La cosmologie à l'IN2P3

Nicolas Regnault (LPNHE)

Le modèle standard

Paramètres cosmologiques

- Densités et équations d'état des fluides peuplant l'Univers (en unités de $\rho_{critique}$).
- Densité $\rightarrow \Omega_{stuff}$
 - Ω_{m} : matière non relativiste (CDM)
 - Ω_b : baryons.
 - Ω_r : matière relativiste ou radiation (négligeable)
 - Ω_{k} : courbure
 - $\Omega_{\Lambda} / \Omega_{X}$ constante cosmologique / "énergie noire" \rightarrow Équation d'état de l'énergie noire: $p_X = w \rho_X$

Paramètres cosmologiques

- Fluctuations primordiales
 - Scalaires $P_s(k) \sim A_s k ns-1$
 - Tensorielles $P_t(k) \sim r A_s k n^{t-1}$
- Réionisation
 - **T**
 - Zreionisation

VCDW

L'Univers est ~ plat (CMB+HO), avec une faible densité de matière noire non baryonique (CMB+clusters+BAO), et sa densité d'énergie totale est dominée par une énergie noire répulsive de nature inconnue (supernovae)

• Equation d'état de l'énergie noire

$$p = w\rho \quad w < -1/3$$

 $w = -1 \rightarrow constante cosmologique$

 $w > -1 \rightarrow$ "quintessence"

w < $-1 \rightarrow$ trucs exotiques

Cosmologie à l'IN2P3

- 3 sondes principales
 - CMB
 - Supernovae de type Ia
 - Pic Acoustique des Baryons
- Futur : 2 axes de recherches principaux
 - Nature de l'énergie noire (w)
 - Détection des modes B / fluctuations tensorielles

Cosmic Microwave Background

Anisotropies de temperature

Avant la recombinaison...

• Plasma (photons + baryons + matière noire)

Oscillations + croissance

- Fluctuations primordiales (P(k) a kns-1)
- $(\rho_m, \rho_b, \rho_{\gamma}, n_s, ...) \rightarrow anisotropies$
 - (CMBFast (Seljak & Zaldarriaga, 1996)
 - CAMB (Lewis, 2008)

Spectre de puissance (TT)

Class	Parameter	WMAP Seven-year ML ^b
Primary	$100\Omega_b h^2$	2.227
	$\Omega_c h^2$	0.1116
	Ω_{Λ}	0.729
	n_s	0.966
	τ	0.085
	$\Delta^2_{\mathcal{R}}(k_0)^{\mathrm{d}}$	2.42×10^{-9}
Derived	σ_8	0.809
	H_0	$70.3 \rm km s^{-1} Mpc^{-1}$
	Ω_b	0.0451
	Ω_c	0.226
	$\Omega_m h^2$	0.1338
	Zreion ^e	10.4
	t_0^{f}	13.79 Gyr

(Komatsu et al, 2011)

Polarisation

• Photons CMB faiblement polarisés

(~ 10% du signal)

- Thomson scattering
 - Au moment de la dernière diffusion
 - (si anisotropies quadrupolaires locales)
 - Au moment de la réionisation

Polarisation

Modes E / Modes B

Détection des modes B

- $| \sim 10$ (domine sur lensing) $\rightarrow | > 1000$ (lensing)
 - Test inflation
 - Levée dégénerescence géométrique
- Signal très ténu dépend de r = (T/S)
 - bcp de photons, résolution ~ 1 arcmin
 - \rightarrow grand miroir
 - ~ all sky (grandes échelles)

→ grand plan focal (matrices de bolomètres)

• Contrôle des systématiques instrumentales

 \rightarrow modulation du signal (lame $\frac{1}{2}$ onde en rotation)

Telescopes au sol

- Atacama Cosmology Telescope (ACT)
 - 6-m, res ~ 1 arcmin
 - http://www.princeton.edu/act/
- South Pole Telescope (SPT)
 - 10-m, res ~ 1 arcmin
 - http://pole.uchicago.edu/
- Polarbear
 - http://bolo.berkeley.edu/polarbear
- EBEX (ballons) \rightarrow E and B Experiment (EBEX)
 - http://calvin.phys.columbia.edu/group_web/ebex/index.php?a=intro

Missions Spatiales

- CMBPol
 - http://cmbpol.uchicago.edu/index.php
- B-Pol
 - http://www.b-pol.org/index.php

→ pour le moment, projets sol/ballons prioritaires ("technology not ready", "risk of NULL signal").

Activités IN2P3

- Historique
 - Archeops (ballon CNES, PCC/SPP, CRTBT Grenoble)
 - Vol scientifique: 2002
 - Mesure 1er pic acoustique
 - Test technos Planck
 - (froid + bolos)

Planck

- Implication IN2P3 dans HFI
 - (IN2P3 + INSU + CEA)
 - PI: J.-L. Puget (IAS)
- 6 bandes (HFI)
 - (soustraction avant-plans)
- Resolution ~ 5 arcmin
- Spectres en T \rightarrow I \sim 2000
- Polarisation E jusqu'à l ~ 1000
- Polarisation B ??? Ca dépend de r...
- Résultats ~ début 2013

R&D : QUBIC

- Q & U Interferometer for cosmology
 - 40-cm
 - lame $\frac{1}{2}$ onde dans plan pupille
 - interférométrie
- Mesures au sol (Dôme C Concordia)
- France + Italie + Irlande + UK + USA
- APC + CSNSM : R&D bolomètres (DCMB)

Supernovae

Chandelles standard distances de luminosité

 Quasi-dégénerescences → 1 paramètre bien mesuré.

- Observables:
 - Redshift $z=\delta\lambda/\lambda$
 - Flux apparent
 - Angle apparent
- Chandelles standard

$$\Phi_{obs} = \frac{L(\lambda_{obs}/(1+z))}{4\pi(1+z)\boldsymbol{d_L}^2}$$

d_L(z) → histoire (intégrée)
de l'expansion

Histoire de l'expansion

Supernovae de type Ia

Explosions thermonucléaires (WD)

- Événements rares (~1 / Gal / 1000 yr)
- Lumineux (~10¹⁰ luminosités solaires)
- Brefs (~ 1 month)
- $\sigma(L_{max}) \sim 40\%$

Standardisables $\rightarrow \sigma(\text{Lmax}) \sim 15\%$

Spectroscopie

- Identification (raies larges)
- Composition chimique + vitesses

Distances de luminosité

Flux ds référentiel au repos

@ differents redshifts

 \rightarrow modèle empirique \rightarrow interpolation entre mesures.

→ Entrainés sur supernovae proches et distantes.

SALT2 (Guy et al, 2007), SIfTO (Conley et al, 2007), MLCS2k2 (Jha et al, 2007), CMAGIC (Wang et al, 2003)...

CANADA-FRANCE-HAWAII TELESCOPE

The MegaCam imager

- CEA / DAPNIA
- 1 deg2, 36 2k x 4k CCDs
- Good PSF sampling (0.18'')
- Excellent image quality (0.7'')
- ugriz bands (350 \rightarrow 950 nm)

(Astier et al, 2006)

(Guy et al, 2010, Conley et al, 2010)

Contraintes sur w

(Sullivan et al, 2011)

Contraintes sur w

(Sullivan et al, 2011)

Systematics

Description	Ω_m	w	Rel. Area ^a	w for $\Omega_m = 0.27$
Stat only	$0.19\substack{+0.08\\-0.10}$	$-0.90\substack{+0.16\\-0.20}$	1	-1.031 ± 0.058
All systematics	0.18 ± 0.10	$-0.91\substack{+0.17\\-0.24}$	1.85	$-1.08\substack{+0.10\\-0.11}$
Calibration	$0.191\substack{+0.095\\-0.104}$	$-0.92\substack{+0.17\\-0.23}$	1.79	-1.06 ± 0.10
SN model	$0.195\substack{+0.086\\-0.101}$	$-0.90\substack{+0.16\\-0.20}$	1.02	-1.027 ± 0.059
Peculiar velocities	$0.197\substack{+0.084\\-0.100}$	$-0.91\substack{+0.16\\-0.20}$	1.03	-1.034 ± 0.059
Malmquist bias	$0.198\substack{+0.084\\-0.100}$	$-0.91\substack{+0.16\\-0.20}$	1.07	-1.037 ± 0.060
non-Ia contamination	$0.19\substack{+0.08\\-0.10}$	$-0.90\substack{+0.16\\-0.20}$	1	-1.031 ± 0.058
MW extinction correction	$0.196\substack{+0.084\\-0.100}$	$-0.90\substack{+0.16\\-0.20}$	1.05	-1.032 ± 0.060
SN evolution	$0.185\substack{+0.088\\-0.099}$	$-0.88\substack{+0.15\\-0.20}$	1.02	-1.028 ± 0.059
Host relation	$0.198^{+0.085}_{-0.102}$	$-0.91\substack{+0.16\\-0.21}$	1.08	-1.034 ± 0.061

Table 7: Identified systematic uncertainties

(Conley et al, 2011)

Chaine métrologique

• Calibration relative en flux

 \rightarrow standard fondamental

- → modèles naines blanches pure H
- Problème

Standard fondamental

objet astrophysique...

- Redondances chaine de calibration
 - \rightarrow incertitudes ~ 0.5%
 - \rightarrow target ~ 0.1%

Standard de laboratoire

Installation @ Hawaii

Systematics

- Systématique dominante
 - \rightarrow calibration photométrique
 - \rightarrow calibration stellaire : gros progrès (0.5%)
 - → calibration instrumentale : intense activité R&D
- Systématiques astrophysiques
 - \rightarrow sous dominantes
 - \rightarrow solubles dans la statistique (?)

(plus de SN \rightarrow meilleur entrainement modèles empiriques)

Début détection corrélation propriétés SN ↔ environnement

(Sullivan et al, 2010)

Futur: grands surveys photométriques

		FOV	aperture	first light	status	who/where
-	SDSS-III	7 deg2	2.5m	2008	observing	Apache Point
	VST @ ESO	1 deg2	2.6 m	2011	observing	ESO/Paranal
	HyperSuprimeCam	2.3 deg2	8 m	2012	~first light	Japan/Subaru
_	Dark Energy Survey	3 deg2	CTIO-4m	2012	commissioning	Fermilab/CTIO
	Pan StarsS	7 deg2	1.8 m	2007	observing	Univ. Hawaii
	Pan StarsS 2	7 deg2	1.8 m x 2	2013 ?	funded	Univ. Hawaii
	PFS on Subaru	2.3 deg2	8.2m	2017	~funded	Japan/Subaru
-	BigBoss (spectro)	7 deg2	4m	?	not funded	DOE/NOAO
-	LSST	10 deg2	8 m	2019	approved	DOE/NSF
	WFIRST	0.7 deg2	1.3 m	2020(+ ?)	??	NASA
-	Euclid	0.5 deg2	1.2 m	2019	« adopted »	ESA

Le futur

• Imagerie grand-champ

Visible (z<1) & infrarouge (z>1)

- Dark Energy Survey (DES)
 - (4-m, 3 deg², visible)
- Large Synoptic Survey Telescope (LSST)
 - (8-m, 9 deg², visible, première lumière ~ 2019)
- Euclid
 - (1.2-m, 0.5 deg², visible & infrarouge, 2019?)

Surveys SNe

- Statistiques importantes ~ O(10000)
- Gamme de décalage spectral (z)
 - @ z ~ 0.05 (PTF, SkyMapper)
 - @ 0.3 < z < 1 (Visible + NIR : DES, LSST)
 - @ $z > 1 \rightarrow$ infrarouge \rightarrow mission spatiale, Euclid.
- Excellente calibration (0.1%)
- Excellent échantillonage courbes de lumière
 - 3 bandes , -10 < t < +30 \rightarrow mesure amplitude ~ 3%
 - Pas de spectro!

Dark Energy Survey

- Blanco 4-m telescope (CTIO, Chile)
- DECam (Fermilab)
 - 570 Mpixels, 74 red sensitive CCDs, ~ 3 deg^2
- 570 nuits (5 ans)
- Survey principal:
 - 5000 deg² (BAO + Lensing)
- SNe Ia (6 30 deg²)

→ 3000 Sne Ia @ z<1

https://www.darkenergysurvey.org/

LSST

- 8.4 m (6-m equivalent)
- 9.6 deg² (ugrizY)
- 3 Gigapixels
- Lecture rapide ~ 2s
- All sky survey (20,000 deg²)
- Science
 - BAO (redshifts photométriques)
 - Lensing
 - Supernovae @ low & high z
 - Galactic structure
 - transients

LSST: Wide, Deep and Fast

Euclid-LSST, Prospective CEA/IN2P3 ,Giens 2012

LSST : Project & Collaboration & mise en place du projet

- 2003, LSST = internationnal collaboration , multi-agences :
 - NSF main agency : in charge of telescope , site & data management
 - DOE in charge of the camera (Leading lab : SLAC)
- August 2010, LSST selected by « Astro2010 » as The ground project for next decade :
 - NSF & DOE in the US and IN2P3 in France moved on to include LSST in their programs
 - LSST passed with succes major review in 2011 (PDR in August et CD-1 en November)
 - → LSST has a callendar : start construction 2014 + first light 2019 + start science 2020
- France / IN2P3 , for its contribution to the camera, & Chile, for the site, are the only non-US among the 36 LSSTc members . Data acccess is foresseen to a larger non-US community in 2021 , it will help to cover running cost (67 letter of intent received for ~ 450 scientists at 25 k\$/year/scientist)
- In 2012, a HEP like collaboration (detector & computing & science) has been put together under DOE request, LSST DESC (Dark Energy Science Collaboration), IN2P3 is part of it.

LSST collaboration and French contributions (1/2)

- France & LSST :
 - France (IN2P3 & INSU laboratoires) submitted a letter of intent to LSST in 2006
 - Today 8 IN2P3 laboratories (APC, CCIN2P3, CPPM, LAL, LMA, LPNHE, LPCC, LPSC) are involved in the LSST, some since 2007.
 - LSST-France count today :
 - ~ 40 physicists & 40 ITA , 25 FTE are working today at IN2P3 on the camera ~10-15 INSU physicists will also join the project/Dark Energy science at some point.
 - Contribution to the camera :

CCD qualification/test and CCD electronic readout & control (201 CCD /3216 readout channels)

Filter changer (each filter is 70 cm diameter , ~ 25 kg) / Filter coating studies

· calibration and characterization system

Euclid-LSST, Prospective CEA/IN2P3 , Giens 2012

8 channels CCD readout ASICS

Actors port
Actor Oneger
Brear calls
Convert double rail

Fight is ending
position
Drive train lisinge

Manual Charger

z > 1 ? Go to space !

Euclid

- 1.2-m
- 0.5 deg² Visible (1 band)
- 0.5 deg² infrarouge (3 bands)
- 15,000 deg²
- Lensing + BAO + (si possible) supernovae (IR)

IN2P3, IRFU, INSU

Euclid + LSST

Euclid + LSST

Summary :		z min	z max	area	duration	statistics	
	Hi-z	0.75	1.55	20	6	1740	
	Mid-z	0.15	1.05	50	18	8800	
	Low-z	0.05	0.35	3000	6	8000	

All surveys are redshift limited !

Cosmological constraints with "geometrical" Planck priors + flatness.

	sig(w_0)	sig(w_a)	FOM
3 surveys	0.022	0.25	204
ow+mid	0.026	0.22	137
mid+high	0.030	0.40	82

 $\sigma(w_0) = 0.022$

- Euclid's contribution is sizable although not dominant. Can be made larger with more observing time ...
- Final Euclid stack reaches ~28th mag (point-source, 5 sigma)

Baryon Accoustic Oscillations

(AAOmega)

AAOmega

(AAOmega)

BAO

SDSS (Eisenstein et al, 2005)

BOSS (2009-2014)

- Upgrade of SDSS original spectrographs
 - R ~ 2000
 - 1000 fibers (3 degrees on the sky)
 - 1.5 millions luminous red galaxies
 - 160000 high-redshift quasars (Lyman-a forest)
- 10,000 square degrees
 - LRG $\rightarrow z \sim 0.3 (\sigma_d/d @ 1\%)$
 - CMASS $\rightarrow z \sim 0.55$
 - Ly-a forest \rightarrow z ~ 2.5 ($\sigma_d/d \otimes 1.5\%$)

e-BOSS

- BAO @ z > 0.7
- BOSS extension (same spectrograph ?)
- Higher redshift Emission Line Galaxies (ELG)
- 2,500 deg2, 400,000 ELG @ z > 0.6

BigBOSS

- 14,000 deg², 5000 fibres,
- 20 10⁶ redshifts 2 10⁶ quasars

Nearly 40,000 spectra per night!!

See Natalie Roe's talk!

AAS 219 - 10 Jan 2012

Conclusion

Conclusion

• CMB

- Planck absorbe l'essentiel de l'effort
- Mesure modes B?
- Supernovae de type Ia
 - Indispensables pour contraindre w
 - Expertise reconnue en imagerie grand champ

• BAO

- Sonde très robuste. Systématiques ?
- Expertise spectro grand-champ
- Big-BOSS ? DECSpec ? HET ? ...

backup

Calibration Accuracy

	8м	r_M	i_M	Z_M
Aperture corrections	< 0.001	< 0.001	< 0.001	< 0.001
Background subtraction	< 0.001	< 0.001	±0.005	< 0.001
Shutter precision	± 0.0015	±0.0015	±0.0015	±0.0015
Linearity	< 0.001	< 0.001	< 0.001	< 0.001
Second order airmass corrections	< 0.001	< 0.001	< 0.001	< 0.001
Grid Reference Colors	< 0.001	< 0.001	< 0.001	< 0.001
Grid Color Corrections	< 0.001	< 0.001	±0.002	< 0.001
Landolt catalog	±0.001	± 0.001	± 0.001	± 0.002
Magnitudes of BD +17 4708	± 0.002	± 0.004	±0.003	±0.018
Total	±0.003	±0.004	±0.006	±0.018
SED of BD +17 4708	±0.001	±0.002	±0.004	± 0.007
Total	± 0.003	±0.005	±0.007	±0.019
nault et al, 2009)	<	1%		

SN Ia Host Galaxies

- SNLS-3: dependence of standardized SN luminosity distances with:
- i. host galaxy stellar mass (~ 4σ significance)
- ii. specific star formation rate (~ 2.5 σ significance).

→ Accounted for by adding a host specific term in the cosmological fit.

SNLS3 (Sullivan et al, 2010)

Systematics

Experimental	Non Ia	"K-corrections"	Non SNe
Systematics	Contamination		Effects
(Calibration,	(Spectral Id)	(spectral models,	("Hubble
Malmquist		lightcurve	Bubble", peculiar
bias)		fitters)	velocities)
 Perret et al, 2008 Regnault et al, 2009 	• Howell et al, 2005	 Hsiao et al, 2007 Ellis et al, 2008 Guy et al, 2008 Conley et al, 2008 	 Neill et al, 2007 Conley et al, 2007
Extinction	Population	Evolution of SNe	Unusual SNe
corrections	demographics	properties	
• Conley et al,	• Sullivan et al,	• Conley et al, 2006 • Howell et al,	

Le modèle standard

Copyright @ Addison Wesley.

Calibration systematics

*		
Description	w for $\Omega_m = 0.27$	Rel area
Stat only	-1.031 ± 0.058	1
All calibration	-1.06 ± 0.10	1.79
Colors of BD 17° 4708	-1.075 ± 0.075	1.31
SED of BD 17° 4708	-1.026 ± 0.073	1.23
SNLS Zero Points	-1.030 ± 0.069	1.21
low- z Zero Points	-1.044 ± 0.065	1.13
SDSS Zero Points	-1.028 ± 0.060	1.02
MegaCam Bandpasses	-1.017 ± 0.066	1.20
low- z Bandpasses	-1.027 ± 0.059	1.04
SDSS Bandpasses	-1.026 ± 0.059	1.02
HST Zero Points	-1.027 ± 0.058	1.03
NICMOS Nonlinearity	-1.029 ± 0.059	1.05

Systematics

Term	Effect on w
Calibration	0.08
SN Model	0.06
Malmquist bias	small
Non-Ia contamination	small
MW extinction	0.01
Peculiar velocities	small
SN color evolution	0.02

Syst. uncertainties on <µ> [*]

See SNLS3 papers (Guy et al, Conley et al)

Plan

- Le modèle standard du Big-Bang (ΛCDM)
- Sondes cosmologiques
 - CMB
 - Formation des structures
 - Distances de luminosité vs. z (SNe Ia)
 - Distances angulaires vs. z (BAO)
- Projets futurs