Grille et Cloud... Ou en sommes nous?

Marc-Elian Bégin Six² Sàrl

JI08

Obernai, France, Septembre 2008

Content

- Background and Motivation
- Grid: Unique Features
- Cloud: Unique Features
- Our Experience with the Cloud
- Build the Grid on the Cloud!
- Conclusions

Who we are

- Six² Sàrl (limited)
- Based in Geneva, Switzerland

- Agile tools and application for automated build, integration, deployment and test of distributed software development
- Agile software consultancy and services

Photo by: Taraskas

Background and Motivation

- Grid and cloud comparative study
 - "An EGEE Comparative study: Grids and Cloudsevolution or revolution?", by Marc-Elian Bégin
- Six² builds agile tools for software development
 - Deployed as Software as a Service (SaaS)
 - We need to transparently deploy on
 - Public or "outer" clouds (e.g. Amazon AWS)
 - Private or "inner" clouds
 - Need open source cloud distribution, following the Amazon cloud model (EC2 and S3)

Grid: Unique Features

- What makes the Grid unique and valuable?
- Collaboration
 - Platform for dynamic and distributed collaborations: Virtual Organization
- Federation
 - Platform for federating existing resources into a whole
 - Together offers more than the sum of its parts

Different Clouds

- Amazon Web Services
 - Elastic Computing Cloud (EC2)
 - Simple Storage Service (S3)

AppNexus

GoGrid

Google App Engine

Cloud: Unique Features

Ease of use

– REST and HTTP(S)

Runtime environment

- Hardware virtualisation
- Gives users full control

Elasticity

- Pay-as-you-go
- Cloud providers can buy hardware faster than you!

Cloud: Amazon Web Services

- EC2 (Elastic Computing Cloud) is the computing service of Amazon
 - Based on hardware virtualisation (Xen)
 - Users request virtual machine instances,
 pointing to an image (public or private) stored in S3
 - Users have full control over each instance (e.g. access as root, if required)
 - Requests can be issued via SOAP and REST

Cloud: Amazon Web Services

- S3 (Simple Storage Service) is a service for storing and accessing data on the Amazon cloud
 - From a user's point-of-view, S3 is independent from the other Amazon services
 - Data is built in a hierarchical fashion, grouped in buckets (i.e. containers) and objects
 - Data is accessible via SOAP, REST and BitTorrent
- Elastic Block Storage
 - Locally mounted storage
 - Highly available
 - Possible to breakpoint to S3

Cloud: Amazon Web Services

Other AWS services:

- SQS (Simple Queue Service)
- SimpleDB
- Billing services: DevPay
- Elastic IP (Static IPs for Dynamic Cloud Computing)
- Multiple Locations
- SLAs

Performance

EC2, S3 bandwidth performance summary

Test type	Transfer (MB/sec)	Remarks
EC2 -> EC2	75.0	Using curl on 1-2 GB files, without SSL
S3 -> EC2	49.8	Using 8 x curl on 1 GB files, with SSL
	51.5	Using 8 x curl on 1 GB files, without SSL
EC2 -> S3	53.8	Using 12 x curl on 1 GB files, with SSL

 The conclusions from [6] regarding the EC2 -> EC2 transfers are that "basically we're getting a full gigabit between the instances".

Why Amazon Started This

- They started this for themselves
- Virtualise their own infrastructure
 - Separate the infrastructure from the "user runtime environment"
- Optimise resource utilisation
- Provide better support to their own developers
- Be more agile in their development

Do This At Home

Time for a quick demo...

Costs: EGEE workload in 2007

Data:
25PB stored
11PB transferred

CPU: 114 Million hours

Estimated cost if performed with Amazon's EC2 and S3: ~38 M€

http://gridview.cern.ch/GRIDVIEW/same_index.php_http://calculator.s3.amazonaws.com/calc5.html? 17/05/08 \$58688679.08

June 2, 2008 15

Ease of Use

- Key to the success of AWS is the choice of technologies
- Hardware virtualisation (Xen based)
- HTTP(S)/REST
 - RESTful Web Services
 - Resource Oriented Architecture (ROA)
 - Everybody has an HTTP client on their machine (if not many)
 - Language of the Web

Ease of Use

- This backs-up the claim from Amazon that AWS requires "no middleware" (for the user!)
- However, the level of service provided by AWS is lower than EGEE
- For EGEE/gLite, several MB are required to use the grid

Six2's Experience with the Cloud

- ²One Build and Test Application build on the Cloud
- Goal: "SaaS for software stakeholders to automatically, and continuously, build, integrate, deploy and test distributed software systems"

Benefit:

- Maintain at all time the ability to release
- Reduce risk: minimises integration and deployment risk at the end of a development cycle
- Reduce time to market: can go from idea to product faster since production pipeline automated

This means

- Provide hardware on-demand
- Let users define their own runtime environment
- Give users full control on their build and test environment
- ... in other words provide them a Cloud application!

²One Process Overview

Deployment in the Cloud

Deployments are isolated

How is the Cloud Enabling 2One?

- Virtualisation provides separation between infrastructure and user runtime environment
- Users specify virtual images as their deployment building blocks (generated by ²One or not)
- Pay-as-you-go allows users to use the service when they want and only pay for what they use
- Elasticity of the cloud allows users to start simple and explore more complex deployment over time
- Simple interface allows easy integration with existing systems (no need to take over the world)

Combining Technologies

- Cloud is not only a "commercial offering"
- Cloud is especially a set of technological choices
- Cloud is not grid
- Cloud is a subset of grid
- But it does a better job at it!

Combining Technologies

Grids should be built on clouds !!

- Keep the Grid promise
- Enable more and stronger collaboration
- Simplify site management
- Improve user experience

Advantages

- Provide a clean separation between infrastructure and user runtime environment
- Provide a uniform user runtime environment
- Enable labs to offload peak demand to commercial sites ("inter" cloud)

Disadvantage

- We're back on the learning curve!

Cloud Standards

- Need for standard?
- Yes but 'defacto' standards already exist, e.g.:
 - EC2 and S3 for service interface and semantic (REST)
 - HTTP(S)
 - Virtualization formats
 - Xen or KVM for image virtualisation format
- Since the cloud is simple and based on several existing standards we're not stuck waiting for standardisation bodies

Build the Grid on the Cloud!

Obstacle

- Middleware must be
 - Simple to operate
 - Robust and resilient
 - Adapt to existing infrastructures
- Open source

What's missing?

- Opportunity to demonstrate these concepts in a grid context
- Open source cloud distribution
- Partners willing to get it done!

Conclusions

Grid / Cloud fusion makes sense

- Cloud computing is getting traction, especially with Amazon Web Services (AWS) commercial offering
- Grid (e.g. EGEE) has a larger scope than cloud, however, technological choices and simple interfaces of clouds like AWS is relevant to the grid world

What makes cloud services like AWS successful

- Hardware virtualisation
- REST and HTTP(S)
- These technologies should displace existing grid middleware

Grid made the cloud possible...
it's part of the same "next big thing"!!

References

- Cloud Webcasts: http://tech.slashdot.org/article.pl?
 - sid=08/07/23/1853218
- Cloud / Grid Position Paper: <u>https://edms.cern.ch/file/925013/3/</u>
 <u>EGEE-Grid-Cloud.pdf</u>
- Book: RESTful Web Services, Richardson, Ruby
- Java RESTful Web Service framework: restlet (restlet.org)

Merci

Six² Sàrl, Geneva, Switzerland

www.sixsq.com

Questions, comments, feedback:

meb@sixsq.com

