
The optimisation of ALICE
code

Federico Carminati

January 19, 2012

1

Rationale

The HEP code
An embarrassing parallelism
An inextricable mix of branches / integer / float / double
A “flat” timing distribution – no “hot spots”

We always got away with clock rate, now it is not
possible any more
Parallelism is there to stay

We cannot claim that we are resource-hungry and then
exploit ~10%-50% of the hardware
 Just think what it means in terms of money

2

parallelism
3

From a recent
talk by Intel

If you trust Intel
4

If you trust Intel 2
5

Why it is so difficult?

No clear kernel

C++ code generation / optimisation not well understood

Most of the technology is coming out now
 Lack of standards
Technological risk

Non professional coders

Fast evolving code

No control on hardware acquisition

6

Why it is so difficult (cont)?

Amdhal law sets stringent limits to the results that can
be achieved
No “low level” optimisation alone will yield results

Heterogeneous parallelism forces multi-level
parallelisation

Essentially the code (all of it!) will have to be re-
written

7

8

ALICE strategy (unauthorised)

Use the LSD-1 to essentially re-write AliRoot

Use the LSD-2 to expand the parallelism to the Grid
Hopefully the major thrust will be on MiddleWare

Refactor the code in order to expose the maximum of
parallelism present at each level

Keep the code in C++ (no CUDA, OpenCL etc.)

Explore the possible use of #pragma’s (OpenMP, OpenACC)

Experiment on all hardware at hand (OpenLab, but not only)

9

Timeline

10

2012 2013 2014

May 2012
Kick-off

Jan2013
Work starts

June 2013
Mid term review
phase I

Dec 2013
End phase I

June 2014
Mid term review
Phase II

Dec 2014
End phase II

}R&D }Phase I }Phase II

One example – Simulation

The LHC experiments use extensively G4 as main simulation
engine. They have invested in validation procedures. Any new
project must be coherent with their framework.

One of the reasons why the experiments develop their own
fast MC solution is the fact that a full simulation is too slow
for several physics analysis. These fast MCs are not in the G4
framework (different control, different geometries, etc), but
becoming coherent with the experiments frameworks.

Giving the amount of good work with the G4 physics, it is
unthinkable to not capitalize on this work.

11

Event loop and stacking

12

User
application

Push
primaries

Stack

Stack
manager

Current
transporter

Loop over
particles

Geometry
navigator

Field
Virtual

transporter

Physics
processes

Push
secondaries

Step
manager

Step actions for
selected process

User step
actions

Current
transporter

Fast and Full MonteCarlo

We would like an architecture (via the abstract
transporters) where fast and full MC can be run
together.

To make it possible one must have a separate particle
stack.

However, it was clear from the very beginning in
January that the particle stack depends strongly on the
constraints of parrallelism. Multiple threads cannot
update efficiently a tree data structure.

13

Conventional Transport

At each step, the navigator *nav has the state of the
particle x,y,z,px,py,pz, the volume instance volume*,
etc.

We compute the distance to the next boundary with
something like
Dist = nav->DistoOut(volume,x,y,z,px,py,pz)

Or the distance to one physics process with, eg
Distp = nav->DistPhotoEffect(volume,x,y,z,px,py,pz)

14

15

Current Situation

We run jobs in parallel, one per core.

Nothing wrong with that except that it does not scale in
case of many cores because it requires too much memory.

A multithreaded version may reduce (say by a factor 2 or 3)
the amount of required memory, but also at the expense of
performance.

A multithreaded version does not fit well with a hierarchy
of processors.

So, we have a problem, in particular with the way we have
designed some data structures, eg HepMC.

16

Can we make progress?

We need data structures with internal relations only.
This can be implemented by using pools and indices.

When looping on collections, one must avoid the
navigation in large memory areas killing the cache.

We must generate vectors of reasonable size well
matched to the degree of parallelism of the hardware
and the amount of memory.

We must find a system to avoid the tail effects

17

tails, tails, tails
18

Tails again
19

A killer if one has to wait
the end of col(i) before

processing col(i+1)
Average number of
objects in memory

New Transport Scheme

20

oo

o

o

o
o

o

o

o

o

oo
o

o

o
o

o o
o

o

o

o

T1

T3

T2

o

o

o

o
o

oo

o

o

o

o

oo
o

o

o
o

o

o
o

T4

All particles in the
same volume type are
transported in parallel.
Particles entering new
volumes or generated

are accumulated in the
volume basket.

Events for which
all hits are

available are
digitized in parallel

Generations of baskets

When a particle enters a volume or is generated, it is
added to the basket of particles for the volume type.

The navigator selects the basket with the highest score
(with a high and low water mark algorithm).

The user has the control on the water marks, but the
idea that this should be automatic in function of the
number of processors and the total amount of memory
available. (see interactive demo)

21

New Transport

At each step, the navigator *nav has the state of the
particles *x,*y,*z,*px,*py,*pz, the volume instances
volume**, etc.

We compute the distances (array *Dist) to the next
boundaries with something like
nav->DistoOut(volume,x,y,z,px,py,pz,Dist)

Or the distances to one physics process with, eg
nav->DistPhotoEffect(volume,x,y,z,px,py,pz,DispP)

22

New Transport
The new transport system implies many changes in the

geometry and physics classes. These classes must be
vectorized (a lot of work!).

Meanwhile we can survive and test the principle by
implementing a bridge function like

23

MyNavigator::DisttoOut(int n, TGeoVolume **vol, double *x,..)
{
 for int i=0;i<n;i++) {
 Dist[i] = DisttoOutOld(vol[i],x[i],…);
 }
 }

A better solution
24

Pipeline of
objects

Checkpoint
Synchronization.

Only 1 « gap » every N events

This type of
solution
required

anyhow for
pile-up
studies

A better better solution
25

checkpoints At each checkpoint we
have to keep the non

finished
objects/events.

We can now digitize
with parallelism on

events, clear and reuse
the slots.

26

27

Vectorizing the geometry (ex1)
28

Double_t TGeoPara::Safety(Double_t *point, Bool_t in) const
{
 // computes the closest distance from given point to this shape.
 Double_t saf[3];
 // distance from point to higher Z face
 saf[0] = fZ-TMath::Abs(point[2]); // Z

 Double_t yt = point[1]-fTyz*point[2];
 saf[1] = fY-TMath::Abs(yt); // Y
 // cos of angle YZ
 Double_t cty = 1.0/TMath::Sqrt(1.0+fTyz*fTyz);

 Double_t xt = point[0]-fTxz*point[2]-fTxy*yt;
 saf[2] = fX-TMath::Abs(xt); // X
 // cos of angle XZ
 Double_t ctx = 1.0/TMath::Sqrt(1.0+fTxy*fTxy+fTxz*fTxz);
 saf[2] *= ctx;
 saf[1] *= cty;
 if (in) return saf[TMath::LocMin(3,saf)];
 for (Int_t i=0; i<3; i++) saf[i]=-saf[i];
 return saf[TMath::LocMax(3,saf)];
}

Huge performance
gain expected in this
type of code where
shape constants can
be computed outside

the loop

Vectorizing the geometry (ex2)
29

G4double G4Cons::DistanceToIn(const G4ThreeVector& p,
 const G4ThreeVector& v) const
{
 G4double snxt = kInfinity ; // snxt = default return value
 const G4double dRmax = 100*std::min(fRmax1,fRmax2);
 static const G4double halfCarTolerance=kCarTolerance*0.5;
 static const G4double halfRadTolerance=kRadTolerance*0.5;

 G4double tanRMax,secRMax,rMaxAv,rMaxOAv ; // Data for cones
 G4double tanRMin,secRMin,rMinAv,rMinOAv ;
 G4double rout,rin ;

 G4double tolORMin,tolORMin2,tolIRMin,tolIRMin2 ; // `generous' radii squared
 G4double tolORMax2,tolIRMax,tolIRMax2 ;
 G4double tolODz,tolIDz ;

 G4double Dist,s,xi,yi,zi,ri=0.,risec,rhoi2,cosPsi ; // Intersection point vars

 G4double t1,t2,t3,b,c,d ; // Quadratic solver variables
 G4double nt1,nt2,nt3 ;
 G4double Comp ;

 G4ThreeVector Normal;

 // Cone Precalcs

 tanRMin = (fRmin2 - fRmin1)*0.5/fDz ;
 secRMin = std::sqrt(1.0 + tanRMin*tanRMin) ;
 rMinAv = (fRmin1 + fRmin2)*0.5 ;

 if (rMinAv > halfRadTolerance)
 {
 rMinOAv = rMinAv - halfRadTolerance ;
 }
 else
 {
 rMinOAv = 0.0 ;
 }
 tanRMax = (fRmax2 - fRmax1)*0.5/fDz ;
 secRMax = std::sqrt(1.0 + tanRMax*tanRMax) ;
 rMaxAv = (fRmax1 + fRmax2)*0.5 ;
 rMaxOAv = rMaxAv + halfRadTolerance ;

 // Intersection with z-surfaces

 tolIDz = fDz - halfCarTolerance ;
 tolODz = fDz + halfCarTolerance ;

…… //here starts the real algorithm

Huge performance
gain expected in this
type of code where
shape constants can
be computed outside

the loop

All these
statements are
independent of
the particle !!!

Vectorizing the Physics

This is going to be more difficult when extracting the
physics classes from G4. However important gains are
expected in the functions computing the distance to the
next interaction point for each process.

There is a diversity of interfaces and we have now sub-
branches per particle type.

30

Plan ahead
(no timing yet)

Continue exploring all concurrency opportunities

Develop “virtual transporter” to include a full and fast option

Introduce embryonic physics processes (em) to simulate shower
development

Evaluate the prototype on parallel architectures

Evaluate different “parallel” languages (OpenMP, CUDA, OpenCL…)

Cooperate with experiments
 For instance with ATLAS ISF (Integrated Simulation Framework) to put

together the fast and full MC.

32

	Slide 1
	Rationale
	parallelism
	If you trust Intel
	If you trust Intel 2
	Why it is so difficult?
	Why it is so difficult (cont)?
	Slide 8
	ALICE strategy (unauthorised)
	Timeline
	One example – Simulation
	Event loop and stacking
	Fast and Full MonteCarlo
	Conventional Transport
	Slide 15
	Current Situation
	Can we make progress?
	tails, tails, tails
	Tails again
	New Transport Scheme
	Generations of baskets
	New Transport
	New Transport
	A better solution
	A better better solution
	Slide 26
	Slide 27
	Vectorizing the geometry (ex1)
	Vectorizing the geometry (ex2)
	Vectorizing the Physics
	Plan ahead (no timing yet)
	Slide 32

