

Cloud Computing @ CC-IN2P3

Rencontre LCG-France, SUBATECH Nantes

Alvaro Lopez Garcia alopez@cc.in2p3.fr

Cloud Infrastructure at CC Current deployment Unified Infrastructure

Cloud Federation

Conclusions

- Not a new concept, although became a trend from 2000.
 - VMWare ESX 2001.
 - Xen 2003.
 - Qemu 2004.
 - KVM 2006.
- Isolation of multiple machines (guests) on a single host.
 - Different OS guests.
 - Performance penalty unless PVM or HVM.
- Tightly related with cloud computing, but not necessary.

Cloud computing

- Several different concepts are considered "Cloud":
 - Infrastructure as a Service (laaS).
 - Platform as a Service (PaaS).
 - Software as a Service (SaaS).
 - Network as a Service (NaaS).
 - → Whatever as a Service.
- At the CC-IN2P3 we are focusing on laaS.
 - Provision of machines, leveraging the direct interaction with the hardware.
 - Network control: IP allocation, firewall modification.
 - Tight control of the policies and quotas by admins (network ACLs, CPU, disk, etc)
- Trend in the last few years, lots of projects and products.
 - Commercial products: Amazon, Rackspace, GoGrid, etc.
 - Open Source: Nimbus, Eucalyptus, OpenNebula, Openstack, etc.

Openstack

Started by NASA and Rackspace.

- Governance by the Openstack Foundation.
- Contributions from HP, SuSE, Canonical, Dell, etc.
- Two different projects: Compute (nova) and Storage (swift).

Solution chosen at CC-IN2P3.

- Open Source, development driven by the community.
- Good development pace.
- Extensive features
- Completely modular.
- Cost.
- Deployment.
- Cloud momentum.
- Openstack is not bounded to an hypervisor
 - Support for KVM, Xen, XenServer, bare metal, LXC, etc.

Openstack nova Architecture

- Openstack Compute (nova) Services
 - API (nova-api).
 - Network manager (nova-network, quantum).
 - Image manager (glance).
 - Identity service (keystone).
 - Dashboard (horizon).
 - Scheduler (nova-scheduler).
 - Volume Manager (nova-volume, cinder).
 - Compute (nova-compute).

I CG-France

Cloud Infrastructure at CC Current deployment Unified Infrastructure

Cloud Federation

Conclusions

Hardware

- 16 DELL Poweredge C6100 hosts
 - 2 Xeon 24 Cores X5675 @ 3.07 GHz.
 - 96 GB RAM
 - 2 TB RAID 10 local storage (4 SAS 7.2 krpm)
- Total of 400 cores
- 10Gb NICS with NPAR/SR-IOv
- GPFS Image catalog.
- Private and public IPv4 subnets and VLANs. Full VMs network isolation from CC network.

Testbed at CC-IN2P3

Software

- Openstack Essex (Folsom will be deployed soon).
- KVM hypervisor.
- Openstack manager. Hosts the following services:
 - API.
 - Network manager.
 - Image catalog (glance).
 - Dashboard (horizon).
 - Identity (keystone).
 - Scheduler.
- Volume manager is on the road.
- Networking: Isolated VLANs per group.

HTTP/REST: Use it programatically.

- Amazon EC2 (boto).
- Native OS API (novaclient).
- OCCI.

Command Line.

- euca2ools (EC2).
- nova (OS API).

Web Interface.

Openstack Dashboard

Unified Infrastrucutre

Unified Infrastructure

Plans to extend the cloud testbed and deploy the CC-IN2P3 services on top.

- More flexibility and elasticity.
 - Scale up/down services dinamically according to the instantaneous needs.
 - Dynamic reassignment of resources.
- Zero-time overhead for deployment of new machines.
- Migration of machines.
 - Efficient resource utilization.
 - Hardware interventions without service disruption.
- Added value for users.
 - Instatiation of machines other than Scientific Linux.
 - Use exclusively the resources without sharing.

I CG-France

Cloud Infrastructure at CC Current deployment Unified Infrastructure

Cloud Federation

Conclusions

Cloud Federation Outlook

Federation efforts aim to unify the access to the many "scientific clouds" around France and Europe, trying to profit from Grid experience.

- EGI Federated Cloud Task Force.
- France Grilles.
- Collaboration CNRS and CSIC (Spain) to establish a federated cloud.

Different types:

- Strong federation: access trough a broker (a-la-grid).
- Loose federation: common services (accounting, authentication, etc.), but no brokering.

Problematics

A full federation implies some problems.

- Different resource providers, middleware implementations (Opennebula, Openstack, etc.) and hypervisors (Xen, KVM).
- Different APIs with different functionalities.
- Resource advertising of the capabilities.
- Federated authN/authZ.
- Placement policies (data access, image availability, price, energy saving).
- Image catalog, image distribution and overhead.
- Accounting of resources.

Problematics

Ongoing work in EGI FCTF and the CC-IN2P3.

- Resources advertisement.
- Unified and standard API.
- Federated authN/authZ.
- Placement policies (data access, prices, energy saving...).
- Comprehensive images metadata.
- Aggregated accounting.

Problematics

Ongoing work in EGI FCTF and the CC-IN2P3.

- Resources advertisement.
 - FCTF: BDII.
- Unified and standard API.
 - → FCTF: OCCI.
- Federated authN/authZ.
 - FCTF: x509 authentication. CC-IN2P3: VOMS authentication.
- Placement policies (data access, prices, energy saving...).
 - CC-IN2P3 Compatible One.
- Comprehensive images metadata.
 - FCTF: Stratuslab marketplace.
- Aggregated accounting.
 - FCTF: APEL.

I CG-France

Cloud Infrastructure at CC Current deployment Unified Infrastructure

Cloud Federation

Conclusions

Evolution for the users

- Self Provisioning of nodes: deployment time decreased to the minute.
- He is able to use a custom environment (system, tools, batch...) and OS not an imposed one (Scientific Linux).
- Software porting from site to site becomes trivial.
- He distributes allocated resources as he wants. (processor/memory/disk).
- He sizes his infrastructure dynamically according to his needs (elasticity).
- He may enlarge his infrastructure through public clouds.
- He may gain access to new resources by the way of a simple quota modification.
- With Federation in place he may distribute his resources in several datacenters (failover).

Evolution for the computing center

- Reduced maintenance/administration of user environments.
- Benefits of virtualization: optimized resources.
- May partition and scale the infrastructure dynamically (systems, platforms, users...).
- May provide ressources to laaS brokers (new revenues).
- Plan and provision extra capacity for only one platform anymore.
- Broaden users communities.

Merci!