Beyond the Standard Model explorations From theory to data.

Benjamin Fuks (IPHC Strasbourg / Université de Strasbourg)

Theory: with N. Christensen and C. Duhr. CMS: with J. Andrea and E. Conte. ATLAS: with S. Calvet, Ph. Gris, A. Renaud, L. Valery and D. Zerwas.

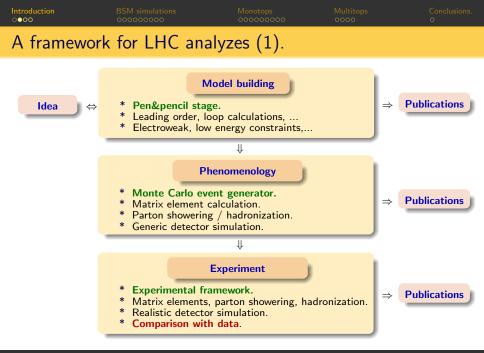
High-energy physics seminar @ LPC, Clermont-Ferrand February 15, 2012

Introduction	BSM simulations	Monotops	Multitops	Conclusions.
0000	000000000	000000000	0000	O
0.11				

Outline

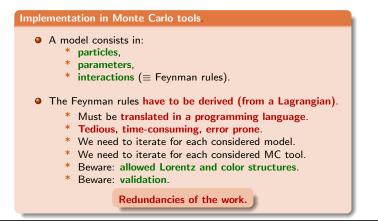
- Monte Carlo tools and New Physics investigations at the LHC.
- 2 A comprehensive approach for BSM simulations.
- 3 Monotop production at hadron colliders
- 4 Sgluon induced multitop production at hadron colliders

5 Summary - outlook.

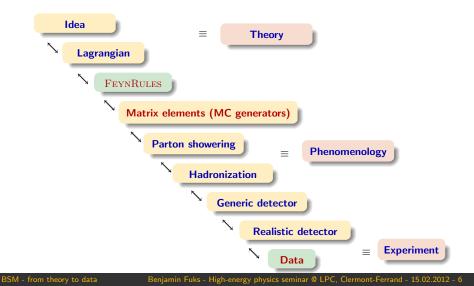

Monte Carlo tools and discoveries at the LHC.

• One of the goals of the LHC: which New Physics theory is the correct one?

Confront data and theory.


- Establishing of an excess over the SM backgrounds.
 - Difficult task.
 - * Use of Monte Carlo generators (backgrounds, signals).
- Confirmation of the excess.
 - * Model building activities.
 - ♦ Bottom-up and top-down approach.
 - * Implementation of the new models in the Monte Carlo tools.
- Clarification of the new physics.
 - * Measurement of the parameters.
 - * Use of precision predictions.
 - * Sophistication of the analyses ⇔ new physics and detector knowledge.

Monte Carlo tools play a key role! But how is new physics presently investigated in particle physics?


A framework for LHC analyzes (2).

- New physics theories.
 - * A lot of different theories.
 - * Based on very different ideas.
 - * In evolution (especially regarding the discoveries).

[Christensen, de Aquino, Degrande, Duhr, BenjF, Herquet, Maltoni, Schumann (EPJC '11)]

Outline

Monte Carlo tools and New Physics investigations at the LHC.

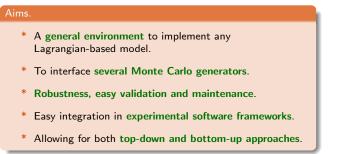
2 A comprehensive approach for BSM simulations.

3 Monotop production at hadron colliders

4 Sgluon induced multitop production at hadron colliders

5 Summary - outlook.

The FEYNRULES approach (1).

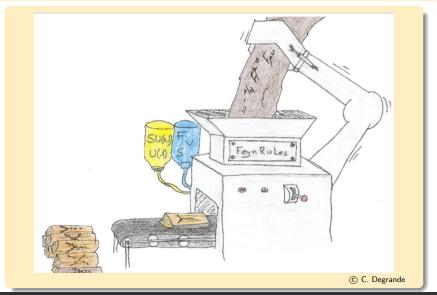

- Starting from physical quantities.
 - * All the physics is included in the model Lagrangian.
 - ♦ The Lagrangian is **absent in the MC implementation**.

* Traceability.

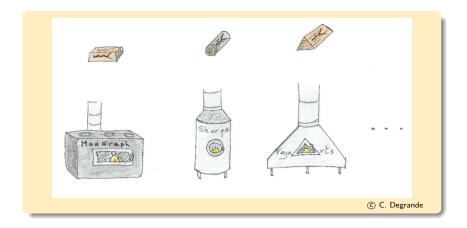
- ♦ Univocal definition of a model.
- $\diamond~$ No dependence on the conventions used by the MC tools.

* Flexibility.

 $\diamond~$ A modification of a model \equiv change in the Lagrangian.


Introduction BSM simulations Monotops Multitops Conclusions. 0000 0●0000000 0000000 0000 0

The FEYNRULES approach (2).



BSM - from theory to data

Benjamin Fuks - High-energy physics seminar @ LPC, Clermont-Ferrand - 15.02.2012 - 10

ntroduction BSM simulations Monotops Multitops Conclusions. 0000 00000000 00000000 0000 0

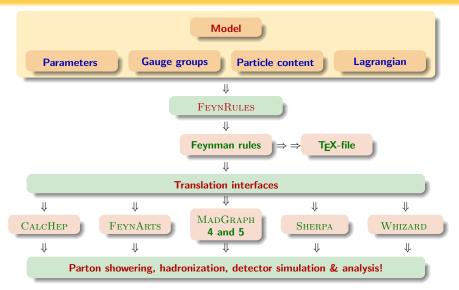
The FEYNRULES approach (4).

BSM - from theory to data

Benjamin Fuks - High-energy physics seminar @ LPC, Clermont-Ferrand - 15.02.2012 - 11

FEYNRULES in a nutshell.

[Christensen, Duhr (CPC '09); Christensen, Duhr, BenjF (in prep)]


- A framework for LHC analyzes based on FEYNRULES to:
 - * Develop new models.
 - * Implement (and validate) new models in Monte Carlo tools.
 - * Facilitate phenomenological investigations of the models.
 - * Test the models against data.

Main features

- * FEYNRULES is a MATHEMATICA package.
- * FEYNRULES derives Feynman rules from a Lagrangian.
- * Requirements: locality, Lorentz and gauge invariance.
- * Supported fields: scalar, fermion, vector, tensor, ghost, superfield.
- * Interfaces: export the Feynman rules to Monte Carlo generators.

The FEYNRULES scheme.

BSM - from theory to data

Benjamin Fuks - High-energy physics seminar @ LPC, Clermont-Ferrand - 15.02.2012 - 13

The UFO [Degrande, Duhr, BenjF, Grellscheid, Mattelaer, Reiter CPC '12].

- * UFO \equiv Universal FEYNRULES output (not tied to any Monte Carlo tool).
- * Allows for generic color and Lorentz structures.
- * Used by MADGRAPH5, GOSAM and (in the future by) HERWIG++.
- * FEYNRULES interface: creates a PYTHON module to be linked.
- * The module contains all the model information.
- ALOHA [de Aquino, Link, Maltoni, Mattelaer, Stelzer (2011)].
 - * ALOHA \equiv Automatic Libraries Of Helicity Amplitudes.
 - * Exports the UFO; produces the related HELAS routines (C++/PYTHON). \Rightarrow to be used for Feynman diagram computations.
 - * Used by MADGRAPH5 / as a standalone package.

• A superspace module for FEYNRULES [Duhr, BenjF (CPC '11)].

- * Full support for Weyl fermions and superfields.
- * Series expansion in terms of component fields.
- * Automatic derivation of supersymmetry-conserving Lagrangians.
- * Automatic solution of the equations of motion for the auxiliaries.
- * Can be used for many calculations in superspace.
- A new FEYNARTS interface [Degrande, Duhr].
 - * Allows for generic Lorentz structures.
 - * Creates both the model dependent and independent FEYNARTS files.
 - * New version of $FORMCALC \Rightarrow$ multifermion interactions.

$\rm FeynRules-1.6$ - status.

- Current public version: 1.6.0.
 - * To be download on http://feynrules.irmp.ucl.ac.be/.
 - * Contains the superspace module.
 - * Contains the UFO interface \Rightarrow MADGRAPH5, GOSAM.
 - * Contains the new FEYNARTS interface.
 - * Interfaced to WHIZARD. [Christensen, Duhr, BenjF, Reuter, Speckner (2010)]
 - * Supports color sextets.
 - * Other interfaces: CALCHEP/COMPHEP, MADGRAPH4, SHERPA.
 - * Manual currently being updated [Christensen, Duhr, BenjF (in prep)].
- Current online model database.
 - * http://feynrules.irmp.ucl.ac.be/wiki/ModelDatabaseMainPage/ .
 - * Standard Model and simple extensions (10).
 - * Supersymmetric models (4).
 - * Extra-dimensional models (4).
 - * Strongly coupled and effective field theories (4).

The top-down approach vs. the bottom-up approach (1).

- Motivations.
 - * Theoretical ideas.
 - ► e.g., symmetry principles as for Grand Unified Theories.
 - * Addresses one or several issues of the Standard Model.
 - ► e.g., hierarchy problem as in Universal Extra Dimensional models.
 - * Predictions can be made through perturbation theory.
 - ► e.g., test at colliders.

Benchmark scenarios.

- * Many new parameters enter in new theories:
 - ► e.g., hundreds of parameters in supersymmetric models.
- * Experimental data constrains some of them.
 - ► e.g., electroweak precision observables.
- * Viable benchmark scenarios.

• Signatures at colliders.

- * Driven by the benchmark scenarios.
 - ▶ *e.g.*, same sign leptons \Leftrightarrow new Majorana state.

The top-down approach vs. the bottom-up approach (2).

• Signatures at colliders.

- * Not typical from a given benchmark of a specific model.
 - ► Various benchmarks for gravity-mediated supersymmetry breaking.
- * Not typical from a **specific model**.
 - **Extra Dimensions and supersymmetry imply both cascade decays.**
- Theory and data.
 - * How to relate observations to a given model/benchmark?
 - * How to disentangle models and benchmarks?
- Bias in the expectations.
 - * Are we **missing** some signatures in those investigated?
 - ► Phenomenologically and experimentally.

The bottom-up approach: we start from a signature.

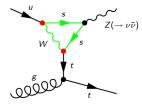
	Monotops 00000000	

Outline

3

Monte Carlo tools and New Physics investigations at the LHC.

A comprehensive approach for BSM simulations.

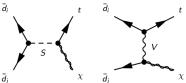

Monotop production at hadron colliders

4 Sgluon induced multitop production at hadron colliders

5 Summary - outlook.

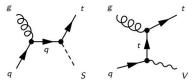
- Bottom-up approach: we propose a final state signature.
 One top quark in association with missing energy.
- Monotop production in the Standard Model.
 - * Loop-suppressed.
 - * CKM-suppressed.
 - * Representative Feynman diagram:

• Observing monotops \Leftrightarrow Beyond the Standard Model physics.

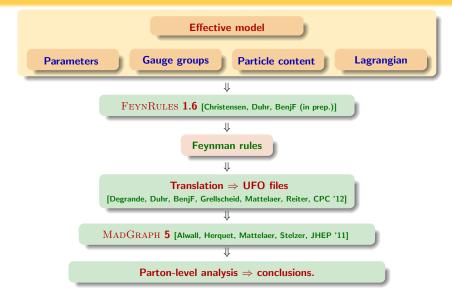

Classes of models yielding monotop signatures (1).

• Main features of monotop signatures.

- * Final state flavor is fixed.
 - ◊ One top quark.
 - ◊ Missing energy.
 - ► Bosonic or fermionic state.
 - ► One particle or *n*-particle state.
 - ► Neutral, weakly-interacting, long-lived/stable/invisible.
- * Initial state possibilities are then reduced.
 - ► Down-type antiquark pair \Rightarrow baryon-number-violating process.
 - ► Up-type quark/gluon \Rightarrow flavor-changing process.
- * Enhanced coupling between the 3rd generation and the others.



- Fermionic missing energy state χ (initial antiquark pairs) \Rightarrow scenarii I and II.
 - * s-, t- and u-channel exchanges of a new state.
 - ♦ Scalar or vector.
 - ♦ Lying in the fundamental representation of $SU(3)_c$.


• Bosonic missing energy state (initial quark/gluon pairs) \Rightarrow scenarii III and IV.

- * Flavor-changing interactions (with a charm or up quark of the top quark.
 - ♦ With a new neutral scalar, vector or tensor field.

Chain of simulation tools.

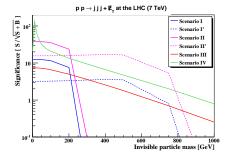
BSM - from theory to data

Signal and background descriptions.

• Signal.

- * Leptonic top decay.
 - \diamond Signature: 1 lepton + 1 b jet + missing energy.
 - ♦ No top mass reconstruction.
 - \diamond **More challenging** \Rightarrow not considered.
- * Hadronic top decay.
 - \diamond Signature: 2 light jets + 1 b jet + missing energy.
 - ♦ The top is fully reconstructed.

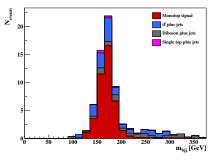
• Sources of background.


- * $Z (\rightarrow \nu \bar{\nu}) + 3$ jets.
 - ► Irreducible background.
- * QCD multijet.
 - $\blacktriangleright \mbox{Misreconstructed jet} \rightarrow \mbox{fake missing energy}.$
- * W + jets, $t\bar{t}$ and diboson.
 - Missing energy: leptonic W decay with nonreconstructed lepton.
- * Single top.
 - ►Non- or misreconstructed leptons.

	Monotops ○○○○○●○○○	

Background rejection.

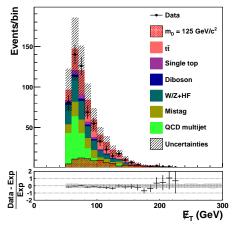
- A proper analysis requires:
 - * Parton showering.
 - * Hadronization.
 - * A proper detector simulation.
 - * Data-driven methods for background estimation.
 - * This is a prospective parton-level study.
- We rely on existing experimental studies at the LHC.
 - * CMS: JHEP 1108 (2011) 155.
 - * ATLAS: PLB 701 (2011) 186.
- First set of selection cuts.
 - * Large missing transverse momentum ($p_{\tau} > 150$ GeV).
 - * p_T (jet) > 50 GeV for three high quality jets.
 - * H_T (jet) > 300 GeV.
 - \Rightarrow comparable amount of QCD, $t\bar{t}$, Z and W events.
 - \Rightarrow diboson and single top highly reduced.


LHC sensitivity to monotop signatures at 10 fb^{-1} .

Andrea, BenjF, Maltoni, PRD '11.

- Basic selection cuts.
 - ► Exactly 3 parton-level jets.
 - ► p_T > 50 GeV; $|\eta| < 2.5$.
 - $\blacktriangleright \Delta R$ (jet, jet) > 0.5.
- Exploiting the reconstructed top.
 ▶ 𝑘_T > 150 GeV.
 - ► One *b*-tag; no isolated leptons.
 - ► $M_{jj} \in [m_w 20, m_w + 20]$ GeV.
 - ► $M_{bjj} \in [m_t 30, m_t + 30]$ GeV.
- Efficiencies.
 ▶ b-tag: 60%; c/j-mistag: 10/1%.
- Results.
 - Flavor-changing modes more optimistic (cf. parton densities).
 - Resonant modes depend on the resonance mass.
 - ► Fairly large invisible mass reachable.

Complete Monte Carlo study including detector simulation.



BenjF (to appear in MPLA). Andrea, Conte, BenjF (in prep.).

- *R*-parity violating SUSY.
- Basic cuts.
 - $\blacktriangleright \not\!\!\! E_T > 200 \text{ GeV}.$
 - ► Lepton veto.
- Exploiting the reconstructed top.
 Exactly one *b*-jet.
 - ► Exactly two light jets.
 - ► $M_{jj} \in [m_w 15, m_w + 15]$ GeV.
- Results at 4 fb⁻¹.
 - ► TeV scale squarks
 - Moderate RPV couplings
 - ► Possible discovery.

From theory to data: CDF exclusions.

BenjF, CDF collaboration (submitted to PRL).

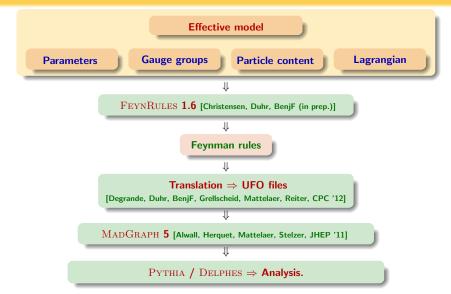
- Flavor changing monotop events.
 ► Z' with a mass of 125 GeV.
- Basic set of cuts.

 - ► Exactly three jets with one *b*-jet.
 - ► $E_T^{J_1} > 35$ GeV.
 - ► $E_T^{j_2,j_3} > 25$ GeV.
 - ► One jet with $|\eta| < 0.9$.
 - ► Other jets with $|\eta| < 2.4$.
 - ► Lepton veto.
- Exploiting the top quark. • $\Delta \phi(\not\!\!\! \in_T, j_2) > 0.7.$
 - $\blacktriangleright m_{bjj}$ compatible with m_t .
 - ► Large ∉_T significance.
- Results with 7.7 fb⁻¹ of data.
 ▶ Compatible with the SM.

0000	00000000	00000000	0000	0

Outline

- Monte Carlo tools and New Physics investigations at the LHC.
- 2 A comprehensive approach for BSM simulations.
- 3 Monotop production at hadron colliders
- 4 Sgluon induced multitop production at hadron colliders


5 Summary - outlook.

Multiple top quark production at hadron colliders.

- PRoduction of four top quarks in the Standard Model.
 - * Phase-space suppressed.
 - * Total cross section @ 7 TeV: 0.3 fb.
- Multitop events (at a large rate) \Leftrightarrow Beyond the Standard Model physics.
- Theoretical framework: *R*-symmetric supersymmetric models.
 - * Predict a scalar color-octet field, the sgluon.
 - * Strong couplings to gluons.
 - * Effective couplings to quarks and gluons through squark loops.
- Important production through usual gauge couplings.
- Decays to quark or gluon pairs.
- Benchmark scenarios.
 - * Sgluon decays to an associated top plus light jet pair.
 - * Sgluon decays to a top-antitop pair.

Chain of simulation tools.

BSM - from theory to data


Benjamin Fuks - High-energy physics seminar @ LPC, Clermont-Ferrand - 15.02.2012 - 31

Signal and background descriptions.

- Decay chain 1: $pp \rightarrow \sigma\sigma \rightarrow tjtj, \overline{t}jtj, \overline{t}j\overline{t}j$.
- Decay chain 2: $pp \rightarrow \sigma \sigma \rightarrow t \overline{t} t \overline{t}$.
 - * Two leptonic top decays.
 - ♦ 2 (possibly same-sign) leptons + 2 *b*-jets + $∉_T$ + jets.
 - * One leptonic top decay.
 - ♦ 1 lepton + 1 *b*-jet + $𝔅_T$ + jets.
- Sources of background.
 - * High multiplicity final states.
 - ► Many jets $(n \ge 4)$.
 - ► Important hadronic energy.
 - * Main sources of background (after basic cuts).
 - ♦ $t\bar{t}$ plus jets.
 - $\diamond \ t\overline{t} + V \text{ plus jets.}$
 - ♦ $t\bar{t} + VV$ plus jets.

LHC sensitivity to sgluon production at 10 fb^{-1} .

Calvet, BenjF, Gris, Renaud, Valery, Zerwas, LH'11.

tjtj channel; one lepton analysis.
 > One single lepton: *p*_T > 25 GeV.
 > Six jets: *∉*_T > 25 GeV.
 > At least one *b*-tag.
 > *∉*_T > 40 GeV.
 > Moderate *M*^W_T > 25 GeV.

- Sgluon scenarii. • $m_{\sigma} = 400$ or 1000 GeV. • BR $(\sigma \rightarrow tj) = 100$ %.
- Results for 10 fb⁻¹.
 ▶ Sensitivity: 334 and 228 fb.

 0000	00000000	00000000	0000	0
				Conclusions.

Outline.

- 1 Monte Carlo tools and New Physics investigations at the LHC.
- 2 A comprehensive approach for BSM simulations.
- 3 Monotop production at hadron colliders
- 4 Sgluon induced multitop production at hadron colliders

5 Summary - outlook.

Conclusions.

• Simplified effective theory approach.

- * Monotop signatures.
- * Multitop signatures.

• Prospective phenomenological studies.

- * Fast Monte Carlo studies.
- * Motivations for a complete full simulation.
- * Motivations for a data analysis.
- * Well tested chain of tools.
- From the theory to the data.

