Désintégrations semileptoniques $B \to D^{**}$ et spectroscopie des D^{**} à partir de la QCD sur réseau

Thèse financée par le CNRS Liban

Mariam ATOUI

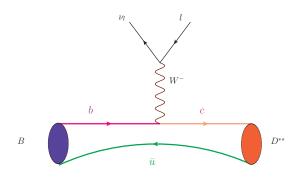
Directeur de thèse: Vincent MORENAS

Laboratoire de Physique Corpusculaire, LPC Clermont Fd, France

1 juin 2012

1 / 45

Désintégrations semileptoniques $B \to D^{**} l \nu$



Plan

- 1 Physique des mésons **B** et **D**
- 2 Intérêt du $B \to D^{**}$
- 3 Puzzle des états P(l=1)
- 4 Idées fondamentales de la QCD
- 3 Opérateur de création d'un méson
- 6 Simulation et résultats numériques
- Conclusion et perspective

Mésons D et B

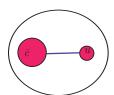
méson B

Quarks de valence quark lourd b ($m_b \approx 4.2$ GeV) et quark léger u, d ou s ($m \le 100$ MeV) ex : $B = \{\bar{b}u, \bar{b}d\}$, $B_s = \bar{b}s$

méson D

quark lourd c ($m_c \approx 1.3$ GeV) et un quark léger u, d ou s ex : $D = \{\bar{c}u, \bar{c}d\}$, $D_s = \bar{c}s$

 D^{**} sont les premières excitations orbitales des mésons charmés ayant une parité positive (I=1)



4 / 45

Mésons D et B

• limite statique $m_b, m_c \to \infty$

Pas d'interaction impliquant le spin du quark lourd $(\vec{J} = \vec{s}_Q + \vec{\jmath})$ Classification des états selon la parité parity P et le moment angulaire total de la composante légère j

• m_b, m_c finies

j n'est pas un bon nombre quantique ($\vec{J}=\vec{L}+\vec{S}$) Classification des états selon la parité P et le moment angulaire total J

	cas <i>m</i> infinie $j^{\mathcal{P}}$	cas <i>m</i> finie $J^{\mathcal{P}}$	
L=0	$(1/2)^- \equiv S$	$0^- \equiv B, D$	
		$1^- \equiv B^*, D^*$	
L=1	$(1/2)^+ \equiv P$ larges	$0^{+} \equiv D_{0}^{*} \equiv D_{0}^{1/2}$ $1^{+} \equiv D_{1}' \equiv D_{1}^{1/2}$	
	$(3/2)^+ \equiv P_+$ étroits	$1^{+} \equiv D_{1} \equiv D_{1}^{3/2}$ $2^{+} \equiv D_{2}^{*} \equiv D_{2}^{3/2}$	D**

Intérêt du $B \to D^{**}$

Par exemple:

- Contribution sous-dominante aux $B \to X_c l \nu$
- Détermination de V_{cb} : violation de CP, physique des saveurs, etc...

Inclusive

$$B \rightarrow X_c$$
 expérimentalement et théoriquement $|V_{cb}| = (41.6 \pm 0.7) \times 10^{-3}$

Exclusive

$$B \to D \text{ et } B \to D^* \; |V_{cb}| = (38.6 \pm 1.3) \times 10^{-3}$$

Différence!

 \implies Connaissance de $B \rightarrow D^{**}$

6 / 45

Comparaison des largeurs de désintégration des états D^{**}

Expérience $\Gamma^{1/2} > \Gamma^{3/2}$

- ALEPH, BABAR, BELLE ont étudié les désintégrations semileptoniques $B \to X_c/v$
 - $\mathbf{0} \approx 75\% D \text{ and } D^*$
 - $2 \approx 10\% D^{**(3/2)}$
 - **3** Le reste $\approx 15\%$: $D^{**(1/2)}$

$$\Rightarrow \Gamma(B \to D^{**(1/2)} I \nu) > \Gamma(B \to D^{**(3/2)} I \nu)$$

• Autres canaux indiquent que les désintégrations des états P aux 1/2 D^{**} et 3/2 D^{**} sont identiques

Théorie $\Gamma^{1/2} < \Gamma^{3/2}$

• À la limite statique, la théorie (règles de somme QCD, modèle de quarks, calculs LQCD avec $N_f = 0$ et $N_f = 2$) \Rightarrow dominance du doublet $3/2^+$

Puzzle des états P

Conséquence :

Comparaison des largeurs de désintégration des états étroits $\Gamma(B \to D_{1,2}^{3/2} | \nu)$ et larges $\Gamma(B \to D_{0,1}^{1/2} | \nu) \Longrightarrow \text{un conflit}$

1/2 versus 3/2 puzzle

⇒ Calculs doivent être non perturbatifs

⇒ Calculs sur réseau avec une masse finie du quark charmé

Mariam ATOUI (LPC) LPC - Clermont Fd 1 juin 2012 8/45

Nécessité de la QCD sur réseau dans la physique des saveurs lourdes

Physique du b

Physique du *c*

1203.3862v1 [hep-lat]

Nécessité de la QCD sur réseau dans la physique des saveurs lourdes

Physique du b

- a) Spectroscopie : nouveaux résultats m_b ALPHA : $m_b = 4.2(15)$ GeV ETMC : $m_b = 4.29(14)$ GeV
- b) Désintégrations leptoniques $B \to \tau \nu$ LQCD: $f_B = 190(4) \text{ MeV} \to V_{ub} = 5.1(5) \times 10^{-3}$ Exp: $f_B = 280(33) \text{ MeV} \leftarrow V_{ub} = 3.47(16) \times 10^{-3}$
- c) $B_{(s)} \rightarrow \mu^+ \mu^-$: sensible à la nouvelle physique taux de désintégration du MS \propto "paramètre de sac" B_{Bs} meilleure estimation (HPQCD) $B_{Bs} = 1.33(6)$

Physique du c

1203.3862v1 [hep-lat]

Nécessité de la QCD sur réseau dans la physique des saveurs lourdes

Physique du *b*

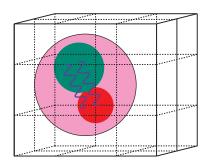
- a) Spectroscopie : nouveaux résultats m_b ALPHA : $m_b = 4.2(15)$ GeV ETMC : $m_b = 4.29(14)$ GeV
- b) Désintégrations leptoniques $B \to \tau \nu$ LQCD: $f_B = 190(4) \text{ MeV} \to V_{ub} = 5.1(5) \times 10^{-3}$ Exp: $f_B = 280(33) \text{ MeV} \leftarrow V_{ub} = 3.47(16) \times 10^{-3}$
- c) $B_{(s)} \rightarrow \mu^+ \mu^-$: sensible à la nouvelle physique taux de désintégration du MS \propto "paramètre de sac" B_{Bs} meilleure estimation (HPQCD) $B_{Bs} = 1.33(6)$

Physique du c

► Facteurs de forme semileptoniques du $D \to K$ et $D \to \Pi$ ⇒ V_{cs} à 3% et V_{cd} à 5%

1203.3862v1 [hep-lat]

La QCD sur réseau



La dynamique de la QCD

- Théorie physique de l'interaction forte entre les quarks et les gluons
- Basée sur le groupe de jauge *SU*(3)

Action et Lagrangien

$$S_{QCD} = \int d^4x \mathcal{L}_{QCD}(x)$$

$$\mathcal{L}_{QCD} = \bar{\psi} (i\gamma_{\mu} D_{\mu} - M) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

- champs spinoriels de quarks $\Psi^i_{f,\alpha}(x): 3$ couleurs $i \times 6$ saveurs $f(u,d,s,c,t,b) \times 4$ vecteurs de Lorentz $\alpha = (0,1,2,3) \Rightarrow 72$ degrès de libertés en x
- ② champs de gluons : 8 couleurs \times 4 vecteurs de Lorentz (0, 1, 2, 3)

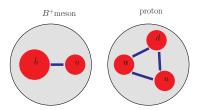
Propriétés de la QCD

Hautes énergies/courtes distances

Les quarks et les gluons n'interagissent pas à courte distance

$$(Q o \infty, \alpha_s(Q^2) o 0)$$

⇒ Théorie des perturbations



Basses énergies/grandes distances

Théorie des perturbations n'est pas applicable

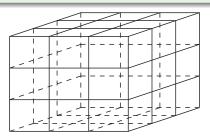
⇒ Pas de solutions analytiques des propriétés des hadrons à basses énergies

ex : masses, constantes de désintégrations, facteurs de forme avec une bonne précision

Méthodes non perturbatives

La théorie de jauge sur réseau

Calculs non perturbatifs rigoureux



Théorie des champs sur réseau

 $\phi(x)$: Champ scalaire

Valeur moyenne d'un opérateur

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \Pi_x [D\phi(x)] \mathcal{O} \exp(iS[\phi(x)])$$
$$(Z = \int \Pi_x [D\phi(x)] \exp(iS[\phi(x)])$$

difficulté de traiter numériquement (intégrand oscillant)

Mariam ATOUI (LPC) LPC - Clermont Fd 1 juin 2012 14 / 45

Poursuite en temps imaginaire

Rotation de Wick ⇒ temps imaginaire

$$t \implies -i\tau$$

 $\exp(iS[\phi(x)]) \implies \exp(-S_E[\phi(x)])$: distribution de probabilité

- ullet $\langle \mathcal{O} \rangle \Rightarrow$ valeur moyenne statistique de \mathcal{O} Méthodes empruntées à la physique statistique
- Métrique Euclidienne : discrétisation espace-temps

LA QCD SUR RESEAU

15 / 45

Aspects de la QCD sur réseau

Aspect théorique

- QCD non perturbative
- Théorie des champs sur réseau
- Action fermionique et gluonique sur réseau
- Passage vers le continu

Aspects de la QCD sur réseau

Aspect théorique

- QCD non perturbative
- 2 Théorie des champs sur réseau
- Action fermionique et gluonique sur réseau
- Passage vers le continu

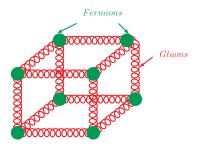
Aspect technique

- Calcul numérique
- Algorithmes
- Gestion des erreurs
- Ordinateurs puissants, architecture parallèle

Aspects de la QCD sur réseau

Beaucoup de patience!!

Régularisation de la QCD



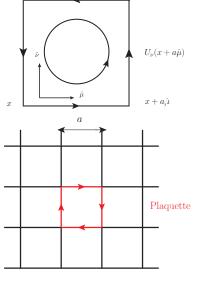
- Dicrétisation de l'espace-temps (Kenneth Wilson 1974)
- Réseau hypercubique $L^3 \times T$
- maille \vec{a} $\vec{x} \Rightarrow \vec{a}\vec{n}$
- $\int d^4x \cdots \Rightarrow a^4 \sum_n \cdots$
- $D_{\mu}\Psi(x)$ \Rightarrow différences finies

18 / 45

Action QCD sur réseau

 $S_{LQCD} = S_{Fermionique sur réseau} + S_{de jauge sur réseau}$

Action gluonique de Wilson



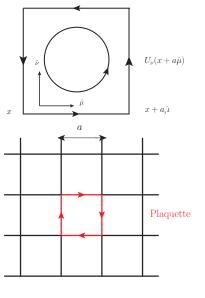
Construire l'action de jauge sur réseau?

- Gluon = jauge $\Rightarrow A_{\mu}(x)$ $\Rightarrow U_{\mu}(x) \ variable \ de \ lien$
- Grandeurs physiques invariants de jauge

Plaquette

19 / 45

Action gluonique de Wilson



Construire l'action de jauge sur réseau?

- Gluon = jauge $\Rightarrow A_{\mu}(x)$ $\Rightarrow U_{\mu}(x) \ variable \ de \ lien$
- Grandeurs physiques invariants de jauge

Plaquette

 $S_G =$ somme sur toutes les plaquettes

$$S_G^{\text{r\'eseau}} \xrightarrow[a \to 0]{} \frac{1}{4} \int d^4x F_{\mu\nu} F^{\mu\nu} + O(a^2)$$

Action des quarks $S_F^{\text{na\"{i}ve}}$

Discrétisation de l'action des quarks du continu ⇒ Action naïve des quarks

Action des quarks $S_F^{\text{na\"{i}ve}}$

Discrétisation de l'action des quarks du continu ⇒ Action naïve des quarks

Problème?

Dans l'espace des impulsions

$$\left\{p: -\frac{\pi}{a} < p_{\mu} \leq \frac{\pi}{a}\right\}$$

- $S_F^{\text{naïve}}$ prédit trop de fermions (16 particules)
- Limite du continu $S_F^{\text{na\"{i}ve}} \to S_F^{\text{continu}} + \mathcal{O}(a)$

Quarks de Wilson

Solution:

Terme de Wilson
$$\xrightarrow{\text{limite}}$$
 zéro

Problème : brisure de symétrie chirale

Quarks de Wilson

Solution:

Terme de Wilson
$$\xrightarrow{\text{limite}}$$
 zéro

Problème : brisure de symétrie chirale

$$\Rightarrow$$
 Solution :

Fermions de masse twistée

Fermions de masse twistée

Effectuer une rotation axiale sur les champs fermioniques

$$\begin{pmatrix} \text{base physique} \\ \psi \end{pmatrix} \xrightarrow[\text{axiale}]{\text{rotation}} \begin{pmatrix} \text{base twist\'ee} \\ \chi \end{pmatrix}$$

Avantage

Erreurs de discrétisation d'ordre $O(a^2)$

Incovénients

brisure explicite de la parité et de la symétrie d'isospin

Simulation Monte-Carlo des fermions

Moyenne statistique sur les champs de jauge

$$\langle \mathcal{O} \rangle \approx \frac{1}{n_{conf}} \sum_{i} \mathcal{O}[\text{configuration de gluons } i]$$

Contribution fermionique

$$\mathcal{L}_{fermion} = \bar{\Psi}(x) M(x, y) \Psi(y)$$

Contribution : Det[M]

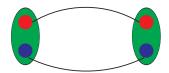
 $12N \times 12N$ (N : nombre de sites du réseau)

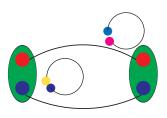
ex : $N = 24^3 \times 48 \Rightarrow \approx 10^{13}$ éléments

Problème

Calcul des déterminants? \rightarrow deux solutions

Full vs Quenched QCD





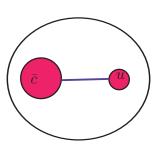
$Det[M] \equiv 1$ (Quenched QCD)

- Ouarks de valence seulement
- motivée par l'absence d'ordinateurs puissants

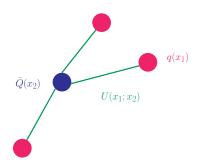
Det *M* à calculer (Full QCD)

- Quark de la mer ou quarks dynamiques
- Calculs plus compliqués

Comment calculer la masse D^{**} en LQCD?



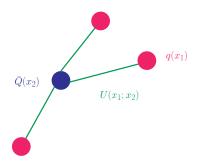
Forme générale de l'opérateur de création du méson



$$\mathcal{D}(t) = \sum_{x1,x2} \bar{Q}(x2,t) P_t(x1,x2) \Gamma_{\mathbf{q}}(x1,t)$$

Forme générale de l'opérateur de création du méson

- $\bar{Q}(x_2)$ crée un quark lourd en x_2
- $q(x_1)$ crée un antiquark léger en x_1
- $P_t(x_1, x_2)$: combinaison linéaire des produits des liens de gluons à temps t le long des chemins P de $\mathbf{x_1}$ à $\mathbf{x_2}$
- Γ définit la structure du spin de l'opérateur



$$\mathcal{D}(t) = \sum_{x1,x2} \bar{Q}(x2,t) P_t(x1,x2) \Gamma q(x1,t)$$

Opérateurs de création du méson *D* sur réseau

Groupe de symétrie sur réseau $O_h \neq G$ roupe de symétrie dans le continu

Comment, alors, trouver les états de moment cinétique *J* ?

Méthode : Représentations irréductibles de O_h

$$\exists 1D (A), 2D (E), 3D (T)$$

Représentations subduites

Réseau	Continu	
A_1	J=0	
T_1	J=1	
$E T_2$	J=2	
$A_2 T_1 T_2$	J = 3	
$A_1 E T_1 T_2$	J = 4	

Ex : La représentation $J = 2^+$ est donnée par les représentations E et T

Construction des opérateurs de création du méson *D* sur réseau

 $\bar{\psi}_{i\alpha}(\vec{x},t)\Gamma_{\alpha\beta}\,\psi_{i\beta}(\vec{x},t)$ permettent d'avoir $J^{PC}=0^{-+},0^{++},1^{--},1^{++},1^{+-}$ Comment atteindre des moments cinétiques plus hauts?

Construction des opérateurs de création du méson *D* sur réseau

Comment atteindre des moments cinétiques plus hauts?

Opérateurs non locaux

$$\mathcal{D}(t) = \sum_{x1,x2} \bar{Q}(x2,t) P_t(x1,x2) \Gamma q(x1,t)$$

Comment les construire?

Combinaison des chemins et des Γ appropriés

Construction des opérateurs de création du méson *D* sur réseau

Comment atteindre des moments cinétiques plus hauts?

Opérateurs non locaux

$$\mathcal{D}(t) = \sum_{x1,x2} \bar{Q}(x2,t) P_t(x1,x2) \Gamma q(x1,t)$$

Comment les construire?

Combinaison des chemins et des Γ appropriés

Pour les mésons D ayant $J^P = 2^+$

Par exemple : $\bar{Q}(\gamma_k p_i + \gamma_i p_k)q$ (représentation T_2)

 p_i est la différence entre deux chemins dans la direction i

28 / 45

$$p_i = i - \overline{i}$$

Mariam ATOUI (LPC) LPC - Clermont Fd 1 juin 2012

Fonctions de corrélation à deux points

Extraction des masses

 \mathcal{D}_t : Opérateur de création du méson lourd-léger $\bar{Q}q$

Les corrélateurs des observables hadroniques décroissent exponentiellement

$$C(T) = \langle \Omega | \mathcal{D}_{t+T}^{\dagger} \mathcal{D}_{t} | \Omega \rangle$$
à grand $T \approx |\langle 0 | \mathcal{D} | \Omega \rangle|^{2} \exp(-\underbrace{(E_{0} - E_{\Omega})}_{M_{meson}} T)$

 $|\Omega\rangle$: vide

|0> : état fondamental

Masses des mésons à partir des fonctions de corrélation à deux points $\mathcal{D}^{\dagger}\mathcal{D}$

à une large séparation temporelle \mathcal{T} (ajustement en exp)

Calculs sur réseau

But

Trouver les corrélateurs C(T) des opérateurs des mésons lourds-légers

Formulation de la QCD en terme d'intégrale de chemin

$$\begin{split} \mathcal{C}(\mathcal{T}) &= & \langle \Omega | \mathcal{D}^{\dagger}(\mathcal{T}) \, \mathcal{D}(0) | \Omega \rangle \\ &= & \frac{1}{Z} \int \prod_{f} \mathcal{D} \Psi^{(f)} \, \mathcal{D} \bar{\Psi}^{(f)} \, \mathcal{D} A_{\mu} \, \mathcal{D}^{\dagger}(\mathcal{T}) \, \mathcal{D}(0) \text{exp}^{-S[\Psi^{(f)}, \bar{\Psi}^{(f)}, A_{\mu}]} \end{split}$$

 $\mathcal{D}^{\dagger}(T)\mathcal{D}(0)$: fonction des champs de quarks et gluons

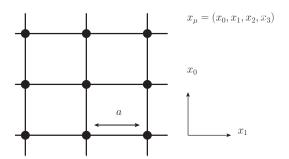
 $\int \prod_f D \Psi^{(f)} D \bar{\Psi}^{(f)} D A_{\mu}$: intégrale sur les champs de quarks $\Psi^{(f)}$ et de gluons A_{μ}

 $\exp^{-S[\psi^{(f)},\bar{\psi}^{(f)},A_{\mu}]}$: facteur contenant l'action de la QCD

Calculs sur réseau

Implémentation numérique du formalisme d'intégrale de chemin en QCD :

- maille petite pour pouvoir sonder les hadrons Discrétisation de l'espace temps avec $a \approx 0.05 \; \mathrm{fm} \cdots 0.10 \; \mathrm{fm}$
 - ⇒ " Physique du continu"
- L suffisamment grande pour pouvoir contenir le hadron "Espace-temps périodique" avec une large $L\approx 2.0~{\rm fm}\cdots 4.0~{\rm fm}$



Calculs sur réseau

Implémentation numérique du formalisme d'intégrale de chemin en QCD :

- Après discrétisation :

$$\int D\psi \, D\bar{\psi} \, DA \cdots \Rightarrow \prod_{x_{\mu}} \left(\int \frac{d\psi(x_{\mu})d\bar{\psi}(x_{\mu})dU(x_{\mu}) \right) \cdots$$

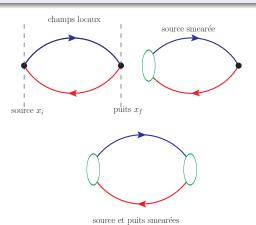
- Dimension de l'intégrale
 - $x_{\mu}: 24^3 \times 48 \approx 7 \times 10^5$ sites du réseau
 - $\psi \equiv \psi_A^{a,(f)}$: 24 degrés de liberté de quarks pour chaque saveur (×2 particule/antiparticule, ×3 couleurs, ×4 spin), 2 saveurs
 - $U = U_{\mu}^{ab}$: 32 degrés de liberté de gluons (×8 couleurs, ×4 spins)
 - ► En total : $24^3 \times 48 \times (2 \times 24 + 32) \approx 53 \times 10^6$ intégrales.
 - ⇒ Approches standards ne sont pas applicables
 ⇒ Algorithmes sophistiqués obligatoires!

Techniques

Techniques de smearing

Pourquoi?

Mieux extraire les masses des mésons à petits t

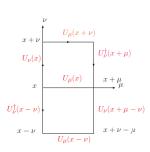


33 / 45

Smearing des champs de jauge

Smearing

* Tout comme les fermions, cette technique est également appliquée aux champs de jauge



Simulation

Étude préliminaire pour savoir comment identifier les états et améliorer le signal

- géométrie $24^3 \times 48$
- Opérateur de Dirac avec masse twistée deux saveurs dégénérés

$$Q^{(\chi)} = \gamma_{\mu} D_{\mu} + m + i \mu \gamma_5 + \frac{a}{2} \Box$$
 , $m + 4 = \frac{1}{2\kappa}$

avec
$$\kappa = 0.160856$$

- action de jauge "tree-level Symanzik" améliorée avec $\beta = 3.9$
- maille du réseau $a \approx 0.0855(5)$ fm, donc $L = 24 \times a \approx 2.05$ fm

μ_I	μ_{h}	m_{π} en MeV	nb. de configurations de jauge
0.0085	0.25	448(1)	19

Méthode des valeurs propres

Déterminer les masses des mésons D et $D_0^* J = 0$

- a) méson D pseudoscalaire léger-charmé, P = -
 - Base physique : $\bar{\psi}^{(c)}\gamma_5\psi^{(u)}$
- b) méson D scalaire léger-charmé, P = +

Base physique : $\bar{\psi}^{(c)}\psi^{(u)}$

action avec masse twistée

⇒ violation de parité

⇒ "petit" soucis : Mélange scalaires et pseudoscalaires

Méthode des valeurs propres GEVP

Méthode:

• 2 × 2 matrices de corrélation

opérateurs dans la base twistée

$$C_{jk}(t_2 - t_1) = \langle \Omega | \mathcal{D}_j^{\dagger}(t_2) \mathcal{D}_k(t_1) | \Omega \rangle \quad \text{où} \quad \mathcal{D}_j \in \{ \, \overline{\chi}^{(c)} \gamma_5 \chi^{(u)} \,, \, \overline{\chi}^{(c)} \chi^{(u)} \}$$

Méthode des valeurs propres GEVP

Méthode:

• 2 × 2 matrices de corrélation

opérateurs dans la base twistée

$$C_{jk}(t_2 - t_1) = \langle \Omega | \mathcal{D}_j^{\dagger}(t_2) \mathcal{D}_k(t_1) | \Omega \rangle \quad \text{où} \quad \mathcal{D}_j \in \{ \, \overline{\chi}^{(c)} \gamma_5 \chi^{(u)} \,, \, \overline{\chi}^{(c)} \chi^{(u)} \}$$

Déterminer les états propres approximativement

$$\sum_{k} C_{jk}(t) v_{k}^{(n)}(t,t_{0}) = \sum_{k} \lambda^{(n)}(t,t_{0}) C_{jk}(t_{0}) v_{k}^{(n)}(t,t_{0}) , \ t \equiv t_{2} - t_{1}$$

Méthode des valeurs propres GEVP

Méthode:

• 2 × 2 matrices de corrélation

opérateurs dans la base twistée

$$C_{jk}(t_2 - t_1) = \langle \Omega | \mathcal{D}_j^{\dagger}(t_2) \mathcal{D}_k(t_1) | \Omega \rangle \quad \text{où} \quad \mathcal{D}_j \in \{ \, \overline{\chi}^{(c)} \gamma_5 \chi^{(u)} \,, \, \overline{\chi}^{(c)} \chi^{(u)} \}$$

Déterminer les états propres approximativement

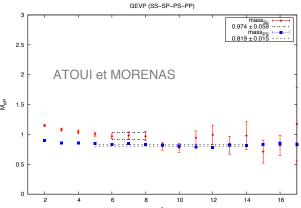
$$\sum_{k} C_{jk}(t) v_{k}^{(n)}(t,t_{0}) = \sum_{k} \lambda^{(n)}(t,t_{0}) C_{jk}(t_{0}) v_{k}^{(n)}(t,t_{0}) , \ t \equiv t_{2} - t_{1}$$

• Obtenir les deux masses effectives $m_{effective}^{(n)}$ (n = 1, 2)

$$\frac{\lambda^{(n)}(t,t_0)}{\lambda^{(n)}(t+1,t_0)} = \frac{e^{-m^{(n)(t,t_0)\,t}} + e^{-m^{(n)(t,t_0)\,(T-t)}}}{e^{-m^{(n)(t,t_0)\,(t+1)}} + e^{-m^{(n)(t,t_0)\,(T-(t+1))}}}$$

⇒ Plateau de masse effective correspond aux masses des mésons

Résultats préliminaires J = 0



Résultats très satisfaisants

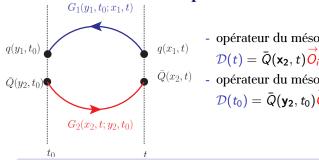
$$M_{\rm eff}(J=0^-) \approx 1.86 \pm 0.05 \; {\rm GeV}$$

$$M_{\rm eff}(J=0^+) \approx 2.23 \pm 0.11 \,{\rm GeV}$$

Paramètres de smearing convenables :

$$N_{Gauss} = 30 \ \kappa = 0.15 \ N_{APE} = 10 \ \alpha_{APE} = 0.5$$

Calcul de corrélateurs des opérateurs $J = 2^+ D^{**}$



$$\mathcal{D}(t) = \bar{Q}(\mathbf{x}_2, t) \overrightarrow{O_i} \Gamma_\beta \, q(\mathbf{x}_1, t)$$

- opérateur du méson à la source :

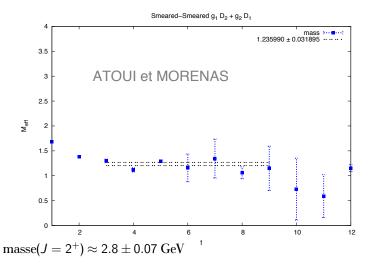
$$\mathcal{D}(t_0) = \bar{Q}(\mathbf{y_2}, t_0) O_{j} \Gamma_{\alpha} q(\mathbf{y_1}, t_0)$$

1 juin 2012

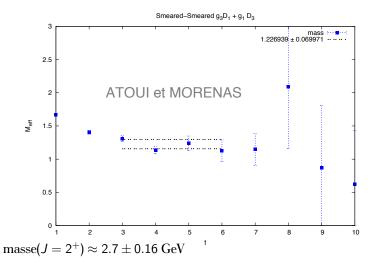
39 / 45

- * \overrightarrow{O}_i source
- * Calculer $G_1(\mathbf{y}_1, t_0; \mathbf{x}_1, t) = \langle \overrightarrow{O}_i \ q(\mathbf{y}_1, t_0) \overline{q}(\mathbf{x}_1, t) \rangle$
- * \vec{O}_i puits
- Insérer des matrices gamma
- Contractions des indices de Dirac et de couleur

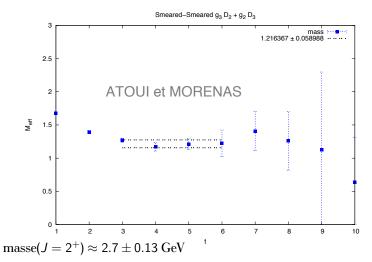
Résultats du D^{**} $(J = 2^+) (\gamma_1 D_2 + \gamma_2 D_1)$



Résultats du D^{**} ($J = 2^+$) ($\gamma_1 D_3 + \gamma_3 D_1$)



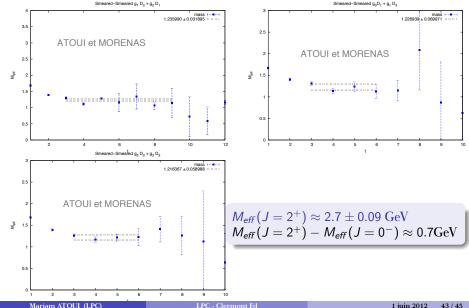
Résultats du D^{**} $(J = 2^+)$ $(\gamma_2 D_3 + \gamma_3 D_2)$



1 juin 2012

42 / 45

Réultats préliminaires de J = 2+



Conclusion et perspective

- Spectroscopie des états charmés J = 0 et $J = 2^+$ avec une masse finie
- Résultats prometteurs

- Considérer autres masses de quarks
- Extrapolation aux masses physiques des quarks
- Constantes de désintégration et facteurs de forme de $B \to D^{**}$

Mariam ATOUI (LPC) 1 juin 2012

