

Dosimétrie électronique neutrons par capteurs CMOS

Marie VANSTALLE

Université de Strasbourg, France CNRS IPHC, Institut Pluridisciplinaire Hubert Curien RaMsEs, Radioprotection et Mesures Environnementales

Séminaire LPC 17/02/2012

Plan de présentation

- 2. Matériel
 - 2.1. Le capteur
 - 2.2. Principe de détection
 - 2.3. Convertisseurs
 - 2.4. Acquisition
 - 2.5. Méthode d'analyse
- 3. Outils de simulation

- 4. Caractérisation du capteur
 - 4.1. Réponse aux photons (⁶⁰Co)
 - 4.2. Champ mixte n/γ
 - 4.3. Efficacité aux e- β (⁹⁰Sr)
- 5. Détection des neutrons thermiques
- 6. Conclusion

In2p3

- Norme internationale CEI 1323, 1995 → dosimétrie électronique (opérationnelle) neutrons.
- EVIDOS (EValuation of Individual DOSimetry) (UE) enquête : 2001 → 2005 ⇒ 2 dosimètres neutrons :
 - Saphymo IRSN : Saphydose-N
 - APVL-Siemens : EPD-N2

Marie Vanstalle <u>m.vanstalle@gsi.de</u>

- Norme internationale CEI 1323, 1995 → dosimétrie électronique (opérationnelle) neutrons.
- EVIDOS (EValuation of Individual DOSimetry) (UE) enquête : 2001 → 2005
 [1] ⇒ 2 dosimètres neutrons : 10²
 - Saphymo IRSN : Saphydose-N
 - APVL-Siemens : EPD-N2

Séminaire LPC 17/02/2012

Plan de présentation

- 2. Matériel
 - 2.1. Le capteur
 - 2.2. Principe de détection
 - 2.3. Convertisseurs
 - 2.4. Acquisition
 - 2.5. Méthode d'analyse
- 3. Outils de simulation

- 4. Caractérisation du capteur
 - 4.1. Réponse aux photons (⁶⁰Co)
 - 4.2. Champ mixte n/γ
 - 4.3. Efficacité aux e- β (⁹⁰Sr)
- 5. Détection des neutrons thermiques
- 6. Conclusion

MSES COS

In2p3

Caractérisation

Conclusion

Thermiques

Type de capteur : Mimosa-5

Capteur CMOS à pixels actifs fourni par l'IPHC, développé pour la trajectographie des particules au minimum d'ionisation

"MIMOSA 5" Minimum Ionizing cMOS APS (AMS 0.6 μ m) 4 matrices, 4x(512x512) = 10⁶ pix, 4x(0.75 cm²) with 1 pix = 17x17 μ m²

Caractéristiques des CMOS :

- $\sigma_{xy} \sim 2 \ \mu m$
- RADHARD (10¹² n_{eq}/cm²)
- Lecture rapide (5 MHz/pix)
- $\epsilon_{MIP} > 99\%$ (DAQ idéale)
- Temps mort : 50% (readout dep.)

Pour la dosimétrie :

- Faible coût
- Portabilité
- Transparence γ!

Séminaire LPC 17/02/2012

Marie Vanstalle <u>m.vanstalle@gsi.de</u>

Caractérisation

Thermiques Conclusion

Type de capteur : Mimosa-5

Capteur CMOS à pixels actifs fourni par l'IPHC, développé pour la trajectographie des particules au minimum d'ionisation

"MIMOSA 5" Minimum Ionizing cMOS APS (AMS 0.6 μ m) 4 matrices, 4x(512x512) = 10⁶ pix, 4x(0.75 cm²) with 1 pix = 17x17 μ m²

Caractéristiques des CMOS :

- $\sigma_{xy} \sim 2 \ \mu m$
- RADHARD (10¹² n_{eq}/cm²)
- Lecture rapide (5 MHz/pix)
- $\epsilon_{MIP} > 99\%$ (DAQ idéale)
- Temps mort : 50% (readout dep.)

[2] Trocmé et al./Rad. Meas. 43(2008) 1100-1103

Séminaire LPC 17/02/2012

Marie Vanstalle <u>m.vanstalle@gsi.de</u>

Capteur standard

Principe de détection

Capteur standard

Capteur aminci

Conclusion

Séminaire LPC

Marie Vanstalle <u>m.vanstalle@gsi.de</u>

- Détection de particules chargées → nécessité d'un convertisseur
- Large gamme énergétique → plusieurs matériaux

0.01 e	V	1 keV	100 k	eV 10	<u>)</u> MeV 1 GeV
	Thermiques	Interméd	liaires	Rapides	Relativistes
Séminaire LPC 17/02/2012		Marie \ m.vansta	/anstalle <u>Ille@gsi.de</u>		

samedi 18 février 2012

- Fréquence de lecture des trames : 5 MHz ~ 1 trame/50 ms
- 1 trame = 524 kB \rightarrow 1 CD/min !!
- Grande quantité de données (analyse « offline »)

CMOS

Main board (FPGA)

PC (NI acquisition card)

Marie Vanstalle <u>m.vanstalle@gsi.de</u>

Run de bruit

Etude du signal

Séminaire LPC 17/02/2012

Marie Vanstalle m.vanstalle@qsi.de

samedi 18 février 2012

Marie Vanstalle m.vanstalle@gsi.de

Marie Vanstalle m.vanstalle@qsi.de

9

9

samedi 18 février 2012

Conclusion

Méthode d'analyse

Détecteur

Exemple :

a) Recherche du pixel siège (S/N > 5)b) Contourage = Voisins : S/N > 3

							7							
						7	6	7						
					7	6	5	6	7					
				7	6	5	4	5	6	7				
			7	6	5	4	3	4	5	6	7			
		7	6	5	4	3	2	3	4	5	6	7		
	7	6	5	4	3	2	1	2	3	4	5	6	7	
7	6	5	4	3	2	1		1	2	3	4	5	6	7
	7	6	5	4	3	2	1	2	3	4	5	6	7	
		7	6	5	4	3	2	3	4	5	6	7		
			7	6	5	4	3	4	5	6	7			
				7	6	5	4	5	6	7				
					7	6	5	6	7					
						7	6	7						
							7							

Données brutes

Données traitées

25

20

15

«Cluster» ou amas

Séminaire LPC 17/02/2012

Marie Vanstalle <u>m.vanstalle@gsi.de</u> $Q_{seed} = 30, Q_{tot} = 162.0$

Plan de présentation

- 2. Matériel
 - 2.1. Le capteur
 - 2.2. Principe de détection
 - 2.3. Convertisseurs
 - 2.4. Acquisition
 - 2.5. Méthode d'analyse

3. Outils de simulation

- 4. Caractérisation du capteur
 - 4.1. Réponse aux photons (⁶⁰Co)
 - 4.2. Champ mixte n/γ
 - 4.3. Efficacité aux e- β (⁹⁰Sr)
- 5. Détection des neutrons thermiques
- 6. Conclusion

Séminaire LPC 17/02/2012

Marie Vanstalle <u>m.vanstalle@gsi.de</u> MSES COS

In2p3

Parcours des particules chargées :

comparaison des simulations avec base de données existantes

Parcours des particules chargées :

comparaison des simulations avec base de données existantes

Parcours des particules chargées :

comparaison des simulations avec base de données existantes

Modération de neutrons => comparaison de spectres

13

Modération de neutrons => comparaison de spectres

Validation des codes

Pour les photons, comparaison de l'efficacité de conversion.

 χ^2 /ndf : peu de différences entre Geant4 et MCNPX Pire cas : air

Séminaire LPC 17/02/2012

Matériau	Epaisseur	Geant4 (χ^2)	MCNPX (χ^2)
Air	$10~{ m cm}$	50.6	1.9
\mathbf{Si}	$10~\mu{ m m}$	4.2	1.1
$\rm SiO_2$	$6~\mu{ m m}$	0.4	7.2
CH_2	$1 \mathrm{~mm}$	4.6	18.2
Al	$3~\mathrm{mm}$	9.7	21.6
Pb	$3 \mathrm{mm}$	2.9	3.7

Marie Vanstalle m.vanstalle@gsi.de

Plan de présentation

- 2. Matériel
 - 2.1. Le capteur
 - 2.2. Principe de détection
 - 2.3. Convertisseurs
 - 2.4. Acquisition
 - 2.5. Méthode d'analyse
- 3. Outils de simulation

- 4. Caractérisation du capteur
 - 4.1. Réponse aux photons (⁶⁰Co)
 - 4.2. Champ mixte n/γ
 - 4.3. Efficacité aux e- β (⁹⁰Sr)
- 5. Détection des neutrons thermiques
- 6. Conclusion

MSES COS

In2p3

Pb convertisseur = source de photoélectrons MCNPX → effet du convertisseur sur réponse

Pb convertisseur = source de photoélectrons MCNPX → effet du convertisseur sur réponse

Pb convertisseur = source de photoélectrons MCNPX → effet du convertisseur sur réponse

	Expérience	Simulation (toutes E _{dep})	Simulation (E _{dep} > 15 keV)
⁶⁰ Co	(0.28 ± 0.02)×10 ⁻³	(0.71 ± 0.02)×10 ⁻³	(0.30 ± 0.02)×10 ⁻³
⁶⁰ Co + (CH ₂) _n	(0.26 ± 0.01)×10 ⁻³	(8.03 ± 0.10)×10 ⁻³	(0.25 ± 0.01)×10 ⁻³
Séminaire LPC 17/02/2012		Marie Vanstalle m.vanstalle@gsi.de	

Pb convertisseur = source de photoélectrons MCNPX → effet du convertisseur sur réponse

	Expérience	Simulation (toutes E _{dep})	Simulation (E _{dep} > 15 keV)
⁶⁰ Co	(0.28 ± 0.02)×10 ⁻³	(0.71 ± 0.02)×10 ⁻³	(0.30 ± 0.02)×10 ⁻³
⁶⁰ Co + (CH ₂) _n	(0.26 ± 0.01)×10 ⁻³	(8.03 ± 0.10)×10 ⁻³	(0.25 ± 0.01)×10 ⁻³
Séminaire LPC 17/02/2012		Marie Vanstalle m.vanstalle@gsi.de	

m.vanstalle@qsi.de

Pb convertisseur = source de photoélectrons MCNPX → effet du convertisseur sur réponse

	Expérience	Simulation (toutes E _{dep})	Simulation (E _{dep} > 15 keV)
⁶⁰ Co	(0.28 ± 0.02)×10 ⁻³	(0.71 ± 0.02)×10 ⁻³	(0.30 ± 0.02)×10 ⁻³
⁶⁰ Co + (CH ₂) _n	(0.26 ± 0.01)×10 ⁻³	(8.03 ± 0.10)×10 ⁻³	(0.25 ± 0.01)×10 ⁻³

Séminaire LPC 17/02/2012

Marie Vanstalle m.vanstalle@qsi.de

Source AmBe (neutrons rapides + γ 4,438 MeV), $\Phi = 2.24 \times 10^6$ n/s

- Distance = 15 cm
- 90 min d'exposition

 \Rightarrow Seuil pour discrimination n/ γ

Marie Vanstalle <u>m.vanstalle@gsi.de</u> In2p3

Source AmBe (neutrons rapides + γ 4,438 MeV), $\Phi = 2.24 \times 10^6$ n/s

- Distance = 15 cm
- 90 min d'exposition

 \Rightarrow Seuil pour discrimination n/ γ

Marie Vanstalle m.vanstalle@gsi.de

Source AmBe (neutrons rapides + γ 4,438 MeV), $\Phi = 2.24 \times 10^6$ n/s

- Distance = 15 cm
- 90 min d'exposition
- \Rightarrow Seuil pour discrimination n/ γ

Séminaire LPC 17/02/2012

Source AmBe (neutrons rapides + γ 4,438 MeV), $\Phi = 2.24 \times 10^6$ n/s

- Distance = 15 cm
- 90 min d'exposition
- \Rightarrow Seuil pour discrimination n/ γ

Séminaire LPC

Source AmBe (neutrons rapides + γ 4,438 MeV), $\Phi = 2.24 \times 10^6$ n/s

- Distance = 15 cm
- 90 min d'exposition
- \Rightarrow Seuil pour discrimination n/ γ

- Distance = 15 cm
- 90 min d'exposition
- \Rightarrow Seuil pour discrimination n/ γ

In2p3

Conclusion

In2p3

Optimisation des coupures

Marie Vanstalle <u>m.vanstalle@gsi.de</u>

(1) incertitudes statistiques(2) incertitude liée à la source

Séminaire LPC 17/02/2012

Marie Vanstalle <u>m.vanstalle@gsi.de</u>

(1) incertitudes statistiques(2) incertitude liée à la source

Séminaire LPC 17/02/2012

Marie Vanstalle <u>m.vanstalle@gsi.de</u>

 $\epsilon_{\text{MCNPX}} = (1.08 \pm 0.01^{(1)} \pm 0.04^{(2)}) \times 10^{-3}$

(1) incertitudes statistiques (2) incertitude liée à la source

Séminaire LPC 17/02/2012

Marie Vanstalle m.vanstalle@qsi.de

samedi 18 février 2012

Bon accord entre

simulation et

expérience !

Topologie des clusters

Bonne adéquation entre expérience et simulation !

Source	χ^2/NDF (MCNPX)	χ^2/NDF (Geant4)
241 AmBe (n)	1.3	2.1
$^{252}Cf(n)$	7.6	10.9
90 Sr (e-)	55.7	4.1

Superposition distribution de protons simulée et mesurée (ajustements landau-gaussien + même MPVs)

→ valeur approximative d'un facteur de calibration (≈ 0.4 keV/ADC, inc. 15%)

→but de validation

samedi 18 février 2012

Plan de présentation

- 1. Introduction
- 2. Matériel
 - 2.1. Le capteur
 - 2.2. Principe de détection
 - 2.3. Convertisseurs
 - 2.4. Acquisition
 - 2.5. Méthode d'analyse
- 3. Outils de simulation

- 4. Caractérisation du capteur
 - 4.1. Réponse aux photons (⁶⁰Co)
 - 4.2. Champ mixte n/γ
 - 4.3. Efficacité aux e- β (⁹⁰Sr)
- 5. Détection des neutrons thermiques
- 6. Conclusion

Marie Vanstalle <u>m.vanstalle@gsi.de</u> MSES CIS

In2p3

Conclusion

L'irradiateur Van Gogh

Source	Φ [cm ⁻² .s ⁻¹] à 40 cm
(²⁵² Cf+D ₂ O)	3390
(²⁵² Cf+D ₂ O)/Cd	2976

Convertisseur boré

Marie Vanstalle <u>m.vanstalle@gsi.de</u>

Séminaire LPC 17/02/2012

Simulations Geant4

Geant4 utilisé pour simuler ${}^{10}B(n, \alpha)^{7}Li$ (non gérée par MCNPX) particules 2^{daires} (utiles)

Séminaire LPC 17/02/2012

Marie Vanstalle m.vanstalle@qsi.de

Thermiques Conclusion

Simulations Geant4

Geant4 utilisé pour simuler ¹⁰B(n,α)⁷Li (non gérée par MCNPX) particules 2^{daires} (utiles)

Ex. avec CfD₂O + BE10

Particules détectées :

- $\alpha \rightarrow 83 \%$
- ⁷Li → 14%

 $-^{28}$ Si de recul → 2% - protons de recul (dus au support de polyester) → 1%

Peu de pollution !

Séminaire LPC 17/02/2012

Marie Vanstalle <u>m.vanstalle@gsi.de</u>

^[4] Vanstalle et al./Accepté pour publication dans TNS

Conclusion

In2p3

Analyse bidimensionnelle (CfD₂O)

Conclusion

In2p3

Analyse bidimensionnelle (CfD₂O)

Conclusion

Comparaison simulation/expérience

Conclusion

Comparaison simulation/expérience

Con	figuration	E sim	E exp	
DE10	$(Cf+D_2O)$	$(1.06 \pm 0.05) \times 10^{-3}$	(1.08 ± 0.05)×10 ⁻³	
DETU	$(Cf+D_2O)/Cd$	(0.26 ± 0.02)×10 ⁻³	(0.29 ± 0.02)×10 ⁻³	
DNH	$(Cf+D_2O)$	$(0.33 \pm 0.02) \times 10^{-3}$	(0.37 ± 0.02)×10 ⁻³	
DINI	$(Cf+D_2O)/Cd$	$(0.09 \pm 0.01) \times 10^{-3}$	$(0.12 \pm 0.02) \times 10^{-3}$	
BE10	Contribution	(6.53 ± 0.30)×10 ⁻³	(6.46 ± 0.29)×10 ⁻³	Pureté 99.
BN1	thermiques	(1.95 ± 0.10)×10 ⁻³	(2.08 ± 0.11)×10 ⁻³	(Geant4)

A comparer avec ε_{exp} pour les neutrons de l'AmBe = (1.02 ± 0.05)×10⁻³

Marie Vanstalle <u>m.vanstalle@gsi.de</u>

Vers un dosimètre...

AlphaRad-2 Source AmBe (t=21h, 84 cm)

Séminaire LPC 17/02/2012 Marie Vanstalle <u>m.vanstalle@gsi.de</u> In2p3

Conclusion

• Bilan :

- 1. Capteur transparent aux γ avec une coupure appropriée
- 2. Bonne efficacité de détection aux rapides + thermiques (+ même ordre de grandeur)
- 3. Expériences validées par les simulations

⇒ Bon candidat pour un dosimètre opérationnel neutrons !

- Perspectives :
 - 1. Nouveau capteur AlphaRad-2 en cours de test
 - 2. Tests en fantôme pour la détermination de la réponse en équivalent de dose.
- Aujourd'hui...en post doc en hadronthérapie à GSI (Darmstadt) sur l'étude de la position du pic de Bragg en temps réel (ENTERVISION)...

Merci pour votre attention !

S

A STORY TOLD IN FILE NAMES:						
Location: 😂 C:\user\research\data			~			
Filename 🔺	Date Modified	Size	Туре			
8 data_2010.05.28_test.dat 8 data_2010.05.28 re-test.dat	3:37 PM 5/28/2010 4:29 PM 5/28/2010	420 KB 421 KB	DAT file DAT file			
data_2010.05.28_re-re-test.dat	5:43 PM 5/28/2010	420 KB	DAT file			
data_2010.05.28_huh??.dat	7:20 PM 5/28/2010	30 KB	DAT file			
ata_2010.05.28_w1F.dat	9:58 PM 5/28/2010 12:37 AM 5/29/2010	30 KB 30 KB	DAT file			
lata_2010.05.29_#\$@*&!!.dat lata_2010.05.29_crap.dat	2:40 AM 5/29/2010 3:22 AM 5/29/2010	0 KB 437 KB	DAT file DAT file			
8 data_2010.05.29_notbad.dat 8 data_2010.05.29_woohoo!!.dat	4:16 AM 5/29/2010 4:47 AM 5/29/2010	670 KB 1,349 KB	DAT file DAT file			
data_2010.05.29_USETHISONE.dat analysis_graphs.xls	5:08 AM 5/29/2010 7:13 AM 5/29/2010	2,894 KB 455 KB	DAT file XLS file			
ThesisOutline!.doc	7:26 AM 5/29/2010	38 KB	DOC file			
DUNK	2:45 PM 5/29/2010	400 MB	Folder			
Cata_2010.05.30_startingover.dat	8:37 AM 5/30/2010	420 KB	DAT file			
۲			>			
Type: Ph.D Thesis Modified: too many times	Copyright: Jorge Cham	www.phde	comics.com			

Remerciements

D. Husson, S. Higueret, M. Trocmé, J. Baudot, Y. Zhang,T.D. Lê, A. Nourreddine, L. Lebreton, G. Pelcot, J. Taforeau, C. Domingo, K. Amgarou, M.J. Garcia, le groupe RaMsEs

Séminaire LPC 17/02/2012

Marie Vanstalle <u>m.vanstalle@gsi.de</u>

Méthode de lecture

Choix des convertisseurs

Il existe une épaisseur de CH2 optimale en efficacité de conversion

- → dépend de l'énergie incidente
- → simulations MCNPX pour la déterminer

⇒ Important pour limiter l'incertitude sur l'efficacité de conversion

Mesures a - mesures d'efficacité

Réponse angulaire

Source ²⁴¹AmBe :

- 4 angles mesurés : 0°, 30°, 45° et 60°
- Durée d'exposition = 1h
- Distance = 15 cm
- Coupure à Q>250 ADC pour supprimer e-

Expérience

(Q>250 ADC)

 1.02×10^{-3}

7.66×10-4

6.62×10⁻⁴

5.81×10⁻⁴

(étalement du signal)

m.vanstalle@qsi.de

⇒ Réponse décroît avec l'angle !

Simulation

(MCNPX)

 1.09×10^{-3}

9.47×10⁻⁴

7.79×10⁻⁴

5.59×10⁻⁴

 $\Theta = 0^{\circ}$

 $\Theta = 30^{\circ}$

 $\Theta = 45^{\circ}$

 $\Theta = 60^{\circ}$

Séminaire LPC

17/02/2012

Réponse angulaire - effet de l'air

Séminaire LPC 17/02/2012

Marie Vanstalle <u>m.vanstalle@gsi.de</u>