Effect Cherenkov dans le TeO₂

Marco Vignati INFN Roma GDR neutrino, APC Paris, 21 June 2012

CUORE - @LNGS

Rate [counts/ (1 keV)]

30

25

20

- $^{nat}TeO_2$ bolometers (34% ^{130}Te), 750g each ($\Delta E = 5$ keV FWHM)
- Past: Cuoricino
 - 62 bolometers
 11 kg (¹³⁰Te) × 2 years,
 Bkg: 0.16 cpy/keV/kg
 - $T^{0v}_{1/2} > 2.8 \times 10^{24}$ years (90% CL) $\langle m_{\beta\beta} \rangle < 300 \sim 700$ meV
- Future: Cuore (data taking in 2015)
 Expected bkg: 0.01~0.04 cpy/keV/kg
 - Exp. $T^{0v}_{1/2} > 1.6 \times 10^{26}$ years @68% CL
 - $\langle m_{\beta\beta} \rangle < 40 \sim 94 \text{ meV}$
- Present: Cuore-0, a CUORE-like tower
 same mass of Cuoricino.

Bolometers

- Particle energy converted into phonons \rightarrow temperature variation.
- 0vDBD source embedded in crystals.
- Low crystal heat capacitance and low base temperature to see small temperature variations $\longrightarrow \Delta T \sim E/C$

Energy release

- Detector response in this configuration: ~ 0.1 mK / MeV
- Resolution @0vDBD ~ 5 keV FWHM

CUORE: the α nightmare

 MC: the background in CUORICINO is due to degraded α particles which release only a part of their energy in the detector (surface contaminations, mainly in copper).

- TeO₂ bolometers, per se, do not allow to discriminate β and α particles.
 - α bkg partially reduced by cleaning the detector parts.

LUCIFER - @LNGS

- Scintillating bolometers to discriminate the α background, enriched in ⁸²Se or ¹⁰⁰Mo.
 - Target: define the technology for a ZERO background (<1 count/ton/year), ~1-ton isotope experiment after CUORE.

- Light detector: Ge bolometer

Absorber bolometer: Zn⁸²Se or Zn¹⁰⁰MoO₄

Cherenkov light in TeO₂

TeO₂ does not scintillate, however MeV β 's emit Cherenkov light, unlike α 's [T. Tabarelli de Fatis, Eur. Phys. J. C 65 (2010) 359].

Simulated Cherenkov emission spectrum from 1.5 MeV γ in TeO₂ at low temperatures.

Simulated emitted Cherenkov light as a function of β/γ energy.

First test: 117g TeO2:Sm crystal

TeO₂:Sm (30 ppb ^{nat}Sm) 3.0x2.4x2.8 cm³ VM2002 116.65 g reflecting foil

Light detector of pure Ge 66 mm diameter, 1mm thick.

117g TeO2:Sm results JINST 6 (2011) P10005 Astropart. Phys. 35 (2012) 558

 β/γ 's light yield: 73 eV/MeV \longrightarrow 171 eV @2.527 MeV

CUORE crystal (5x5x5 cm³)

CUORE crystal (5x5x5 cm³)

CUORE with Cherenkov

CUORE with Cherenkov

CUORE with Cherenkov

...and with ¹³⁰Te enrichment

Sensitivity to v Majorana mass

Sensitivity to ν Majorana mass

Requirement: Signal/Noise ≳ 5

Light collection

- The signal detected in bolometric tests is 100 eV, against 870 predicted.
- To investigate the source of losses and the signal specs we built a setup for studies at room temperature in Rome.
 - First target: determine that the light we detect is effectively due to Cherenkov emission, not to scintillation...

Experimental setup

$$\bar{L}(\varphi) = \frac{\alpha}{\cos\varphi} \left(A_L + B_L(\varphi) \right)$$
$$\bar{R}(\varphi) = \frac{\beta}{\cos\varphi} \left(A_R + B_R(\varphi) \right)$$

A: dependent from the angle: Directional Cherenkov light.

B: independent from the angle. Could be scintillation or Cherenkov light diffused.

Light direction and shape

- Next steps:
 - Study the wavelength spectrum.
 - Study light collection with different reflector configurations.

Requirement: Signal/Noise ≳ 5

Light detectors

- S/N>5: if Signal ~100 eV \longrightarrow Noise ~ 20 eV σ
- Noise of Ge bolometers: 75-150 eV σ
 - Poor reproducibility: detectors used so far (70-80 eV σ) were selected among a large sample.
 - Noise dominated by detector vibrations which induce temperature variations.
 - Several attempts to lower the noise failed.

Possible alternatives

- Ge bolometers with Luke Effect: polarization of the Ge disk with electric field.
 - Electron-hole pairs produced in interactions are boosted, inducing a higher phonon signal. Thermal noise does not see the electric field.
 - Technique under investigation at LNGS and at Orsay.
- Transition Edge Sensors (TES): superconducting phonon sensors.
 - Sensitive to athermal phonons, insensitive to vibrations.
 - Technique proved in CRESST, but low reproducibility.
- Kinetic Inductance Detectors (KID): superconducting phonon sensors below the transition phase.
 - High reproducibility, but technique to be proved.

Working group

Sapienza Università di Roma and INFN Sezione di Roma F. Bellini, L. Cardani, N. Casali, I. Dafinei, F. Ferroni, M. Marafini, S.Morganti, F.Orio, D. Pinci, G. Piperno, D. Santone, C.Tomei, M.Vignati, C.Voena

> INFN Sezione di Milano Bicocca L. Pattavina, S. Pirro

Università degli studi di Genova S. Di Domizio

Conclusions

- The detection of the Cherenkov light in TeO₂ bolometers could improve the CUORE performances by a factor 3-6.
 - Combined with 90% ¹³⁰Te enrichment, CUORE could cover the inverted hierarchy of neutrino masses.
- We detected the light, but we are still far from the required performances: light detector Signal/Noise > 5. At present:
 - ► Signal ~ 100 eV
 - ► Noise ~ 75 eV
- Studies to increase the Signal by increasing the light collection are being pursued.
- New low-noise light detectors are being considered.