

Towards a French Academic Cloud

Frédéric Suter
IN2P3 Computing Center

Past

- ► Then, there was the Grid
- Some personal assessments

Present

- Now, there is the Cloud
- Several views of the same concept

Future

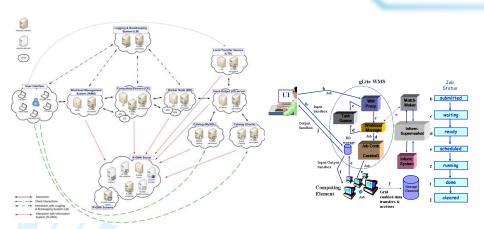
- A French Academic Cloud
- ► First Step and Next Move

10 years ago, there was the grid

- ► A wonderful promise!
 - Access to an unprecedented amount of computing and storage resources by just plugging your laptop
 - Analogy with the power grid

- Also a crucial need
 - ▶ LHC expected to produce Peta-Bytes of data per year

The (European) Grid Key Points



- Users
 - Mostly from the HEP community
 - ► Also from the Biomed community
- ▶ Jobs
 - Mostly long and sequential
 - ► Tightly linked to (huge) data
- Technology
 - ► Globus first . . .
 - then gLite
 - Scientific Linux
- Organization
 - Centralized (around the CERN)
 - Funded through DataGrid, E-GEE I, II, and III

gLite Deployment and Job Life Cycle

Assessment^(*) after 10 years – Successes

- ▶ The distributed infrastructure is up and running
 - ► At a European scale
 - ► With a 90+% availability
- ▶ Tons of jobs running, with tons of data stored and moved!
- ▶ VOs are well structured
- Strong authentication and accounting mechanisms
 - X509 Certificates and Nagios
- Successful transition towards a distributed organization
 - From E-GEE to EGI and its federation of NGIs

(*) This is a totally personal assessment.

Assessment(*) after 10 years – Fails

- Software infrastructure far too complex and constrained
 - Discourage many new potential users
 - ▶ More and more VOs are bypassing the job management chain
 - ► Generalization of pilot jobs (DIRAC, Diane, Glide-ins, ...)
- ▶ Part of the success is due to the specific of the main target community
 - Physicists are not afraid of computing and coding
- ▶ Bad support of HPC jobs
 - Running an MPI job on the Grid is a hassle
- Performance quite impossible to model
 - Too variable
 - Also prevents reproducibility
- ▶ In France: too scarce fostering between Research in CS and Production (admin and users)
 - since the DataGrid project!

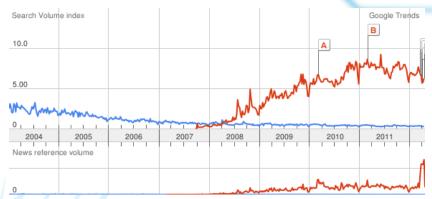
(*) This is a totally personal assessment.

Past

- ► Then, there was the Grid
- Some personal assessments

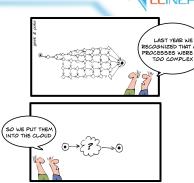
Present

- Now, there is the Cloud
- Several views of the same concept


Future

- A French Academic Cloud
- ► First Step and Next Move

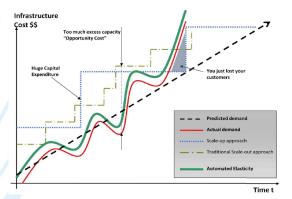
And Now, Here Comes the Cloud!


- ▶ Replaced Grid (as a buzzword at least) in less than 5 years!
- ▶ Most CS conferences are now rather on Clouds than Grids

But, What is the Cloud?

- ► A wonderful promise!
 - Access to an unprecedented amount of computing and storage resources by just plugging your laptop
 - Everything is hidden by a cloud
- Also a crucial need
 - Most sciences are now data-intensive

THE CLOUDS MAKE YOUR LIFE EASIER


Still a large scale distributed computing and storage infrastructure

Main Motivation for Clouds: Money!

▶ But not the only motivation . . .

Source: http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf

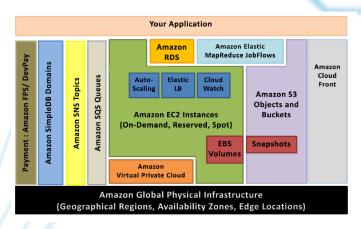
A Commercial View

Amazon Web Services

- ► Commercial web site amazon.com (1995)
 - ► Fluctuating traffic (Christmas burst), 24/7 availability
 - Strong expertise on data analysis and stock management
- ▶ How to maximize the outcome of underused servers?
 - ► Rent them to individuals!

AWS is THE reference

- ▶ pay-as-you-go model and EC2/S3 interfaces
- More than 20 products
 - Dropbox, Slideshare, Netflix, Zinga, . . .
- 5 data centers scattered across the world



General Overview of the AWS Ecosystem

Source: http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf

What Shall We Keep From This View?

- ► Cloud computing is a way to maximize the outcome of a distributed infrastructure
- ▶ Diversity of service offers is a key to success
- ▶ Viable economic model
- ▶ Importance of user interfaces
- ► Elasticity is an interesting new concept
 - Offer great production opportunities and research topics

A Governmental View

- ▶ Objective
 - ► Build a trusted data center to store French strategic data
 - ► Namecode Andromede
 - ► laaS Cloud
 - Computing, storage, and network offer
 - Development of an Open Source software stack
- ▶ Who is it for?
 - French administration and companies
- ► Budget and Operation
 - 225 millions euros (75 millions through the FSN)
 - Operated by Orange and Thales

A Governmental View

- ► A concurrent project: Nuage
 - ► Operated by a consortium of 7 French SME
 - ► Including two research teams on distributed systems
- ▶ Budget
 - ▶ 10 millions euros (5 millions through the FSN)
- ► Focus on Green Data Centers
 - Original design
 - Reduced energy consumption and low PUE
- Claimed strength
 - Smaller project but easier and faster to set up!

What Shall We Keep From This View?

- ▶ Cloud computing is strategic for the French government
 - ► At least until May, 6th . . .
- ► A lot of invested money
- ▶ Strong incentive to not depend on non-French companies
 - ► Keep a total control on where data are stored and analyzed
- ► Energetic concerns
 - ► Through workload consolidation

A Production View - FG

- ► The CAPRI project
 - ► Answer to the EquipEx call for proposal
- ▶ Objectives
 - Provide an innovative Data-Scope instrument of unprecedented capabilities
 - ► Cover laaS, PaaS, and SaaS views of a cloud.
- ► Approach
 - User-centric
 - Build upon some well identified pilot use cases
 - ► Close collaboration Applications—Research—Industry
 - Intrinsically multidisciplinary project

A Production View – CERN

- ► The LX Cloud initiative
 - ▶ Migrate the CERN IT to the Cloud
- ▶ Objectives
 - Service consolidation
 - Virtualization of batch resources
 - ► Both should ease the management
- ▶ 90% of resources to be virtualized by the end of next year

A Production View – EGI

- ► EGI Federated Cloud Task Force
 - Led by Matteo Turilli, Oxford e-Research Centre, University of Oxford
- ▶ Objectives
 - ► Write a blueprint document
 - ► Deploy a test bed
 - ▶ Integration of virtualised resources, monitoring and accounting
 - ► Investigate requirements
 - Provide feedback
 - Identify user communities willing to be early adopters
 - ► Identify indirect issues
- ▶ Mandate: from September 2011 to March 2013

EGI TF Investigated Scenarios

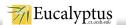
- ► Scenario 1: VM Management
 - "I want to start a single existing VM image on a remote cloud"
- Scenario 2: Managing my own data
 - "I want to start a VM instance from an image that I have created"
 - "I want to associate my running VM with a data set in the Cloud"
 - "I want to take snapshots of my running VM for restart purposes"
- Scenario 3: Integrating multiple resource providers
 - "I want to choose on which resource provider I want to start my single VM"
 - "I need to know about the VMM capabilities the provider offers"
- Scenario 4: Accounting across Resource Providers
 - "My usage across different resource providers needs to be recorded and reported to multiple aggregators"
- Scenario 5: Reliability/Availability of Resource Providers
 - "Give me info on the reliability/availability and status of the remote VMs"
- ► Scenario 6: VM/Resource state change notification
 - "Told me when the status of the [VM] instance I am running changes"
- ► Scenario 7: AA across Resource Providers
 - "I want to use my existing identity, and not re-apply for new credentials"

EGI TF Roadmap

OXFORD

What Shall We Keep From This View?

- Cloudification in on the move!
 - At least at the laaS level
- ▶ Importance of federation aspects
 - ► Need to build upon standards (OCCI, CMDI)
 - ► Let the site decide of their own local policies
- ► Efforts driven by use cases/scenarios
 - Do what is needed only
- Keep the best features of the Grid
 - ► Single Sign-on, accounting and monitoring



- ▶ Many Open Source laaS management systems
 - ► OpenStack, OpenNebula, Nimbus, Eucalyptus
 - ► Some come from research
 - ► Other from industry
- Two stacks emerge
 - OpenNebula
 - Deployed by early adopters
 - OpenStack
 - ► More promising for newcomers
 - A lot of developing force (a.k.a. money) behind
 - Strong support of industry
- ► All aim at interoperability
 - ▶ Through standardized (OCCI, CDMI) or de facto (EC2, S3) interfaces

OpenNebula.ora

What Shall We Keep From This View?

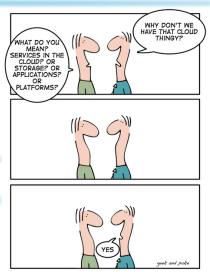
- ► Cloud will probably be Open Source
 - ► Coherent with governmental trends
- ► Open Stack is rising!
 - ► A feature is missing? Just ask, someone will add it soon!
- Every stack has its own strengths
 - Keep them in mind whatever the chosen one!

A Research View – Grid'5000

- ► The Grid'5000 platform
 - ▶ An infrastructure for research on Grid, Clouds and other DCI
 - Customize, deploy, test, and do over
- ▶ Towards virtualized environments
 - ► Historical bare metal laaS mode
 - ➤ Since 2005!
 - using OAR (batch) and kaDeploy (system image deployment)
 - Network isolation (KaVLAN)
 - Virtual machine deployment (Xen, KVM)
 - Many supported Cloud stacks
 - OpenNebula, Nimbus, and Open Stack soon

A Research View – Grid'5000

- ► Many hot research topics investigated
 - Virtualized resource management
 - Including scheduling, mapping, and migration
 - Managing Big Data
 - Including MapReduce, storage resource management, application deployment
 - Energy consumption monitoring and resource management
 - ► Fault-tolerance and resilience
 - Sky computing
 - Using several laaS management stacks as a single environment


What Shall We Keep From This View?

- ▶ A lot of top level CS research teams in France
 - ▶ Many of them involved on topics related to cloud and big data
- ▶ Will propose a platform dedicated to experiments involving big data
- Existing collaborations with production clouds
 - ► Technological and expertise transfers
 - Dimensioning experiments
 - Log analysis and injection in a simulation context
- ▶ Grid'5000 provides the perfect playground to test new solutions

THE CLOUD THINGY

A User view – Some Use Cases

- ▶ Have my own nice customized VM with all the software package I need
- ▶ Access to a virtually infinite pool of resources and manage it by myself
 - Similar to the pilot job approach on the Grid
- ▶ Keep my old fashioned Grid stack on top an laaS Cloud
 - ► The StratusLab approach
- ▶ Do everything through a simple web portal
 - Required by non-CS specialists
 - as in the IRT BioAster and IMI eTRIKS projects
- ▶ Access to small subsets of huge data in a cloud fashion

What Shall We Keep From This View?

- ▶ Most of new potential users of cloud
 - Do not know what they expect from the Cloud
 - Do not (sometimes) even know what they need
 - Glaring example of the IRT BioAster
- We cannot assume the same public as for the Grid
 - Users that see CS as a magical (but frightening) tool
 - No more skilled physicists
- Implies to start with some well defined use cases

Past

- ► Then, there was the Grid
- Some personal assessments

Present

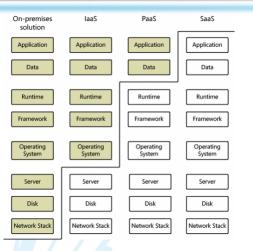
- Now, there is the Cloud
- Several views of the same concept

Future

- A French Academic Cloud
- ► First Step and Next Move

Towards an French Academic Cloud

- **▶** Definition
 - ➤ Deploy a Cloud infrastructure to serve the computing and storage needs of french academic institutes (universities, research institutes)
- **▶** Expectations
 - Not miss the Cloud (r)evolution
 - Control our technical and strategic decisions
 - Answer to government expectations related to Big Data challenges
 - ▶ Be coherent with strategies of partners (CERN, EGI, ...)
 - ▶ To what extent?
 - Foster collaborations with research in CS and industry
 - Not reproduce the same errors as for the Grid
 - Benefit (and make users benefit) of the strong expertise on
 - Data management
 - ► Federated distributed computing infrastructures



- ▶ Initial test bed
 - ► Funded by France Grilles (cont'd in 2012)
 - ► Two sites: CC IN2P3 and IRIT, Toulouse
 - Other potential sites (LAL, LPHC)
- Technical choices
 - ► Thorough study conducted at CC IN2P3
 - Open Stack holds the rope
 - ▶ Be part of a federation is a main concern (⇒ standards)
- Use cases
 - Provided by IRT BioAster and eTRIKS projects
 - More to come with new projects (Mastodons, Big data, ...)
- Aims
 - Run jobs in production
 - Test solutions coming from research in CS

Which aaS do we target?

- laaS is on the way
 - Virtualized batch
- Most users would like SaaS
 - ► Web portals mainly
- Will be driven by use cases

Source: "Windows Azure Step by Step" By Roberto Brunetti, Microsoft Press

- ▶ Integrate the EGI task force test bed
 - Once the stack is up and running
- ▶ Keep an open eye on the choices made by other main partners
- ▶ Serve the applications of on-going projects
- ▶ Set up a group of reflexion with
 - ► People operating the production Grid
 - Researchers working on cloud and data management
 - Power users from various communities
- ⇒ Define a strategic roadmap for the next 5 years

I don't care if my cloud computing architecture is powered by a grid, a mainframe, my neigbour's desktop or an army of monkeys, so long as it's **fast**, **cheap and secure**.

Sam Johnston (http://samj.net/)

I don't care if my cloud computing architecture is powered by a grid, a mainframe, my neighbour's desktop or an army of monkeys, so long as it's **fast**, **cheap and secure**.

Sam Johnston (http://samj.net/)

let's try to avoid the army of monkeys!