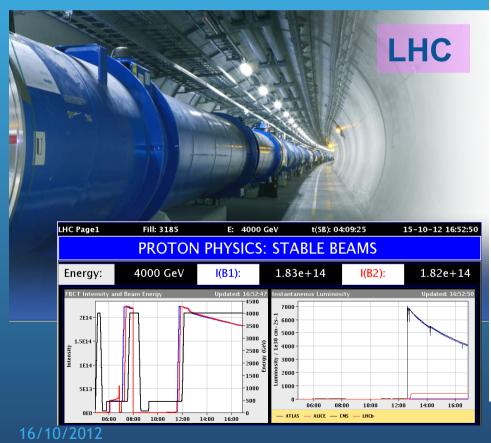
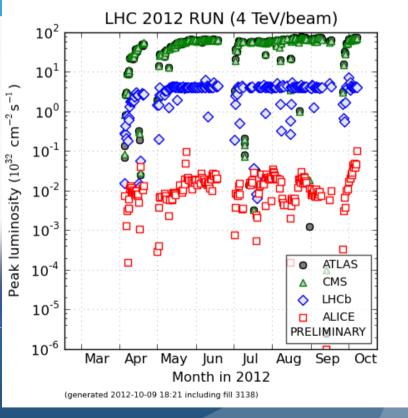
Vers une upgrade de CMS La physique au LHC au-delà de 2017

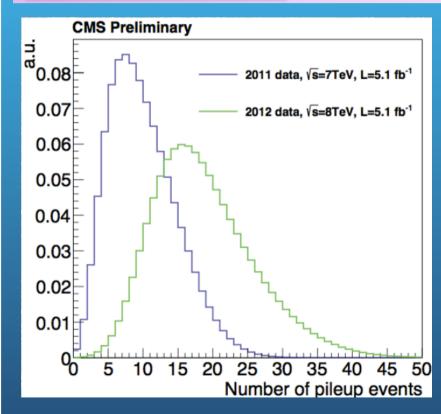

Alexandre Zabi pour le group CMS

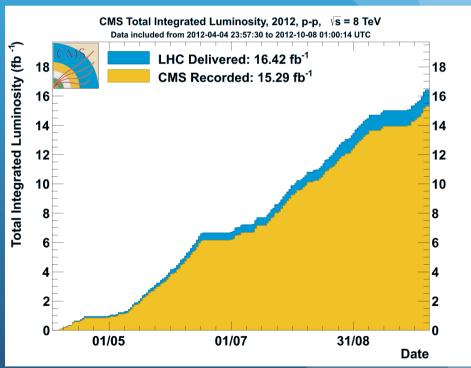

Congrès du LLR 2012

CMS et le LHC aujourd'hui

Performances exceptionnelles du LHC:

Energie de 8 TeV dans le centre de masse depuis le 30/03/2012 Record de luminosité instantanée 7,3x10³³ cm⁻² s⁻¹ le 8 Octobre 2012

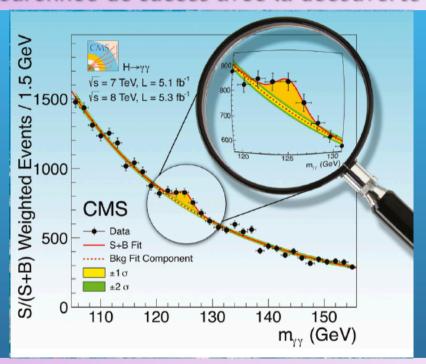


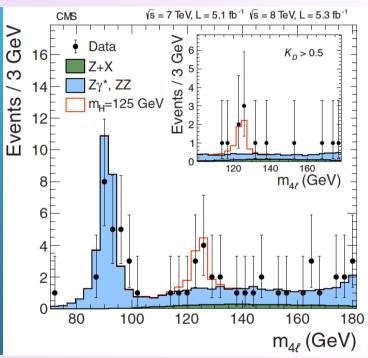

Alexandre Zabi - LLR Ecole Polytechnique

CMS tous les jours

Opérations du détecteur:

Efficacité de prise de données (en faisceaux stables)~ 98% Temps mort de l'expérience < 3% (deadtime ~1%) Condition d'empilement: <20> collisions en moyenne par croisement

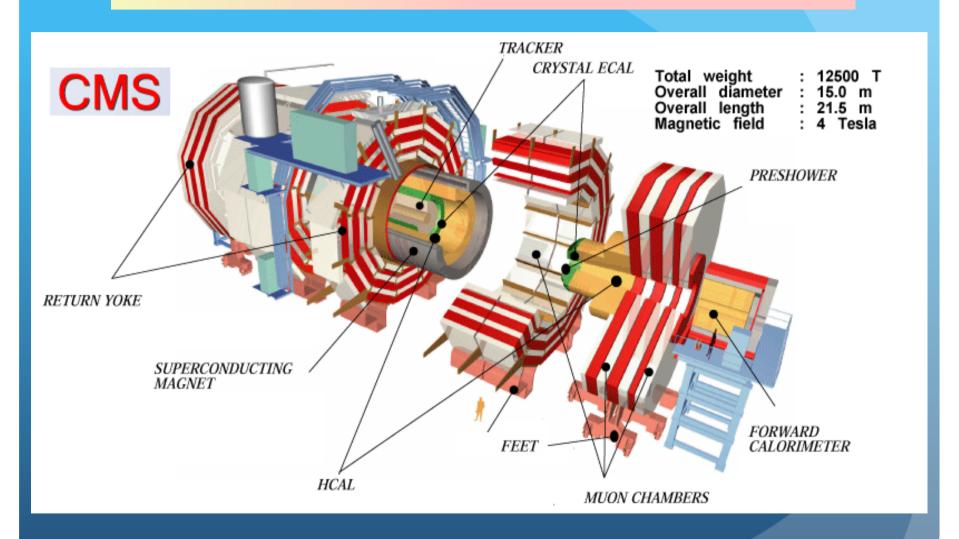


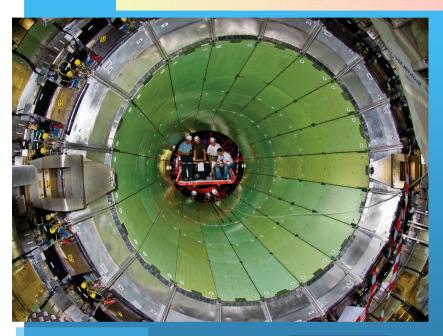


2012: une belle année

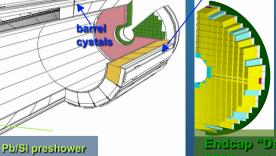
Effort de la collaboration pour maintenir les meilleurs performances possibles

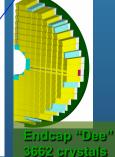
Couronnée de succès avec la découverte d'un nouveau boson



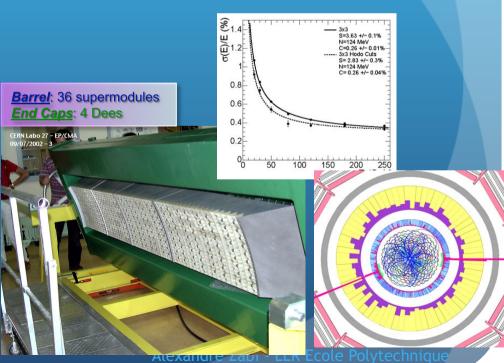

Contribution du LLR: Sur les analyses benchmarks bien sur! Implication centrale sur le déclenchement de niveau 1 sur les électrons et les photons.

→ Un véritable challenge dans des conditions de prises de données intenses en 2011 et 2012.


CMS en un mot


Le ECAL de CMS

ECAL: 75848



Super Module (200 crystals)

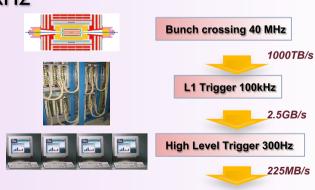
Véritablement la pièce maitresse

- 1) Importance de la détection électrons/ photons dans un environnement hadronique
- 2) Rôle centrale dans la recherche du Higgs: photons et ZZ
- 3) Déclenchement EG essentiel

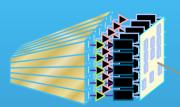
16/10/2012

Implication du LLR

Depuis la conception à la réalisation...:


Le LLR a pris en charge, il y a plus de 10ans, la responsabilité de concevoir un système de déclenchement sur les signaux électromagnétiques.

Dans un environnement hadronique comme celui du LHC, le déclenchement sur les électrons/photons est absolument vital pour l'expérience.


<u>A ce jour</u>: Le niveau 1 du Trigger ECAL fonctionne à son meilleur niveau de performance.

Le trigger de CMS:

- Niveau 1: réduit le taux de 40MHz (LHC) a 100kHz
 Conçu de processeurs électroniques
 ECAL/HCAL et Muons
- Niveau HLT: HLT 300 Hz de taux en sortie (enregistrement des événements)
 Sélection des événements au moyen de l'info complète du détecteur (résolution&granularité maximale)

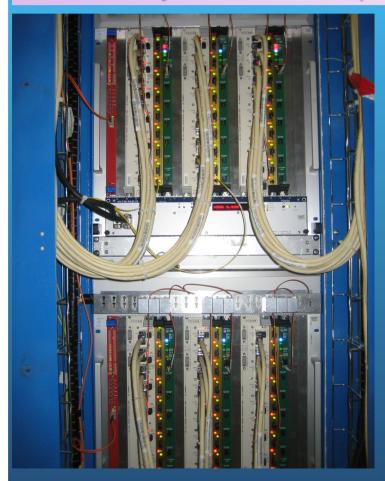
La sélection des électrons

Front End

All ECAL-barrel electronics is installed and commissioned

- 2448 FE boards (EB)
- 36 TCC cards (EB) + 72 (EE)
- 324 SLB cards (EB) + 504 (EE)

Trigger Concentrator Card Synchro Link Board



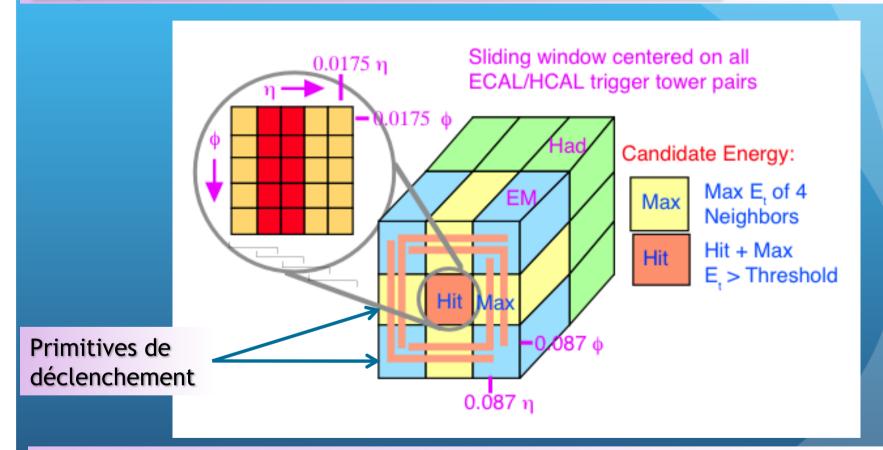
1 Primitive de déclenchement = Σ_{25} cristaux ET+ Fine Grain Veto

Les cartes TCC

De l'intégration au commissioning..:

Le LLR a conçu 108 cartes TCC pour le niveau de déclenchement e/y

2004-2006: tests en faisceau 2007: intégration barrel - début commissioning cosmiques 2008: enregistrement massif

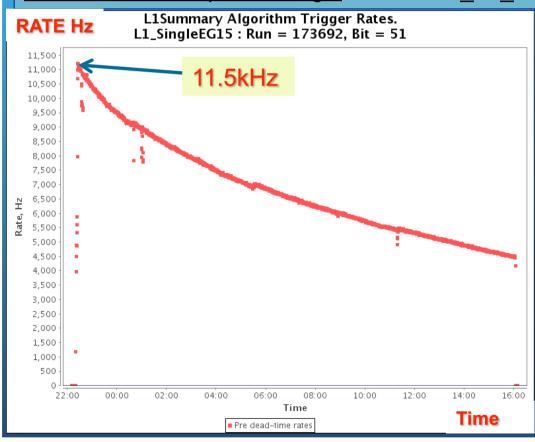

2008: enregistrement massif de données cosmiques2009: intégration bouchons.

Commissioning & premières collisions a basse énergie.

2010: prises de données de collisions à haute énergie..

Un électron au niveau 1

L'algorithme de déclenchement sur les électrons au niveau 1:


Finalement simple: Un électron au déclenchement = Σ_2 ET primitives

Le niveau de déclenchement dispose de 128 algorithmes: 23% de la bande passante totale (100kHz) dédiée aux électrons/photons.

Seuils de déclenchement le plus bas : EG2 (2010) et EG5 depuis 2011

Seuils pour la physique: EG12; EG15 (sept 2011); EG20 (end Oct 2011)

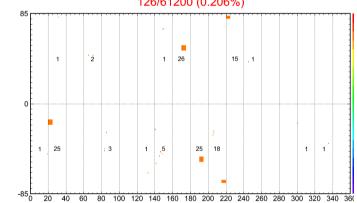
Déclenchements pour le Higs: DoubleEG 12 5 (H to 4I, yy)

Exemple: 18h de prise de données sans arrêt!

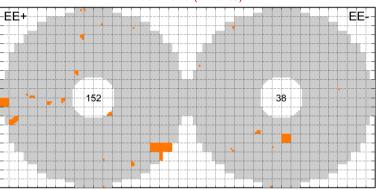
Taux de déclenchement sous controle

Lumi: 2.1x10³³cm⁻²s⁻¹

L1 total rate = 53kHz


Total lumi: 83pb⁻¹ (Fill 2040)

Alexandre Zabi - LLR Ecole Polytechnique


Canaux actifs pour le déclenchement ECAL

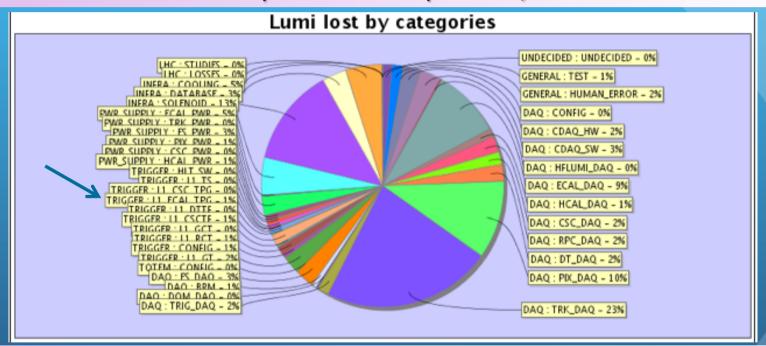
Masque les canaux problématiques (bruit, problèmes électriques..)

EB Masked channels in Trigger, 24/03/11 126/61200 (0.206%)

EE Masked channels in Trigger, 24/03/11 190/14648 (1.297%)

iφ

ECAL TPG actif: 99.8 % dans le Barrel (EB) et 98.7% dans les bouchons (EE)


Au niveau du RCT: 100 %

Acceptance optimale pour la physique (Résultat de l'optimisation au niveau des TPG (TCC/Front End))

⊒.

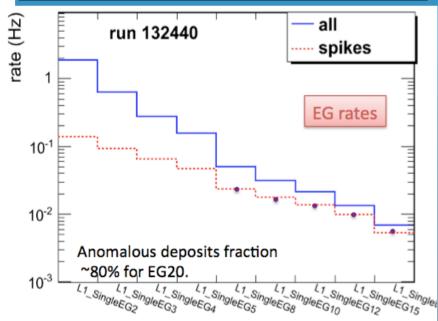
Depuis 2012: Masquage automatique des canaux par les TCC

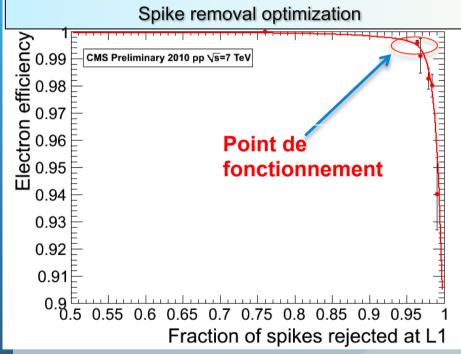
Les instabilités au niveau de certain liens optiques peuvent poser des problèmes (déclenchements élevé = temps mort de l'expérience)

Amélioration des performances de prises de données du ECAL

Le masquage automatique permet de réduire le temps mort

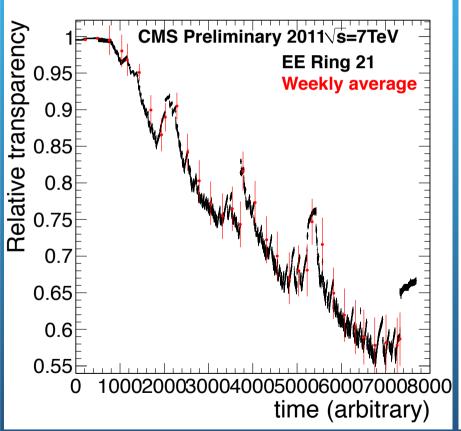
→ Contribue au traitement automatique des problèmes par la DAQ de CMS

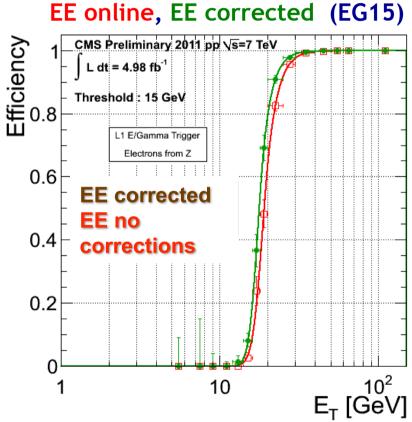

Le challenge de 2011

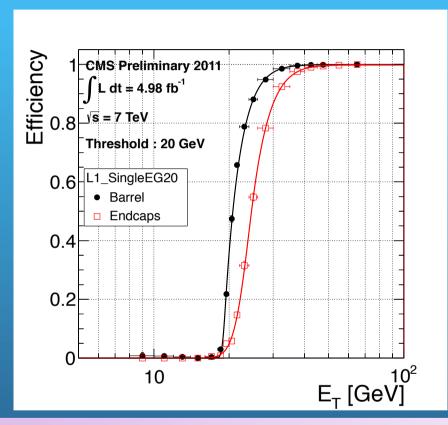

Signaux anormaux: particules qui traversent directement les photo détecteurs (APD) de la partie tonneau du ECAL. lonisation directe générant un signal important dans un cristal unique = spikes

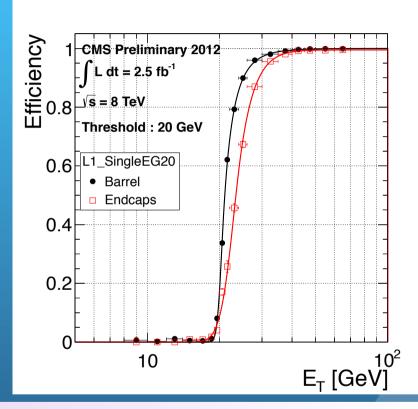
Conséquence sur le déclenchement de niveau 1

Taux saturant très vite!






Élimination des spikes: 96% pour une efficacité de > 99% pour les électrons.


Le challenge de 2012

Mise en place de corrections de la variation de la réponse des cristaux en fonction du temps : effet de 10% en moyenne (EE) voire 40% pour la partie proche du tube à faisceau.

Efficacité de déclenchement sur les électrons (présenté à CALOR2012)

Optimisation des performances chaque année (spikes/transparence..)

→ Garantie du programme de physique de CMS

Pourquoi l'upgrade?

On a découvert un nouveau boson, on aimerait bien savoir si c'est le Higgs! CMS a un programme de physique chargé:

- o To evaluate impact on physics performance, key benchmark signals have been selected
- To test SM nature of recently discovered boson with a mass of 125 GeV, must precisely measure branching ratios in all Higgs decay modes

```
    → Bosons: H→ ZZ → 4I
    → Quarks: ZH→ 2I + bb
    → Leptons: VBF H → ττ
```

- To stabilize the Higgs mass against quadratic corrections, SUSY remains a leading candidate for a natural solution in which (light) 3rd generation squarks play a special role
 - > Stop pair production and gluino cascades with one lepton in final state
 - → Gluino cascades through stops/sbottoms all hadronic final state
 - → SUSY yy + MET

Comment en savoir plus sur le Higgs ou l'existence de la SUSY?

Le LHC doit monter en énergie et en luminosité:

Energie dans le centre de masse $\sqrt{s}=14 \text{ TeV}$ \rightarrow sections efficaces $\hat{\mathbf{r}}$

Augmentation de la lumi instantanée > 2x10³⁴cm⁻²s⁻¹

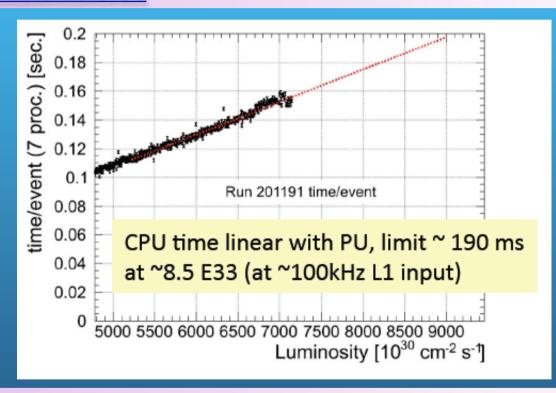
Challenges pour CMS: - Conserver la physique à bas pT

- Lutter contre le pile-up
- Déclenchement sur les leptons taus

Pourquoi l'upgrade?

<u>Dans les conditions actuelles, les performances du détecteur CMS sont</u> excellentes:

Le système de déclenchement permet une sélection efficace avec des seuils relativement bas pour garantir un programme de physique riche.

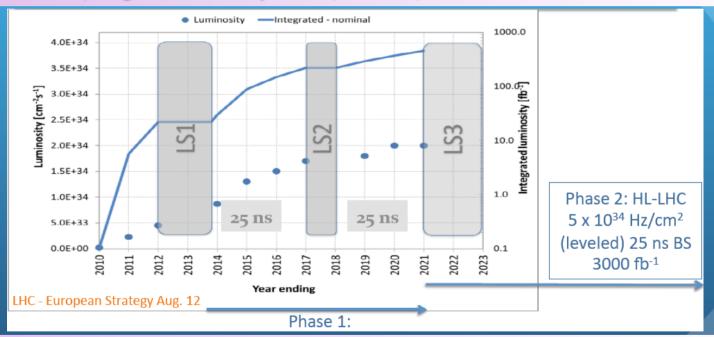

Comment ces performances évoluent avec l'augmentation de la luminosité?

L1 Trigger / Column	6E33	7E33	8E33		
Single EG	20	20	22		
Single MU (n<2.1)	12	12	14	to.	
Double MU	10, Open	10, Open	10, 3.5	thresholds	Start to impact
Double MU HighQ (BPH)	0,0	0,0	3 , 0	ssh	some physics
HT	150	150	175	h.	channels
WET	36	40	40	-	
Double-Jet (central)	56	64	64		
Quad-Jet (central)	36	40	40		

Avec le déclenchement actuel, les performances commencent à se dégrader audelà de 8x10³³cm⁻²s⁻¹

Pourquoi l'upgrade?

Ca ne concerne pas seulement le premier niveau, le HLT commence à avoir des soucis au-delà de 8e33


Temps de calcul par événement proche de la limite à 8°33

L'upgrade du LHC

L'upgrade s'organise en 2 phases

Phase 1: 2014-2021 LHC avec une énergie dans le centre de masse nominale (14 TeV) et une luminosité de 1.7-2e34 → Atteindre 200 fb-1

Phase 2: 2021 et au-delà LHC subit des modifications importantes (chaine d'injection etc.) High-Luminosity LHC (HL-LHC): 5e34 → Atteindre 3000 fb-1

<u>La phase 1 s'organise en 2 parties</u>: LS1 et LS2. CMS se prépare dès maintenant en considérant différents scenarios pour la configuration du faisceau.

L'upgrade du LHC

<u>Plusieurs scenario sont en cours d'etude pour la configuration des faisceau du LHC:</u> soit 25ns ou bien 50 ns d'espacement entre paquet (50ns moins dangereux pour la machine)

Potential Performance after LS1

- Determined by the performance of the injector chain
- Different collimator scenarios, not detailed here
- LHC Injector Upgrade (LIU) fruits after LS2

		Number of bunches	β* [m]	Half X- angle [µrad]	lb SPS	Emit SPS [um]	Peak Lumi [cm- ² s ⁻¹]	~Pile-up	Int. Lumi [fb ⁻¹]	
	25 ns	2800	0.50	190	1.2e11	2.8	1.1e34	23	~30	
	50 ns	1380	0.40	140	1.7e11	2.1	1.8e34 β* level	81 β* level	?/	
/ I I	25 ns low emit	2600	0.40	150	1.15e11	1.4	2.0e34	48 🖊	52	1
 	50 ns low emit	1200	0.40	120	1.71e11	1.5	2.2e34	113	?	

Presently at 4 TeV, $\beta^* = 0.6$ m, half X-angle 145 μ rad

CMS week, Lisbon, 3 September 2012

Jan Uvthoven, LHC status and outlook

25

Empilement (pileup):

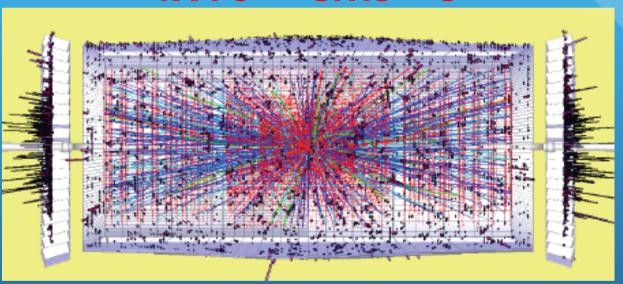
<50> ou bien <100> collisions par croisement!

La phase I pour CMS

SHUTDOWN 2013-2014: Pour être en mesure d'exploiter la phase 1 dans les meilleures conditions:

- Modifications des parties avant du détecteur principalement: Muons (couverture angulaire CSC&RPC)/HCAL(HF&HO remplacement phototubes)
- Avec la luminosité croissante: améliorations nécessaires du trigger/DAQ
- ECAL: amélioration de l'électronique hors détecteur, nouvel algorithme de déclenchement sur les électrons. Etude de Techniques permettant de limiter les dommages causés par les radiations surtout dans les bouchons (risque/prix)

SHUTDOWN 2017: toujours avec une luminosité croissante


- Replacement du détecteur de pixel (4 couches)
- Replacement du tube a faisceaux central
- Calorimètre hadronique: remplacement des voies de lecteurs optiques
- Finition de l'extension de la couverture angulaire pour la détection des muons
- Nouveau déclenchement (incluant le tracker, améliorations algorithmes)
- ECAL: Utilisation de la technique « optical bleaching » (traitement des cristaux)

<u>Concernant le ECAL</u>: il a été conçu pour être performant jusqu'a 700fb⁻¹ (totalité de la phase I) mais des modifications majeures du <u>trigger et du DAQ</u> sont inévitables afin de profiter de meilleures performances.

Vers un nouveau déclenchement pour CMS

Inévitable pour une exploitation efficace du détecteur au-delà de 2017.

4x10³⁴ cms⁻² s⁻¹

Conditions intenses de prise de données:

- → Corrections de l'effet d'empilement en ligne sera nécessaire
- → Développement d'algorithmes sophistiqués pour garder des seuils bas

Mesurer l'impact des nouvelles conditions: 2°34/PU<50> (PU<100>)

Efficacité/Taux de déclenchement

L'idée: garder le seuil le plus faible pour la physique ~ 10kHz on EG20 (20 GeV)

Sample trigger menu from current L1 trigger

	8 TeV 7E33 ~25 PU		14 TeV 2E34 50 PU		Example 14 TeV trigg	
Algorithm	Thresh (GeV)	Rate (kHz)	Thresh (GeV)	Rate (kHz)	Using current bandwidth Based on MC - still need	
Single EG	22	10	46 👢	10	validated & finalised	
Single IsoEG	18	9	31	9	Single lepton the	
DoubleEG	13, 7	9	22, 12	9	are very high	
Single Muon	16	9	→ 50 ←	9		
Dble Muon	10, open	5	35, open	5	Combined rate of c	
EG+Mu	12, 3.5	3	21,6	3	lepton triggers only	
Mu+EG	12, 7	2	25, 15	2	~ 140 kHz at	
SingleJet	128	2	188	2	Cannot maintain	
DoubleJet	56	10	132	10	thresholds with o	
QuadJet	36	2	⁷ 96 ~	10	trigger at 14 Te	
Double Tau	44	2	56	Z		
MET	36	7	84	7	Multi-jet trigger thr	
HTT	150	2	→ (511) ←	2	affected by both √s	

ger menu

- h allocation ds to be fully
 - resholds

current single

14 TeV 2E34

current current L1 2E34

resholds s and PU

De quoi a t-on besoin?: puissance de calcul/liens rapides

- Liens optiques à haut débit: couverture totale des calorimètres
 - → évaluation de l'empilement; quantités globales : MET
- Puissance de calcul: algorithmes sophistiqués pour une meilleure rejection

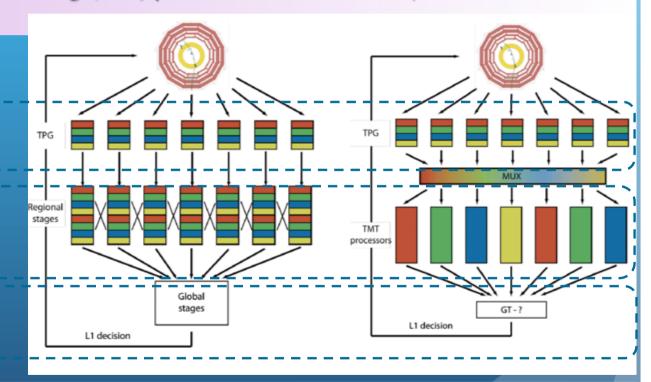
Nouvelle architecture: nouvelle technologie microTCA (issue de la technologie telecom)

- Nouveaux liens optiques: jusqu'à 10 Gb/s (comparer à 1.2 Gb/s des liens électriques entre RCT/TCC)
- Éléments modulables/bus de fond de panier puissant: permet une communication efficace entre modules
- Compatible avec FPGA dernière génération: Xilinx Virtex 6/7

Châssis microTCA + module AMC

Deux approches pour le déclenchement calorimétrique: faire du HLT au L1!

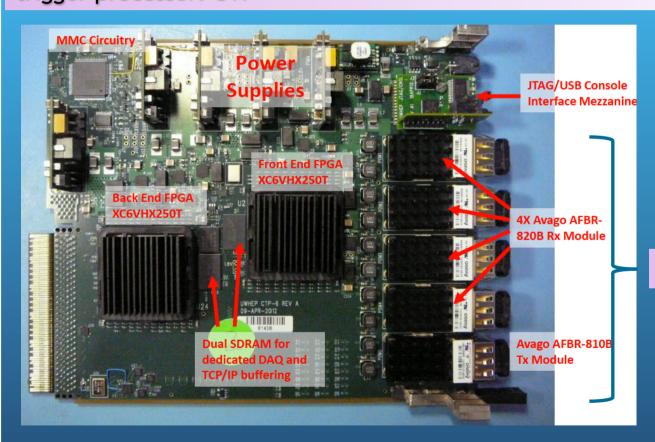
- Approche régionale conventionnelle : une sorte de super RCT (Wisconsin, USA)


- Multiplexeur en temps: original. Buffer en temps de toutes les données calorimétrique (Imperial College, UK) profondeur 3BX à 10BX (croisement de

faisceau)

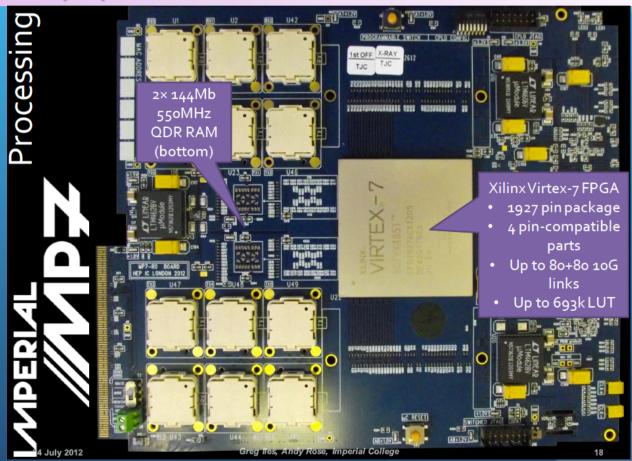
Primitives de déclenchement

Traitement Algorithmes


Décision

En cours de discussion et d'étude (performance sur objets/pileup)

On centralise l'information des calorimètres: HCAL et ECAL


Les primitives de déclenchement des calorimètres sont envoyées aux cartes trigger processor: CTP

Entrées optiques

Modules de sélection: MP7 (UK)

Ces modules sont équipés de puissants FPGA de la famille Xilinx Virtex VII Connectivités optiques accrues.

La phase I pour le LLR

Depuis le départ le groupe CMS du LLR est très fortement impliqué dans les activités du **ECAL et son déclenchement**. Cette expertise nous permet d'apporter un soutient important à cette première phase:

Amélioration de l'électronique hors détecteur (TCC):

Intégration de la nouvelle version des SLB oSLB (4 Gbits/s, collaboration LIP).

Amélioration des algorithmes de déclenchement:

On voit déjà les limitations des algorithmes simplistes actuels sur les performances. Des modifications peuvent être apportées dès maintenant sur la même base des Trigger Primitives. Au sens large, le HLT aussi..

Apprentissage d'une nouvelle technologie:

Modification de l'électronique hors détecteur en utilisant une technologies modernes: nouveau rack microTCA. Mise en œuvre des algorithmes dans les FPGA du système. Au niveau HLT, avantages du multi-cœurs ...

- → Compte tenu de l'expertise du labo (FPGA/liens optiques/soft etc..)
- → Demande forte de d'implication du LLR de la part de CMS

La phase I pour le LLR

Objectifs du groupe

- 1) <u>s'assurer du bon fonctionnement des TCC</u> afin de permettre une exploitation au-delà de 2017 mais aussi de développer du nouveau déclenchement.
- 2) Participer activement à <u>la réalisation d'un nouveau trigger</u> à partir d'une nouvelle technologie L1(+ HLT)

Trois développements critiques pour la physique sont proposés:

- Correction d'effet d'empilement basée sur la densité d'énergie evt/evt utilisée au niveau des primitives de trigger ou des objets globaux
- Déclenchement sur les τ utilisant les nouvelles informations calorimétriques (plus la mise à niveau HCAL)
- Déclenchement VBF utilisant les possibilité accrues de corrélations

Travail idéal pour un postdoc:

travail de simulation/ conception firmware/tests/ intégration / études des performances

Un véritable challenge:

Outils de sélections JAMAIS réalisés au niveau 1! (timing/processing)

16/10/2012

Alexandre Zabi - LLR Ecole Polytechnique

Volet 0: ECAL et l'UPGRADE

0:ECAL et LS1

Programme du LS1 pour ECAL:

Pas de modifications majeures mais un programme chargé quand même!

Hardware/firmware:

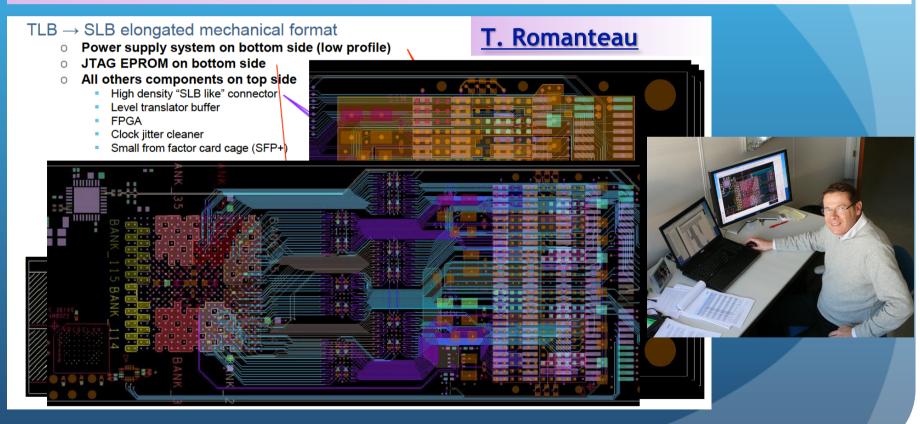
<u>Commissioning des cartes TCC pendant l'arrêt technique</u>: récupération des canaux défectueux et mise en temps. Vérification des liens optiques et remplacements de cartes si nécessaires. mise en place d'un système de masquage automatique par firmware

Software:

- -Refonte du software de programmation des cartes TCC: Configuration TCCEE, TCCEB unique; interface DB (Orcale) optimisé; optimisation du temps de programmation et chargement des tables (interface CAEN/XDAQ); passage à SLC6
- -<u>Améliorations du GUI pour les TCC</u>. Développement d'une interface pour tester les oSLB et futurs algorithmes (microTCA)
- → Ce projet présente de nombreux aspects de programmation essentiels aux opérations du ECAL et du système de déclenchement
- → Parfait pour un ingénieur en informatique

Volet 1: oSLB

1:Nouveau liens optiques


<u>Modifications des TCC</u>: remplacement des cartes mezzanines SLB par des cartes oSLB (optical SLB) munis de 2 sorties optiques dupliquées (vers RCT/nouveau Trigger)

Tests et commissioning au LLR: Utilisation du banc test pour tester les nouvelles oSLB.

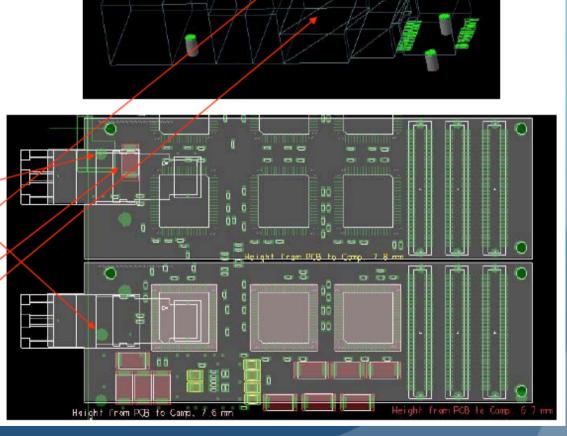
1:Nouveau liens optiques

Un carte pour tester des liens optiques: les Test Link Board (TLB) Développement au LLR d'une carte prototype permettant de mettre en œuvre des liens optiques de haut débit en sortie des TCC (T. Romanteau/P. Busson): 4,8 Gb/s (6,6 Gb/s)

1:Nouveau liens optiques

Détermination des contraintes mécaniques:

TCC68 – ECAL Barrel


- Components on both side
- 3 VME slot width
- High density component
- Components face to face
- Many screw fixture

Bottom view in transparency

Screws fixture facing to : Versalink 8 mm *, gap is OK

Tantalum capacitor facing to : Versalink 5,75 mm, gap is OK

* Micro-pcb in kapton inside the Versalink removable part must not exceed 8mm

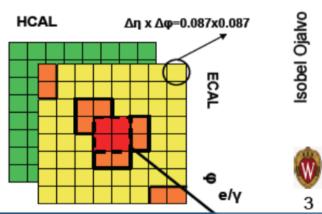
Volet 2: Algorithmes

2: déclenchement taus

Mise en œuvre d'un clustering dynamique au niveau 1

Pour une meilleure sélection des objets: développement d'un clustering dynamique (2x2) au lieu de l'algorithme 2x1 utilisé jusqu'à présent:

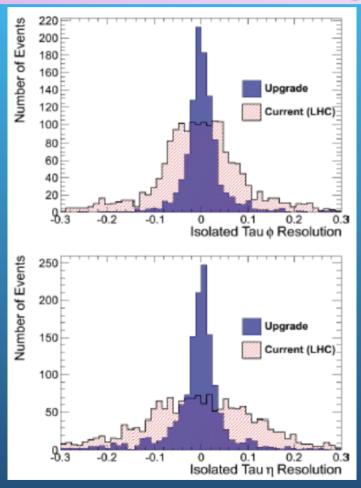
Particle Cluster Finder

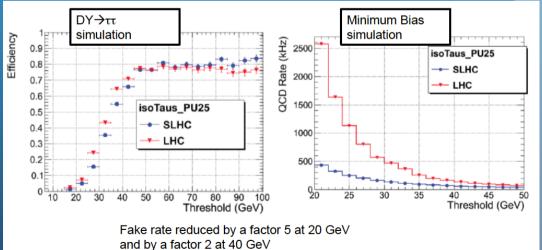

Applies tower thresholds to Calorimeter Require: ECAL >1 GeV HCAL >2 GeV

Creates overlapped 2x2 clusters

HCAL Δη x Δφ=0.087x0.087

Cluster Overlap Filter


Removes overlap between clusters Identifies local maxima Prunes low energy clusters


2: déclenchement taus

Etudes des performances à partir de données simulées

Utilisation du nouveau clustering sur les taus

Résultats sur les taus: amélioration de la résolution angulaire / efficacité/ réduction du taux de déclenchement

2: empilement au L1

Effets de l'empilement:

Multiplicité importantes de particules dans le détecteur (particules de faible énergie qui spirale dans le champ B = bruit dans les calos)

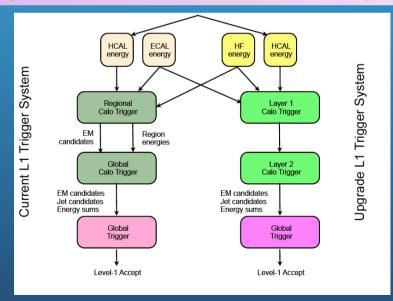
- → Densité d'énergie dans les calorimètres qui fluctue d'un croisement à l'autre.
- → Dégradation de la résolution objets de déclenchement
- → Dégradation des performances de déclenchement

Offline: Densité proportionnelle au nombre de vertex de l'événement (estimation de l'activité dans les calo). Correction possible en utilisant NVtx.

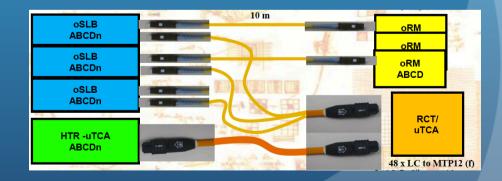
Online: Information du tracker pas dispo au Niveau 1 (en tout cas pour la phase 1) Seule l'information des calos est disponible

Options:

- 1) Estime la densité d'énergie moyenne en sommant l'énergie des calos (temps de calcul?)
- 2) Estime la densité seulement dans un anneau en eta
- → Corrige les objets (e/gamma/tau) ou bien les TPG (LUT)?
- → Dans un FPGA.. un véritable challenge pour les ingénieurs.


Agenda

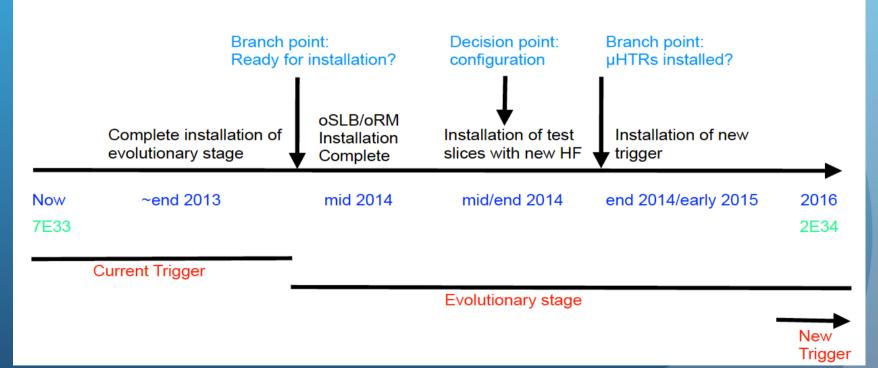
Intégrer un nouveau déclenchement


Intégration du nouveau trigger: pendant le LS1 (2013-2014)

Installation d'une petite partie du nouveau trigger (1 secteur du ECAL)

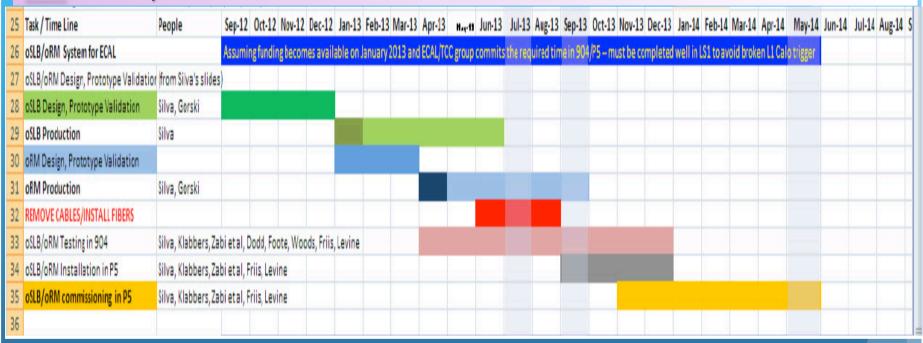
- →Intégration au sein du trigger CMS: tests et commissioning dans la structure existante pendant 2014
- → utilisation en mode parasite: développement d'algorithmes/mesure des performances sur les données (à partir de fin 2014-2015)

Duplication des sorties du ECAL/HCAL



Agenda du LS1

oSLB: Développement / production / tests / intégration / commissioning → De la TOTALITE des oSLBs



Evolution to new trigger

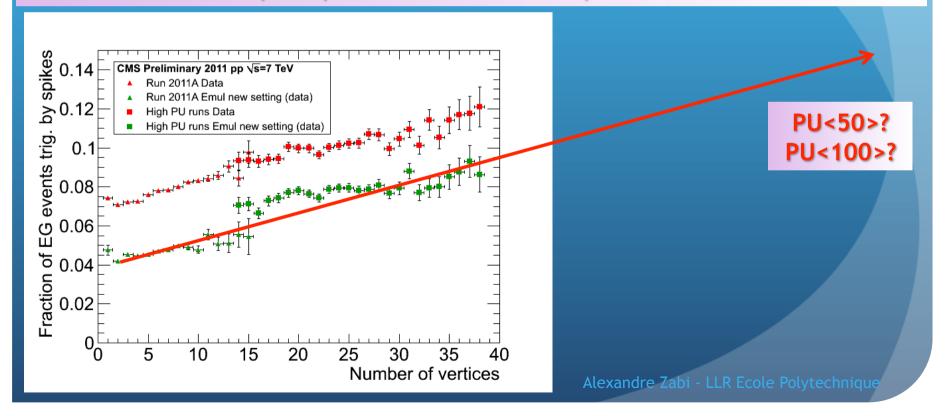
Agenda du LS1

LLR: Participations aux tests des oSLB 2013-2014

LLR:

ECAL TCC: refonte du soft/firmware → mi-2013

AlgoL1: Etudes/Développements (tests sur banc) 2013 / Tests à CMS 2014


→ Prise de données avec le nouveau trigger dès fin 2014

Actuellement au LLR

Le travail a déjà commencé:

Contribution aux analyses de performances pour le TDR (fin 2012)

- Etude de l'effet de l'empilement sur les performances EG (améliorations obtenues avec le nouvel algorithme de clustering) -> améliorations possibles de l'algorithme?
- Contamination des spikes pour des scenarios d'empilements <50> et <100>

Actuellement au LLR

CMS France Septembre 2012

Transformation de CMSSW pour les architectures many-core et la haute intensité : une étude sur l'adaptation du *tracking* au standard actuel OpenCL

G. Grasseau, A. Sartirana, M. Nguyen, D. Chamont et P. Busson

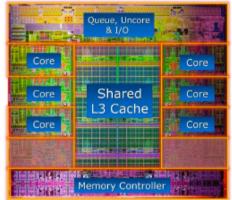


Figure: Intel Xeon E5-2600, Sandy Bridge: 2.6×10^6 transistors, 8 cores, 32nm, 130 Watt, 172 GFlops, 3.0 Ghz, 1500 \$

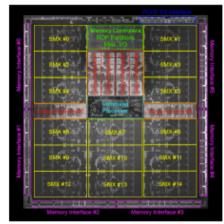


Figure: GPU Kepler: 7.1×10^6 transistors, 2880 CUDA cores, 28nm, 200 Watt, 3 TFlops, 1 Ghz

Start Page | Index | History | Last Change

Actuellement au LLR

Organisation du travail:

- Demande de moyens en cours (pas de production de cartes, projet tout à fait réalisable par l'équipe du LLR)

Besoins d'équipements pour le banc test du LLR (châssis microTCA + cartes)

- Mailing liste (échanges physiciens ←→ ingénieurs) cmsupg@llr.in2p3.fr
- Page Web préparée par Philippe : https://llrforge.in2p3.fr/trac/cmsupg

Bienvenue sur le site Trac dédié à l'upgrade de CMS

Apres une année 2012 couronnée de succès avec la découverte d'un nouveau boson scalaire, le projet d'upgrade de CMS est nécessaire à l'exploitation des données de CMS au-delà de 2017. Il est question d'atteindre une luminosité instantanée de 5x10³⁴ cm-² s-¹ et une énergie dans le centre de masse de 13 ou 14 TeV. Le nombre de collisions par croisement est d'environ 50 voire 100 dépendant de la configuration du faisceau. Dans ces conditions de prise de données, l'upgrade du détecteur CMS est inévitable. Le LLR est directement concerné par plusieurs aspects de ces améliorations:

- participer à la prospective de physique
- en électronique:
 - o amélioration des cartes TCC
 - amélioration du trigger de niveau 1 de CMS
- · en informatique:
 - o introduction du parallèlisme dans le High Level Trigger de CMS

Ce site est le vôtre, n'hésitez pas à l'enrichir par vos contributions. Pour cela consultez les règles de base pour l'édition en ligne de ce wiki (voir en particulier les règles de mise en forme). D'autre part une liste de diffusion spécifique à l'échange d'information entre physiciens et ingénieurs du LLR a été mise en place. Envoyez vos courriels à cmsupg@... (Note au lecteur: si vous avez accès à ce site vous êtes normalement inscrit sur la liste de diffusion).

Alexandre ZABI et Philippe BUSSON

Le contexte général de l'upgrade de CMS

Le contexte général de l'upgrade de la machine ainsi que celui de CMS sont décrits dans quelques documents récents disponibles dans la page Contexte général de l'upgrade.

Les activités

- · Prospective de physique
- · Activités en électronique
- · Activités en informatique