Dark Matter search with liquid xenon: from XENON100 to next generation experiments

Presented by Samuel DUVAL

Direct detection of Dark Matter

- the XENON100 experiment
- XENON100 results

Toward large scale detectors

- XENON1T
- DARWIN

Photodetection in liquid xenon

• a large-area GPM

Something is missing...

Z. Frei et al., Astrono. J 111 (1996) 174 and K.G. Begeman, A.H. Broeils, R.H. Sanders, MNRAS 249 (1991) 523

Something is missing...

Z. Frei et al., Astrono. J 111 (1996) 174 and K.G. Begeman, A.H. Broeils, R.H. Sanders, MNRAS 249 (1991) 523

One can see it by gravitational effects...

Gravitational lensing

W.N. Colley and E. Turner (Princeton University), J.A. Tyson (Bell Labs, Lucent Technologies) and NASA

One can see it by gravitational effects...

Gravitational lensing

Dark matter reconstructed map by Canada-France-Hawaii Telescope Lensing Survey

W.N. Colley and E. Turner (Princeton University), J.A. Tyson (Bell Labs, Lucent Technologies) and NASA

L. Van Waerbeke, C. Heymans, CFHTLensing Collaboration, AAS meeting (2012)

One can see it by gravitational effects...

The « Bullet Cluster »

Map of gravitational potential from weak gravitational lensing

Superimposed X-ray plasma image (Chandra X Observatory)

The gravitational potential does not follow the plasma distribution (main baryonic mass component) but rather traces the galaxies distribution...

D. Clowe et al., Astrophys. J. 648 (2006) L109

Cluster collision

What do we know about Dark Matter?

K. Nakamura et al.(PDG), JP G 37, 075021 (2010), updated in 2012

Direct Dark Matter Detection

Direct Dark Matter Search Modalities

ZEPLIN-III

Direct DM Detection around the world

XENON100 : Underground experiment

Laboratori Nationali del Gran Sasso, Italy 1400 m Rock (3600 water equivalent, reducing muon flux ~10⁶)

A double phase liquid xenon TPC

Nuclear/Electronic recoil discrimination and fiducialization

XENON 100 detector

Meshes

TPC

PTFE panels

161 kg of LXe
>99 kg active veto
>62 kg TPC
>48 kg fiducial volume

Veto PMTs

Top Array : 98 PMTs

Maximum coverage

Removing the background

 $E_{max} = 687 \text{ keV}; \tau = 10.76 \text{ y}$

Krypton column

Electromagnetic background

E. Aprile et al. (XENON100), Phys. Rev. D 83, 082001 (2011) & E. Aprile et al. (XENON100), Astropart. Phys. 35:43-49, 2011

Toward ultra-pure LXe

Charge yield

- Electrons are captured by electronegative impurities during the drift (30 cm)
- Xenon is continuously purified in gaseous phase
- Electron lifetime is measured with $^{137}\mathrm{Cs}~\gamma$ source during calibrations

Position corrections of S1 & S2 signals

Primary scintillation (S1):
 ➤ Light collection efficiency measured with ¹³⁷Cs, AmBe, ^{131m}Xe

Proportional scintillation (S2):
 ➤ Charge attenuation by drift time (τ_e)
 ➤ XY corrections

Spatial resolution : $\sigma_{(x,y)} \approx 3 \text{ mm}$ and $\sigma_z \approx 0.3 \text{ mm}$

Gamma Calibrations

¹³⁷Cs

Energy [keVee]

⁶⁰Co

 10^{3}

S1, S2 anti-correlation

Different calibration sources

▶662 keV_{ee} (¹³⁷Cs), 1.17/1.33 MeV_{ee} (⁶⁰Co) ≻40 keV_{ee} (¹²⁹Xe (n,n'γ)129Xe) by ²⁴¹AmBe ≻80 keV_{ee} (¹³¹Xe (n,n'γ)131Xe) by ²⁴¹AmBe ≻164 keV_{ee} (^{131m}Xe) by ²⁴¹AmBe ≥236 keV_{ee} (^{129m}Xe) by ²⁴¹AmBe

LY(122 keV_{ee}) = 2.20±0.09 pe/keVee @ 0.53kV/cm

Background discrimination

25(

E. Aprile et al. (XENON100), Phys. Rev. Lett. 105, 131302 (2010)

Results from 100.9 days run

E. Aprile et al. (XENON100), Phys. Rev. Lett. 107, 131302 (2011)

WIMP exclusion curves in σ_{SI} vs \textbf{m}_{χ} space

E. Aprile et al. (XENON100), Phys. Rev. Lett. 107, 131302 (2011)

XENON is progressing fast

and is still taking data!

Improvements

- Less Kr (50% background reduction)
- Improved S2-based trigger with lower trigger threshold
- Better LXe purity, much more calibration data
- New analysis released soon

XENON is moving in Hall B

XENON1T experiment

is already under construction!

Goal : 1T fucial volume with 10⁻⁴⁷ cm² sensitivity!

XENON collaboration people

XENON collaboration : 15 institutes

RESTOX : A Liquid Xenon station (REcovering and STOrage system of Xenon1T)

PAYS DE LA LOIRE

RESTOX : A Liquid Xenon station (REcovering and STOrage system of Xenon1T)

Pressure difference and ReStox cooling power (1 kW net) will offer a fast and safe recovering process.

Tests on a small model (130 kg capacity) are foreseen in 2013 at Subatech

dark matter wimp search in noble liquids DARWIN **DARWIN : DARk matter Wimp search with Noble liquids**

Gran Sasso

DARWIN project

Design study of a next-generation noble liquid dark matter facility in Europe

- WP1 Management (UZH)
- WP2 Detector infrastructure (Münster)
- WP3 Light read-out (INFN)
- WP4 Alternative charge read-out methods (ETHZ)
- WP5 Electronics and DAQ (Subatech)
- WP6 Underground and shielding infrastructure (IFJ PAN)
- WP7 Material screening and background modeling (MPIK)
- WP8 Science impact (Nikhef)

Improving the charge-readout sensitivity by maximizing the photodetection coverage and keeping localization power

DARWIN Large-Area Gaseous PhotoMultipliers

Using Micro-Pattern Gaseous Devices : THGEMs and/or micromeshes

Collaboration between Subatech/WIS-Israel/Coimbra-Portugal

@ WIS : multiple THGEM concept (in two-phase LXe)

@ Nantes : THGEM/PIM/MICROMEGAS (in single phase LXe)

DARWIN

[•] Gaseous Photomultiplier principle

THGEM: Efficient **photoelectron collection** + low gain PIM/MICROMEGAS: **ion blocking** (prevents CsI damage) & gain

S. Duval et al., 2009 JINST 4 P12008 & S. Duval et al., 2011 JINST 6 P04007

DARWIN

GPM detector

 P_{GPM} = 1100 mbar, T = 171 K, P_{Xe} = 1200 mbar, flow rate < 2 ln/h, $\Delta T_{in/out} \simeq 2K$

DARWIN

LXe Scintillation pulses recording

First pulse of a GPM in LXe !

S. Duval et al., 2011 JINST 6 P04007

DARWIN

Gain measurements with ⁵⁵Fe

S. Duval et al, NIM A (2011), doi: 10.1016/j.nima.2011.11.018

DARWIN

Fast signal direct readout

S. Duval et al., NIM A (2011), doi: 10.1016/j.nima.2011.11.018

Conclusion & Prospects

- Proof of concept (2010)
- High gains at LXe T ~10⁶ (2011)
- Efficient ion blocking expected also in Ne-mixtures
- Csl photocathode studies in progress*
- Large-size prototype is designed and ready for being assembled

Toward 20 inches diameter window

5" window

*A. Breskin et al., NIMA 639 (2011) 117-120 & S. Duval et al, NIM A (2011), doi: 10.1016/j.nima.2011.11.018

Conclusion & Prospects

Liquid xenon TPC is naturally well suited for large scale DM detectors

Large area gaseous photomultipliers will play an important role in those experiments

but not only...

Other interesting applications :

- **3**γ medical imaging with single phase TPC at SUBATECH (collaboration with KEK-Japan)
- Rare event noble-liquid detectors (collaboration with WIS-Israel and BINP-Russia)