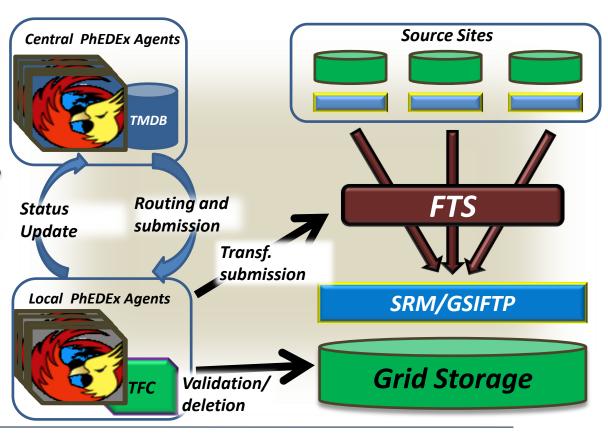


CMS Data Transfers

A. Sartirana (LLR, E. Polytechnique, Paris)

overview

- The CMS Data Placement strategy evolved during years
 - computing model (2005) [*]: static, hierarchical, local
 data privileged;
 - good reliability and performance of networks: evolved
 (2008) into a "full mesh", more WAN dependent;
 - infrastructures upgrades (LHCOne) and new tools (Xroot fed.): evolving into more dynamical and WAN-based data access;
- evolution possible thanks to CMS data mgmt tools
 - * PhEDEX: robust and flexible data placement system;
- in what follows...
 - brief intro to PhEDEx and Link Commissioning;
 - * evolution of the CMS data placement;
 - outlook to future evolution.
- [*] CMS C-TDR released (CERN-LHCC-2005-023)



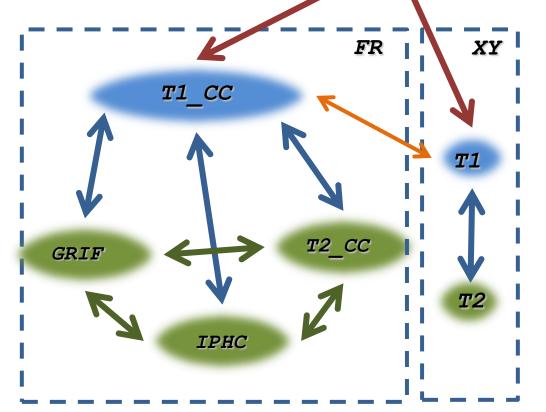
PhEDEx

CMS Data Transfer and Placement System

- central brain (CERN) and local agents at sites: routes
 data requested to a site from all available sources;
- extremely flexible:
 can adapt to any
 data distribution
 model;
- performing: able to
 saturate NW
 connections
 available between
 sites;
- * reliable and
 robust.

- Infrastructure for commissioning (validate) links
 - dedicated PhEDEx instance: constant testing;
 - have to be "enabled" to be available for "production" data transfer;
 - tinks should gain minimal performances to be enabled;
- Debugging Data Transfer (DDT) project
 - created in 2007 to support link commissioning;
 - experts to help and coordinate the sites
 administrators in debugging their links;

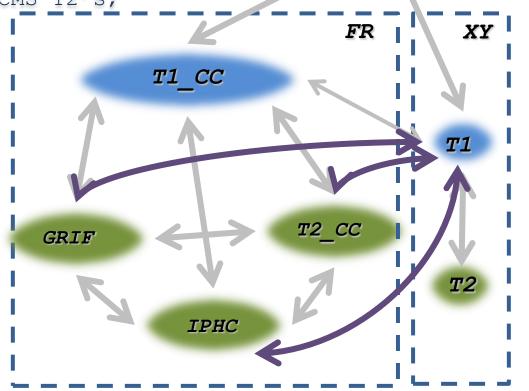
- * ended in 2010: now maintained by the Data Transfer Team.
- [*] "The CMS Data Transfer Test Environment in Preparation for LHC Data Taking", IEEE-2008 "Debugging Data Transfers in CMS" CHEP09
 - "Large scale commissioning and operational experience with T2-T2 data transfer links in CMS" CHEP10



tiered arch

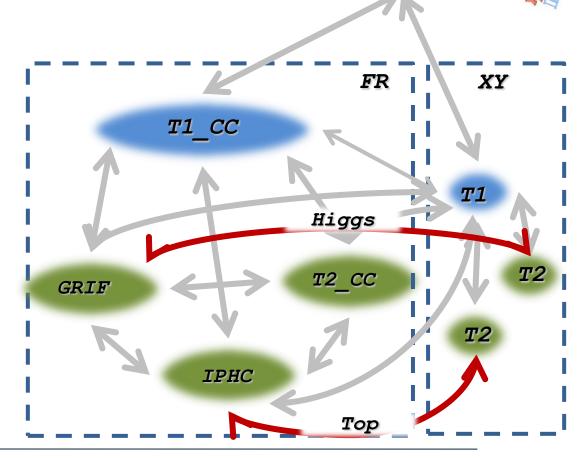
TO

- Network considered among the potentially weak points: keep local/regional, stay on LHCOPN
 - strict hierarchical architecture: T0-T1 and T1-T2 data flows;
 - ❖ good **T1-T1** connectivity for RE-RECO synch;
 - \diamond good T1-T2 and T2-T2regional connectivity;
 - jobs access the data locally (i.e. job go where data are stored).



t1's full mesh

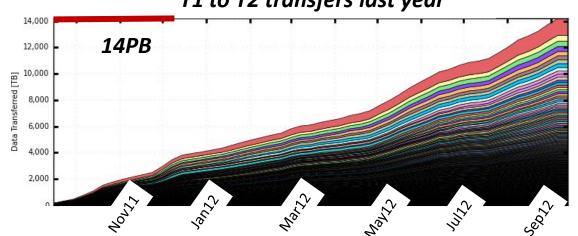
- Network showed to be performing and reliable: T2 connections to non-regional T1 became more and more important
 - having all <u>T1-T2</u> links commissioned
 became a requirement to CMS T2's;
 - non regional <u>T2-T1</u>
 uplinks are more and
 more used as well;
 - required perfs: 20MB/s
 downlink, 5MB/s uplink;
 - currently most part of
 T2 data import comes
 from non regional T1s.


t2's mesh

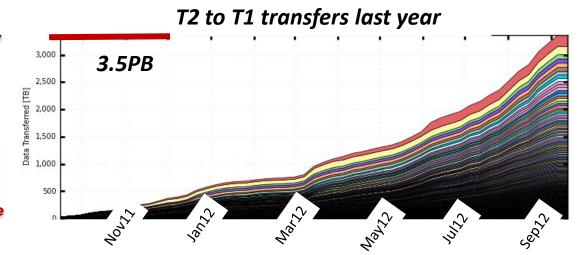
TO

With data taking CMS established the association between T2 sites and Physics Groups

- sites associated to the same Physics **Groups** started commissioning their links to better exchange data among themselves;
- CMS computing turned this into a on official commissioning campaign;
- currently non-regional T2-T2 links give important contribution.

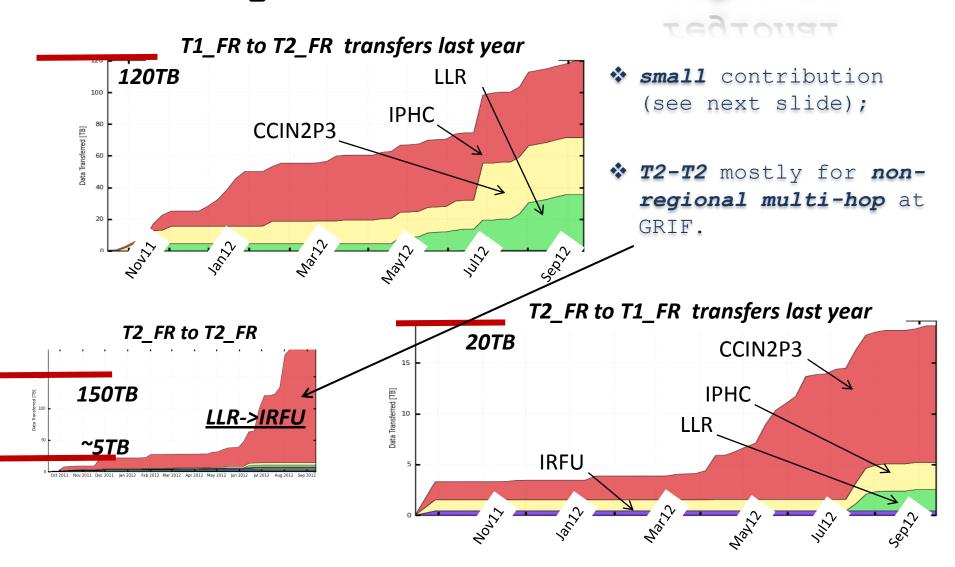


overview



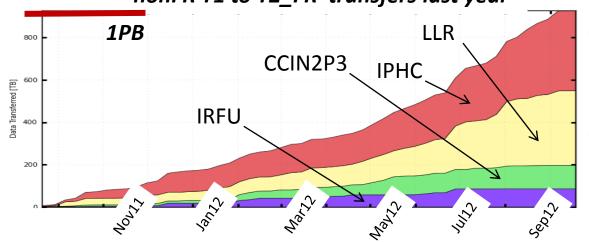
T1 to T2 transfers last year

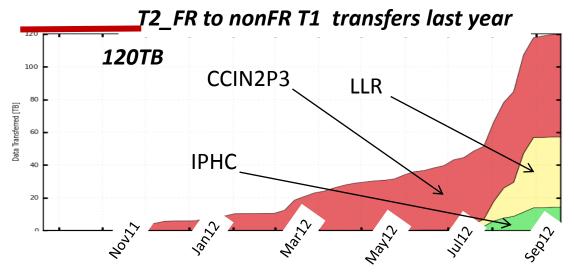
T1-T2 transfers: in the last 12 months, over 406 active links;


- T2-T1 transfers: 3.5 PB, in the last 12 months, over 306 active links.
- [*] all PhEDEx plots in the following slides will plot effective (i.e. successful transfers) transferred volume in the last 12 months.

nal

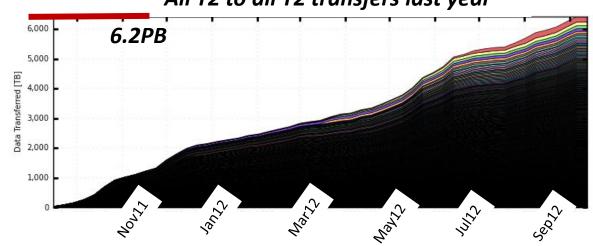
regional




non-reg. T1's

- \$ 89% of the overall
 traffic from T1's to
 T2_FR is non-reg;
- \$ 85% of the overall
 traffic from T2_FR to
 T1's is non-reg;

❖ French T2's contribution to global data movement is ~5%: in line with the expected ratio of T2 CMS activity in France.



non-reg. T2's

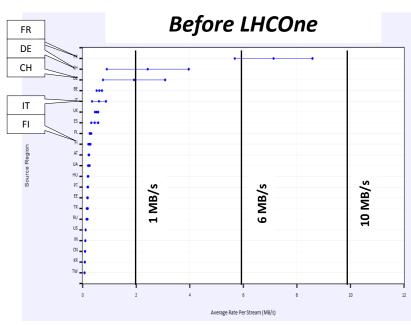
- T2-T2 transfers: ~30%
 of transfers to T2
 sites;
- 6.2PB in the last 12
 months over 1450
 active links;

400TB, dominated by
 LLR-IRFU performing
 multi-hop transfers,
 actual volume is 250TB
 (20% of FR T2 imports).

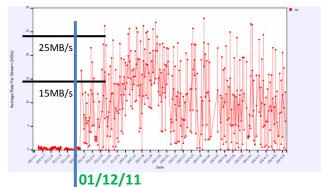
All T2 to T2_FR transfers last year 400TB 250 250TB 250TB

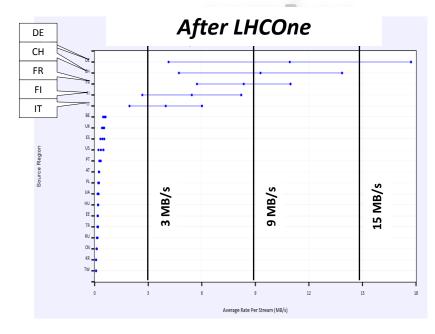
overview

LHC Open Network Environment


"The objective of LHCONE is to provide a collection of access locations that are effectively entry points into a network that is private to the LHC T1/2/3 sites. LHCONE is not intended to replace the LHCOPN but rather to complement it." [*]

- Currently shared VLAN prototype;
- CMS has been much interested in the project since the beginning as a consistent part of CMS data placement is routed on Tn-Tm links (n,m>1);
- among CMS France sites (to my knownledge): GRIF, IPNL
 and CC are currently connected to LHCOne;
- to CMS: more than to improve overall performances it is important to fix critical points.





Average Rate Per Stream (MB/s) Daily average MB/s*stream in IRFU imports from DE sites

Average MB/s*stream in IRFU imports from different regions

❖ Import from some
regions (DE,CH,FI,IT)
significantly improved

[*]quantity in plots: rate/stream (to get effective PhEDEx rate: multiply by nstream and by the number of parallel transfers)

the future

- CMS Data Management keeps evolving toward a more dynamical and distributed model
 - * NW infrastructure: reliable + important improvements;
 - seek for more flexibility and less demanding operations;
- Data Popularity and Site Cleaning services already in place; https://cms-popularity.cern.ch/
- next step Dynamic Data Placement
 - reduce pre-placed replicas and
 optimize storage usage;

- deploying Xroot federation for direct access over WAN
 - * started at USCMS and now extending to all sites;
 - * use cases: fallback of local access, re-brokerage of jobs, file caching & re-transfer of broken files.

[*]https://indico.cern.ch/getFile.py/access?subContId=4&contribId=30&resId=0&materia lId=slides&confId=196073

Summing up...

- Over years CMS has developed its own Data Placement model
 - relies on a reliable and performing NW infrastructure and on robust and flexible Data Management tools;
 - Physics Groups can easily transfer and replicate their
 data at all supporting sites;
 - still based on static data placing/deleting and local
 access;
- LHCOne project perfectly suits the needs of CMS in terms of NW infrastructure;
- evolution toward a more flexible and dynamic model is foreseen
 - automatic cleaning and popularity gathering services are available;
 - dynamic data placement and direct WAN access via Xroot federation are in the plans.