e optimisation of ALICE

Federico Carminati
January 19, 2012

Rationale

The HEP code
An embarrassing parallelism
An inextricable mix of branches / integer / float / double
A “flat” timing distribution - no “hot spots”

We always got away with clock rate, now it is not
possible any more

Parallelism is there to stay

We cannot claim that we are resource-hungry and then
exploit ~10%-50% of the hardware

Just think what it means in terms of money

parallelism

Motivation: Performance

“Parallel hardware needs
parallel programming”

Performance

Multicore Era

Time

Compilers

Libraries |
Parallel Models

Multicore Many-core Cluster

Multicore
CPU

Multicore
CPU

Intel® MIC
Architecture Multicore
Co-Processor Cluster

Shown steps enable to scale forward
to many-core co-processors.

Vectorization
Make use of SIMD

extensions, e.q.
Multithreading Intel® AVX.

Achieve scalability
across multiple Intel® Compiler

cores. sockets and - Optimization hints
: - - #pragma simd

nodes.
: Intel® Cilk Plus
%3;:1!% lﬁlfég e Intel® Compiler - Array notation
functionality and - Auto/guided par. - Elemental fn.
= &
employ optimized Sl Intel® ArBB
oode, thieads, hnd AnbeMD Fars e - Unified model for
{with_ Intel® MKL) Building Blocks SIMD and threads
multiple nodes. - Intel TBB
®ccine - Intel Cilk Plus
- Intel ArBB
Recompilation of I“tellcﬁ@ ng_
the existing code. - Multi-media Intel® Cluster
- Sk Studio
Intel® Compiler Intel® MKL - Cluster tools
- Performance - Statistics (VSL) - MPI
comparison with - BLAS
other compilers. = etc.

Why it is so difficult?

No clear kernel
C++ code generation / optimisation not well understood

Most of the technology is coming out now
Lack of standards
Technological risk

Non professional coders
Fast evolving code

No control on hardware acquisition

Why it is so difficult (cont)?

Amdhal law sets stringent limits to the results that can
be achieved

No “low level” optimisation alone will yield results

Heterogeneous parallelism forces multi-level
parallelisation

Essentially the code (all of it!) will have to be re-
written

Amdahl law

o 102

................................

102

processors

ALICE strategy (unauthorised)

Use the LSD-1 to essentially re-write AliRoot

Use the LSD-2 to expand the parallelism to the Grid
Hopefully the major thrust will be on MiddleWare

Refactor the code in order to expose the maximum of
parallelism present at each level

Keep the code in C++ (no CUDA, OpenCL etc.)
Explore the possible use of #pragma’s (OpenMP, OpenACC)

Experiment on all hardware at hand (OpenLab, but not only)

Timeline

One example - Simulation

The LHC experiments use extensively G4 as main simulation
engine. They have invested in validation procedures. Any new
project must be coherent with their framework.

One of the reasons why the experiments develop their own
fast MC solution is the fact that a full simulation is too slow
for several physics analysis. These fast MCs are not in the G4
framework (different control, different geometries, etc), but
becoming coherent with the experiments frameworks.

Giving the amount of good work with the G4 physics, it is
unthinkable to not capitalize on this work.

Event loop and stacking

Stack Virtual
manager transporter

Geometry
navigator

Step Physics
manager processes

Fast and Full MonteCarlo

We would like an architecture (via the abstract
transporters) where fast and full MC can be run
together.

To make it possible one must have a separate particle
stack.

However, it was clear from the very beginning in
January that the particle stack depends strongly on the
constraints of parrallelism. Multiple threads cannot
update efficiently a tree data structure.

Conventional Transport

At each step, the navigator *nav has the state of the

particle x,y,z,pX,py,pz, the volume instance volume®,
etc.

We compute the distance to the next boundary with
something like

Or the distance to one physics process with, eg

Po+Pb @ sqrijs] = .78 ATeV

2010-11-08 11:30:46

Fill : 1482

Hun : 137124

Event | Ox00000000DIBBESDY

Current Situation

We run jobs in parallel, one per core.

Nothing wrong with that except that it does not scale in
case of many cores because it requires too much memory.

A multithreaded version may reduce (say by a factor 2 or 3)
the amount of required memory, but also at the expense of
performance.

A multithreaded version does not fit well with a hierarchy
of processors.

So, we have a problem, in particular with the way we have
designed some data structures, eg HepMC.

Can we make progress?

We need data structures with internal relations only.
This can be implemented by using pools and indices.

When looping on collections, one must avoid the
navigation in large memory areas killing the cache.

We must generate vectors of reasonable size well
matched to the degree of parallelism of the hardware
and the amount of memory.

We must find a system to avoid the tail effects

tails, tails, tails

S
=
=

Cad Ca
= n
= =

Number of objects
o
=

Tails again

s309lqo jo JequinN

New Transport Sche

Generations of baskets

When a particle enters a volume or is generated, it is
added to the basket of particles for the volume type.

The navigator selects the basket with the highest score
(with a high and low water mark algorithm).

The user has the control on the water marks, but the
idea that this should be automatic in function of the
number of processors and the total amount of memory
available. (see interactive demo)

New Transport

At each step, the navigator *nav has the state of the

particles *x,*y,*z,*px,*py,“pz, the volume instances
volume**, etc.

We compute the distances (array *Dist) to the next
boundaries with something like

Or the distances to one physics process with, eg

New Transport

The new transport system implies many changes in the

geometry and physics classes. These classes must be
vectorized (a lot of work!).

Meanwhile we can survive and test the principle by
implementing a bridge function like

MyNavigator::DisttoOut(int n, TGeoVolume **vol, double *x,..)
{
for int i=0;i<n;i++) {
Dist[i] = DisttoOutOld(vol[i],x[i],...);
}
}

==
o

200
time

=
.. oo
1
=]
.. E
1
W =
1
=]
20000000000Gh00000000000Ga00 o
1
=]
900000000008 000000 u
1
(%) |
whd
c
Ol | =
(aX o0
o .
(@] =
)
S e _ =
O L=

(=T — T — R — T -
(=T T+ B — T T+ B =
n < < © o™

sjoalqo jo Jaqunp

250
200
150
100

50

number of baskets per generation

500

400

300

200

100

hnb
Entries 372
Mean 146.3
RMS 72.67

400 450 500

baskets population for generation 72, volume = GF0C hbaskets
- Entries 416
10 ="V Mean 180.4
RMS 224.6

10°

10

pepeepeepe L e g

) A N NN ”"méhﬁ' . : 'ggu a5 coro

{

Doubl e t TCGeoPar a: : Saf et y(Doubl e t *poi nt,

Vectorizing the gec

Bool _t in) const

/'l conputes the closest distance fromgiven point to this shape.
Doubl e_t saf[3];

/1 distance frompoint to higher Z face
saf[0] = fZ-TMath:: Abs(point[2]); /] Z

Double t yt = point[1l]-fTyz*point[2];
saf[1] = fY-TMath:: Abs(yt); I1Y
/'l cos of angle YZ

Double t cty = 1.0/ TMath: : Sqgrt (1. O+f Tyz*f Tyz) ;

Doubl e t xt = point[0]-fTxz*point[2]-fTxy*yt;
saf[2] = fX-TMat h:: Abs(xt); Il X

/'l cos of angle XZ

Double t ctx = 1.0/ TMath::Sqrt (1. 0+f Txy*f Txy+f Txz*f Txz) ;
saf[2] *= ctx;

saf[1] *= cty;

I f (in) return saf[TMath::LocM n(3, saf)];

for (Int_t i=0; i<3; i++) saf[i]=-saf[i];

return saf[TMat h: : LocMax(3, saf)];

Vectorizing the ge

G4double G4Cons::DistanceToln(const G4ThreeVector& p,
const G4ThreeVector& v) const

G4double snxt = kinfinity ; // snxt = default return value
const G4double dRmax = 100*std::min(fRmax1,fRmax2);
static const G4double halfCarTolerance=kCarTolerance*0.5;
static const G4double halfRadTolerance=kRadTolerance*0.5;

G4double tanRMax,secRMax,rMaxAv,rMaxOAv ; // Data for cones
G4double tanRMin,secRMin,rMinAv,rMinOAv ;
G4double rout,rin ;

G4double tolORMin,tolORMin2,tolIRMin,tolIRMin2 ; // *generous' radii squared
G4double tolORMax2,tolIRMax,tolIRMax2 ;
G4double tolODz,tollDz ;

G4double Dist,s,xi,yi,zi,ri=0.,risec,rhoi2,cosPsi ; // Intersection point vars
G4double t1,t2,t3,b,c,d ; // Quadratic solver variables

G4double nt1,nt2,nt3 ;
G4double Comp ;

G4ThreeVector Normal;
// Cone Precalcs

tanRMin = (fRmin2 - fRmin1)*0.5/fDz ;
secRMin = std::sqrt(1.0 + tanRMin*tanRMin) ;
rMinAv = (fRmin1 + fRmin2)*0.5 ;

if (rMinAv > halfRadTolerance)

rMinOAv = rMinAv - halfRadTolerance ;
3

else
rMinOAv = 0.0 ;

3

tanRMax = (fRmax2 - fRmax1)*0.5/fDz ;
secRMax = std::sqrt(1.0 + tanRMax*tanRMax) ;
rMaxAv = (fRmax1 + fRmax2)*0.5 ;

rMaxOAv = rMaxAv + halfRadTolerance ;

// Intersection with z-surfaces

tollDz = fDz - halfCarTolerance ;
tolODz = fDz + halfCarTolerance ;

...... //here starts the real algorithm

Vectorizing the Physics

This is going to be more difficult when extracting the
physics classes from G4. However important gains are
expected in the functions computing the distance to the
next interaction point for each process.

There is a diversity of interfaces and we have now sub-
branches per particle type.

Plan ahead
(no timing yet)

Continue exploring all concurrency opportunities
Develop “virtual transporter” to include a full and fast option

Introduce embryonic physics processes (em) to simulate shower
development

Evaluate the prototype on parallel architectures

Evaluate different “parallel” languages (OpenMP, CUDA, OpenCL...)

Cooperate with experiments

For instance with ATLAS ISF (Integrated Simulation Framework) to put
together the fast and full MC.

	Slide 1
	Rationale
	parallelism
	If you trust Intel
	If you trust Intel 2
	Why it is so difficult?
	Why it is so difficult (cont)?
	Slide 8
	ALICE strategy (unauthorised)
	Timeline
	One example – Simulation
	Event loop and stacking
	Fast and Full MonteCarlo
	Conventional Transport
	Slide 15
	Current Situation
	Can we make progress?
	tails, tails, tails
	Tails again
	New Transport Scheme
	Generations of baskets
	New Transport
	New Transport
	A better solution
	A better better solution
	Slide 26
	Slide 27
	Vectorizing the geometry (ex1)
	Vectorizing the geometry (ex2)
	Vectorizing the Physics
	Plan ahead (no timing yet)
	Slide 32

