importance on 

the results

The following slides are just a very brief introduction to 
diagnostic quantities. References are indicated at the end of 
this presentation



Diagnostics

Noramlized residuals

Leverages

Cook distance



1.  you have some data yi!
2.  you assume there exist a model such that {yi} 

can be described by a linear equation:!

!where A is a matrix, a  is the vector of 
parameters realized in nature, e is a vector of 
errors subsequent to the measurement or the 
process.!

3.  you would like to try your model:!

!where you put the component you believe 
responsible of the observations {yi} in X, 
columnwise (each column is a different 
component).!

4.  you estimate the α coefficients with linear 
regression (χ2 fit) through minimizing: "
"
where "
For fixed α and X, if e follow a normal 
distribution, then this function behaves like a 
χ2 with all the associated properties for 
interval estmation, statistical tests etc.!

Basic ideas (1/) 
Building the model and the χ2 
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So you assume {yi} is drawn from the equation:!
!
!
where you assume the errors are centered and follow a normal law: E(e) = 0 and  V(e) =1. "
!
Then your model is such that you would like to describe the {yi} sample you have:!
where εis therefore definef by:!
!
You want to find the best α which explain the {yi} observations, thus you minimize χ2(α) 
leading to the solution:!
!
Then the best model is:!
"
!
The residuals are then defined by!
!
If your model is right,                  should be close to 0 (compared to e). Then in this case    is an 
estimate of the initial errors. Thus you should expect to have                 and                 as for e.!
Of  course there are several ways to get this wrong:                  and/or                , or non 
constant V(e), or the X model is "wrong" such that!
!
=> always inspect the residuals to check the validity of the model and the fit!!

Basic ideas  
Introducing residuals...
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When we got the best model:     we introduce the H matrix which is called the "hat matrix" 
because "it puts a hat" on the y vector:!
!
!
This hat matrix is very important. "
It's a projection matrix "
(you can check that H2 = H). !
!
!
!
!
!
!
!
!
!
The diagonal coefficient are of upmost importance since they indicate the contribution of the!
in the best fit model value!
!
These  diagonal coefficients have a particular name: they are called the leverages:!
!
Leverages are linked but complementary to residuals as we will see (                                     ) !

Basic ideas  
...and leverages
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The "data space"!

The "model space"!
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Examining some typical cases in a very 
 simple situation: the straight line fit 


Low residual!
Low leverage! High residual!

High leverage!

Low residual!
High leverage!

High residual!
Low leverage!
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  is an influencial data point !

The precision on the 
slope & intercepts is 
much better because 

of this point!



Diagnostic quantities

• There are a lot of interesting diagnostic quantities on χ2 regression:

• Residuals: check normality distribution of residuals

• Leverages: check influence of each info on fit

• Cook Distance: a kind of distance with respect to the cloud of data points taking into 
account all the available info provided

• A lot of deletion diagnostics: deleting one of the data point, what is the influence on the fit?

• DFBETA: change on best fit param values.

• COVRATIO: change in uncertainties on best fit params.

• DFIT: change in model values at best fit

• Cook Distance can be viewed also as a deletion diagnostic.

• A diagnostic to check the collinearity aspect of the model: if there are many nuisance 
parameters, it could be that predictive effects are not each other independent or could be 
closely related. Collinearity among nuisance effects causes instability in the uncertainties and 
best fit values. The associated diagnostic quantity is called Variance Inflation Factor (VIF).



What to do with the diagnostics?


The idea behind is not to 
remove data points...!
!
The idea is to go deeper in the 
understanding of the inputs and 
their impacts on the results: 
inputs can be data points or 
systematic bias and uncertainties 
guess. If results are really 
depending on a few pieces of 
information... "
=> need to check the inputs 
again carefully. "
"
(robust studies, robust results)!
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Some references on diagnostics

• Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. 
New York: Wiley.

• Cook, R. D. and Weisberg, S. (1982) Residuals and Influence in 
Regression. London: Chapman and Hall.

• Williams, D. A. (1987) Generalized linear model diagnostics using the 
deviance and single case deletions. Applied Statistics 36, 181–191.


