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Rationale

The HEP code 
An embarrassing parallelism
An inextricable mix of branches / integer / float / double
A “flat” timing distribution – no “hot spots”

We always got away with clock rate, now it is not 
possible any more
Parallelism is there to stay

We cannot claim that we are resource-hungry and then 
exploit ~10%-50% of the hardware
 Just think what it means in terms of money
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parallelism
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From a recent 
talk by Intel



If you trust Intel
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If you trust Intel 2
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Why it is so difficult?

No clear kernel

C++ code generation / optimisation not well understood

Most of the technology is coming out now
 Lack of standards
Technological risk

Non professional coders

Fast evolving code

No control on hardware acquisition
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Why it is so difficult (cont)?

Amdhal law sets stringent limits to the results that can 
be achieved
No “low level” optimisation alone will yield results

Heterogeneous parallelism forces multi-level 
parallelisation

Essentially the code (all of it!) will have to be re-
written
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ALICE strategy (unauthorised)

Use the LSD-1 to essentially re-write AliRoot

Use the LSD-2 to expand the parallelism to the Grid
Hopefully the major thrust will be on MiddleWare

Refactor the code in order to expose the maximum of 
parallelism present at each level

Keep the code in C++ (no CUDA, OpenCL etc.)

Explore the possible use of #pragma’s (OpenMP, OpenACC)

Experiment on all hardware at hand (OpenLab, but not only)
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Timeline
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2012 2013 2014

May 2012
Kick-off 

Jan2013
Work starts

June 2013
Mid term review 
phase I

Dec 2013
End phase I

June 2014
Mid term review
Phase II

Dec 2014
End phase II

}R&D }Phase I }Phase II



One example – Simulation

The LHC experiments use extensively G4 as main simulation 
engine. They have invested in validation procedures. Any new 
project must be coherent with their framework.

One of the reasons why the experiments develop their own 
fast MC solution is the fact that a full simulation  is too slow 
for several physics analysis. These fast MCs are not in the G4 
framework (different control, different geometries, etc), but 
becoming coherent with the experiments frameworks.

Giving the amount of good work with the G4 physics, it is 
unthinkable to not capitalize on this work.
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Event loop and stacking
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Fast and Full MonteCarlo

We would like an architecture (via the abstract 
transporters) where fast and full MC can be run 
together.

To make it possible one must have a separate particle 
stack.

However, it was clear from the very beginning in 
January that the particle stack depends strongly on the 
constraints of parrallelism. Multiple threads cannot 
update efficiently a tree data structure.
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Conventional Transport

At each step, the navigator *nav has the state of the 
particle x,y,z,px,py,pz, the volume instance volume*, 
etc.

We compute the distance to the next boundary with 
something like
Dist = nav->DistoOut(volume,x,y,z,px,py,pz)

Or the distance to one physics process with, eg
Distp = nav->DistPhotoEffect(volume,x,y,z,px,py,pz)
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Current Situation

We run jobs in parallel, one per core.

Nothing wrong with that except that it does not scale in 
case of many cores because it requires too much memory.

A multithreaded version may reduce (say by a factor 2 or 3) 
the amount of required memory, but also at the expense of 
performance.

A multithreaded version does not fit well with a hierarchy 
of processors.

So, we have a problem, in particular with the way we have 
designed some data structures, eg HepMC.
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Can we make progress?

We need data structures with internal relations only. 
This can be implemented by using pools and indices.

When looping on collections, one must avoid the 
navigation in large memory areas killing the cache.

We must generate vectors of reasonable size well 
matched to the degree of parallelism of the hardware 
and the amount of memory.

We must find a system to avoid the tail effects
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tails, tails, tails
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Tails again
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New Transport Scheme
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All particles in the 
same volume type are 
transported in parallel.
Particles entering new 
volumes or generated 

are accumulated in the 
volume basket.

Events for which 
all hits are 

available are 
digitized in parallel



Generations of baskets

When a particle enters a volume or is generated, it is 
added to the basket of particles for the volume type.

The navigator selects the basket with the highest score 
(with a high and low water mark algorithm).

The user has the control on the water marks, but the 
idea that this should be automatic in function of the 
number of processors and the total amount of memory 
available. (see interactive demo)
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New Transport

At each step, the navigator *nav has the state of the 
particles *x,*y,*z,*px,*py,*pz, the volume instances 
volume**, etc.

We compute the distances (array *Dist) to the next 
boundaries with something like
nav->DistoOut(volume,x,y,z,px,py,pz,Dist)

Or the distances to one physics process with, eg
nav->DistPhotoEffect(volume,x,y,z,px,py,pz,DispP)
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New Transport
The new  transport system implies many changes in the 

geometry and physics classes. These classes must be 
vectorized (a lot of work!).

Meanwhile we can survive and test the principle by 
implementing a bridge function like
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MyNavigator::DisttoOut(int n, TGeoVolume **vol, double *x,..) 
{
   for int i=0;i<n;i++)  {
      Dist[i] = DisttoOutOld(vol[i],x[i],…);
   }
 }



A better solution
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Pipeline of 
objects

Checkpoint
Synchronization.

Only 1 « gap » every N events

This type of 
solution 
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studies



A better better solution
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checkpoints At each checkpoint we 
have to keep the non 

finished 
objects/events.

We can now digitize 
with parallelism on 

events, clear and reuse 
the slots.
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Vectorizing the geometry (ex1)
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Double_t TGeoPara::Safety(Double_t *point, Bool_t in) const
{
   // computes the closest distance from given point to this shape. 
   Double_t saf[3];
   // distance from point to higher Z face
   saf[0] = fZ-TMath::Abs(point[2]); // Z

   Double_t yt = point[1]-fTyz*point[2];      
   saf[1] = fY-TMath::Abs(yt);       // Y
   // cos of angle YZ
   Double_t cty = 1.0/TMath::Sqrt(1.0+fTyz*fTyz);

   Double_t xt = point[0]-fTxz*point[2]-fTxy*yt;      
   saf[2] = fX-TMath::Abs(xt);       // X
   // cos of angle XZ
   Double_t ctx = 1.0/TMath::Sqrt(1.0+fTxy*fTxy+fTxz*fTxz);
   saf[2] *= ctx;
   saf[1] *= cty;
   if (in) return saf[TMath::LocMin(3,saf)];
   for (Int_t i=0; i<3; i++) saf[i]=-saf[i];
   return saf[TMath::LocMax(3,saf)];
}

Huge performance 
gain expected in this 
type of code where 
shape constants can 
be computed outside 

the loop



Vectorizing the geometry (ex2)
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G4double G4Cons::DistanceToIn( const G4ThreeVector& p,
                               const G4ThreeVector& v   ) const
{
  G4double snxt = kInfinity ;      // snxt = default return value
  const G4double dRmax = 100*std::min(fRmax1,fRmax2);
  static const G4double halfCarTolerance=kCarTolerance*0.5;
  static const G4double halfRadTolerance=kRadTolerance*0.5;

  G4double tanRMax,secRMax,rMaxAv,rMaxOAv ;  // Data for cones
  G4double tanRMin,secRMin,rMinAv,rMinOAv ;
  G4double rout,rin ;

  G4double tolORMin,tolORMin2,tolIRMin,tolIRMin2 ; // `generous' radii squared
  G4double tolORMax2,tolIRMax,tolIRMax2 ;
  G4double tolODz,tolIDz ;

  G4double Dist,s,xi,yi,zi,ri=0.,risec,rhoi2,cosPsi ; // Intersection point vars

  G4double t1,t2,t3,b,c,d ;    // Quadratic solver variables 
  G4double nt1,nt2,nt3 ;
  G4double Comp ;

  G4ThreeVector Normal;

  // Cone Precalcs

  tanRMin = (fRmin2 - fRmin1)*0.5/fDz ;
  secRMin = std::sqrt(1.0 + tanRMin*tanRMin) ;
  rMinAv  = (fRmin1 + fRmin2)*0.5 ;

  if (rMinAv > halfRadTolerance)
  {
    rMinOAv = rMinAv - halfRadTolerance ;
  }
  else
  {
    rMinOAv = 0.0 ;
  }  
  tanRMax = (fRmax2 - fRmax1)*0.5/fDz ;
  secRMax = std::sqrt(1.0 + tanRMax*tanRMax) ;
  rMaxAv  = (fRmax1 + fRmax2)*0.5 ;
  rMaxOAv = rMaxAv + halfRadTolerance ;
   
  // Intersection with z-surfaces

  tolIDz = fDz - halfCarTolerance ;
  tolODz = fDz + halfCarTolerance ;

……  //here starts the real algorithm

Huge performance 
gain expected in this 
type of code where 
shape constants can 
be computed outside 

the loop

All these 
statements  are 
independent of 
the particle !!!



Vectorizing the Physics

This is going to be more difficult when extracting the 
physics classes from G4. However important gains are 
expected in the functions computing the distance to the 
next interaction point for each process.

There is a diversity of interfaces and we have now sub-
branches per particle type.
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Plan ahead
(no timing yet)

Continue exploring all concurrency opportunities

Develop “virtual transporter” to include a full and fast option

Introduce embryonic physics processes (em) to simulate shower 
development

Evaluate the prototype on parallel architectures

Evaluate different “parallel” languages (OpenMP, CUDA, OpenCL…)

Cooperate with experiments
 For instance with ATLAS ISF (Integrated Simulation Framework) to put 

together the fast and full MC.
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