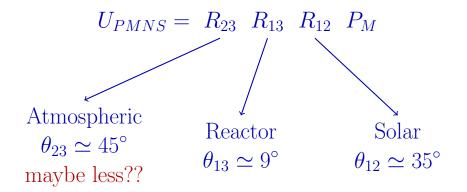
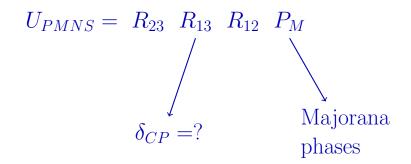
Flavor symmetries in the lepton sector (what changes with $\theta_{13} \neq 0$?)

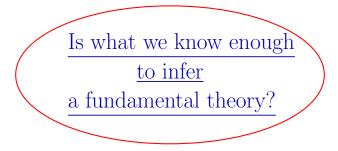
Enrico Bertuzzo


IPhT-CEA Saclay

21/06/2012


Continuous symmetries

I'll try to give a general overview of virtues and problems. Disclaimer: if your favorite model misses some problem...don't get angry, be happy! What we know...



$$\Delta m_{12} \simeq 7.6 \times 10^{-5} \text{ eV}^2$$

 $|\Delta m_{13}| \simeq 2.4 \times 10^{-3} \text{ eV}^2$

...and what we don't know

- ▶ Absolute neutrino mass scale
- ▶ Normal or Inverted Hierarchy?
- ▶ Majorana or Dirac?

- BASIS: when $m_{leptons} = \text{diagonal}$:
 - $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry in ν sector
 - \mathbb{Z}_N symmetry in charged lepton sector

 $\longrightarrow \begin{array}{l} \text{We want a larger symmetry broken} \\ \text{down to these residual symmetries} \end{array}$

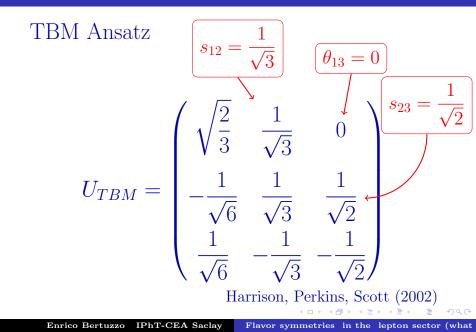
The flavor symmetry program

- Choose a PMNS matrix (compatible with data)
- Infer $\mathbb{Z}_2 \times \mathbb{Z}_2$ generators (S,U), choose "N" of \mathbb{Z}_N , infer its generator (T)
- Construct the irreps of the group generated by $\langle S, U, T \rangle$
- ► Choose representations for matter fields (usually L = 3)

▶ Flavor symmetry breaking sector:

$$\begin{array}{cccc} G & \stackrel{\phi_{S,U}}{\longrightarrow} & G_{S,U} \\ G & \stackrel{\phi_T}{\longrightarrow} & G_T \end{array}$$

 Make sure that the vacuum alignment can be obtained in a reasonable way by minimizing a suitable potential for the flavons


- ▶ Usually masses fitted, not predicted
- Usually, additional symmetries needed to keep lepton and neutrino sector separated
- Usually, vacuum alignment requires additional fields to work
- ► Effective theory:
 - \rightarrow next-order terms play an important role, but <u>much more</u> parameters introduced in the theory

 \rightarrow loss of the (already partial) predictivity

.

- \blacktriangleright Obtain from the very beginning a sizable $$\theta_{13}$$
- After all, θ_{13} (quite?) small \rightarrow maybe a correction to a simpler pattern?

A well known example

A (partial) list: $A_4, S_4, \mathbb{Z}_7 \rtimes \mathbb{Z}_3, \Delta(27), \Delta(96), PSL_2(7)$...

Common features:

- ► At leading order, TMB mixing
- ► At next-order, deviations from TBM

An Example

$A_4 \times \mathbb{Z}_3 \times U(1)_{FN}$ model by Altarelli-Feruglio

[hep-ph/0504165, hep-ph/0512103, ...]

 $\theta_{13} = 0$ at leading order; $\theta_{13} \neq 0$ at next-to-leading order, dependence on:

- ▶ neutrino masses
- ► 4 additional parameters coming from correction to neutrino mass matrix and vacuum alignment

Corrections expected also to the other angles, with dependence on a (partially) different list of parameters...

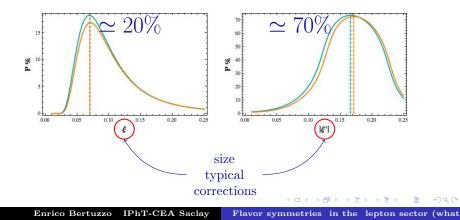
Not so difficult to have a sizable θ_{13} and (relatively) small corrections to θ_{12} , θ_{23} playing with parameters (although one would expect corrections of the same order) Of course not. Two possible solutions:

- we try to align the corrections into a specific direction (*i.e.* to enhance θ₁₃): DONE
- we try to obtain from the very beginning sizable θ₁₃: DONE

An Example

A suitable group to obtain $\theta_{13} \simeq \mathcal{O}(\lambda_c)$:

see Lin, 2009


What changes?

- ▶ vacuum alignment
- ► additional Z₄ guarantees separation between neutrino and charged lepton sector also at NLO

Comparison

Altarelli-Feruglio-Merlo-Stamou, 1205.4670

typical A_4 "aligned" A_4

- ▶ After 10 years of effort, still a long way to go
- On the one hand, many symm groups suitable for description of neutrino physics: indication that we are on a correct way?
- On the other hand, extremely flexible, difficult to use data to discriminate
- Also simplest possibilities are not so simple, need for additional ingredients...