

Drell-Yan with e⁺e⁻ at PANDA

Keith Griffioen Helmholtz Institute Mainz College of William & Mary

griff@kph.uni-mainz.de

PANDA Electromagnetic Collaboration Meeting Orsay, 13 January 2012

- Helmholtz Institute Mainz (HIM) is busy planning for timelike form factor (FF) measurements, pp→e⁺e⁻, at PANDA
- A complete understanding of these FFs requires a transversely polarized target.
- Drell-Yan (DY) production pp→e⁺e⁻X is the time-like equivalent of deep inelastic scattering (DIS).
- DY with a polarized target will yield insights into quark orbital angular momentum in the nucleon.
- Planning for a transversely polarized proton target needs to take into account both FF and DY acceptances.

Spacelike/Timelike

DY Kinematics

P_{1}, P_{2}	4-momentum of beam and target hadrons
q = Q	magnitude of the virtual photon's 4-momentum
$Q^2 \equiv M_{l^+ l^-}^2$	squared 4-momentum of virtual photon
$s = (P_1 + P_2)^2 \simeq 2P_1P_2$	center-of-mass energy squared
$x_1 = \frac{Q^2}{2P_1q}, x_2 = \frac{Q^2}{2P_2q}$	momentum fraction for beam and target quarks
$y = \frac{1}{2} \ln \frac{x_1}{x_2}$	rapidity
$x_F = x_1 - x_2$	Feynman x (= $2q_L/\sqrt{s}$) $q^\mu = (q_0,q_T,0,q_L)$
$x_{1,2} = \frac{\sqrt{x_F^2 + 4\tau} \pm x_F}{2} = \sqrt{\tau} e^{\pm t}$	$y = q^2 / s$

DY and FF Similarities

FF:
$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4q^2\sqrt{1-1/\tau}} \left[(1+\cos^2\theta)|G_M|^2 + \frac{1}{\tau}\sin^2\theta|G_E|^2 \right] \qquad \tau = \frac{q^2}{4M^2}$$

DY:
$$\frac{d\sigma}{dx_1 dx_2 d\Omega} = \frac{\alpha^2}{4q^2} \left[(1 + \cos^2 \theta) F_1^{UU} + \sin^2 \theta F_2^{UU} \right] \qquad x = \frac{q^2}{2P \cdot q}$$

FF:
$$|G_M| = 22.5 \frac{1}{(1+q^2/0.71)^2} \frac{1}{(1+q^2/3.6)}$$
 $\sigma(q^2) = \frac{2\pi\alpha^2}{3q^2\sqrt{1-1/\tau}} \left[2|G_M|^2 + \frac{1}{\tau}|G_E|^2\right]$

DY:
$$F_1^{UU} = \frac{1}{3} \sum_q e_q^2 f_1^q(x_1) f_1^q(x_2)$$

$$\sigma(q^2)_{\text{valence}} = \frac{4\pi\alpha^2}{9q^2}$$

$$\sigma_{e\ell}/\sigma_{DY}\sim \frac{1}{q^6}$$

DY and FF e⁺e⁻ pairs have similar distributions at the same q², but q²_{DY} < q²_{FF} for the same E_{beam}

DY & FF Kinematics

 $q^{2}_{DYmax} = (\sqrt{s - 2M})^{2}$ cutoff assumes only ppe⁺e⁻ in final state

Reference Frames

Boer, PRD60(99)014012

Lepton Plane (CM) [white] Collins-Soper (CS) Frame [gray]

CS:

Boost along z_0 such that $q_L = 0$ Boost along x such that $q_T = 0$ $q_{CS} = (q,0,0,0)$ h is the q_T direction θ and ϕ are shown in figure

Drell-Yan Cross Section

Arnold, PRD79(09)034005 $\frac{d\sigma}{d^4 a d\Omega} = \frac{\alpha_{\rm em}^2}{E a^2} \{ ((1 + \cos^2\theta) F_{UU}^1 + (1 - \cos^2\theta) F_{UU}^2 + \sin^2\theta \cos\phi F_{UU}^{\cos\phi} + \sin^2\theta \cos^2\phi F_{UU}^{\cos2\phi}) \}$ $+ S_{aL}(\sin 2\theta \sin \phi F_{LU}^{\sin \phi} + \sin^2 \theta \sin 2\phi F_{LU}^{\sin 2\phi}) + S_{bL}(\sin 2\theta \sin \phi F_{UL}^{\sin \phi} + \sin^2 \theta \sin 2\phi F_{UL}^{\sin 2\phi})$ $+ |\vec{S}_{aT}| [\sin\phi_a((1+\cos^2\theta)F_{TU}^1 + (1-\cos^2\theta)F_{TU}^2 + \sin^2\theta\cos\phi F_{TU}^{\cos\phi} + \sin^2\theta\cos^2\phi F_{TU}^{\cos^2\phi})]$ $+\cos\phi_a(\sin2\theta\sin\phi F_{TU}^{\sin\phi}+\sin^2\theta\sin2\phi F_{TU}^{\sin2\phi})]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^2+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^2+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^2+(1-\cos^2\theta)$ $+\sin 2\theta \cos \phi F_{UT}^{\cos \phi} + \sin^2 \theta \cos 2\phi F_{UT}^{\cos 2\phi} + \cos \phi_b (\sin 2\theta \sin \phi F_{UT}^{\sin \phi} + \sin^2 \theta \sin 2\phi F_{UT}^{\sin 2\phi})]$ $+ S_{aL}S_{bL}((1 + \cos^2\theta)F_{LL}^1 + (1 - \cos^2\theta)F_{LL}^2 + \sin^2\theta\cos\phi F_{LL}^{\cos\phi} + \sin^2\theta\cos2\phi F_{LL}^{\cos2\phi})$ $+ S_{aL} |\vec{S}_{bT}| [\cos\phi_b((1+\cos^2\theta)F_{LT}^1 + (1-\cos^2\theta)F_{LT}^2 + \sin^2\theta\cos\phi F_{LT}^{\cos\phi} + \sin^2\theta\cos^2\phi F_{LT}^{\cos^2\phi})]$ $+\sin\phi_b(\sin2\theta\sin\phi F_{LT}^{\sin\phi}+\sin^2\theta\sin2\phi F_{LT}^{\sin2\phi})]+|\vec{S}_{aT}|S_{bL}[\cos\phi_a((1+\cos^2\theta)F_{TL}^1+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\cos\phi_a((1+\cos^2\theta)F_{TL}^1+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\cos\phi_a((1+\cos^2\theta)F_{TL}^1+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\cos\phi_a((1+\cos^2\theta)F_{TL}^1+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\cos\phi_a((1+\cos^2\theta)F_{TL}^1+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\cos\phi_a((1+\cos^2\theta)F_{TL}^2+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\cos\phi_a((1+\cos^2\theta)F_{TL}^2+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\cos\phi_a((1+\cos^2\theta)F_{TL}^2+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\cos\phi_a((1+\cos^2\theta)F_{TL}^2+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\cos\phi_a((1+\cos^2\theta)F_{TL}^2+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\cos\phi_a((1+\cos^2\theta)F_{TL}^2+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\cos\phi_a((1+\cos^2\theta)F_{TL}^2+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\cos\phi_a((1+\cos^2\theta)F_{TL}^2+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\cos\phi_a((1+\cos^2\theta)F_{TL}^2+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\sin\phi_a(1+\cos^2\theta)F_{TL}^2+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\sin\phi_a(1+\cos^2\theta)F_{TL}^2+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\sin\phi_a(1+\cos^2\theta)F_{TL}^2+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\sin\phi_a(1+\cos^2\theta)F_{TL}^2+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\sin\phi_a(1+\cos^2\theta)F_{TL}^2+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}[\sin\phi_a(1+\cos^2\theta)F_{TL}^2+(1-\cos^2\theta)F_{TL}^2+(1-\cos^2\theta)F_{TL}^2)]+|\vec{S}_{aT}|S_{bL}|S_{bL}[\sin\phi_a(1+\cos^2\theta)F_{TL}^2+(1-\cos^2\theta)F_{T$ $+\sin 2\theta \cos \phi F_{TL}^{\cos \phi} + \sin^2 \theta \cos 2\phi F_{TL}^{\cos 2\phi}) + \sin \phi_a (\sin 2\theta \sin \phi F_{TL}^{\sin \phi} + \sin^2 \theta \sin 2\phi F_{TL}^{\sin 2\phi})]$ $+ |\vec{S}_{aT}||\vec{S}_{bT}|[\cos(\phi_a + \phi_b)((1 + \cos^2\theta)F_{TT}^1 + (1 - \cos^2\theta)F_{TT}^2 + \sin^2\theta\cos\phi F_{TT}^{\cos\phi} + \sin^2\theta\cos2\phi F_{TT}^{\cos2\phi})]$ $+\cos(\phi_a-\phi_b)((1+\cos^2\theta)\bar{F}_{TT}^1+(1-\cos^2\theta)\bar{F}_{TT}^2+\sin^2\theta\cos\phi\bar{F}_{TT}^{\cos\phi}+\sin^2\theta\cos^2\phi\bar{F}_{TT}^{\cos^2\phi})$ $+\sin(\phi_a+\phi_b)(\sin 2\theta\sin\phi F_{TT}^{\sin\phi}+\sin^2\theta\sin 2\phi F_{TT}^{\sin 2\phi})$ Structure functions F are general + $\sin(\phi_a - \phi_b)(\sin 2\theta \sin \phi \bar{F}_{TT}^{\sin \phi} + \sin^2 \theta \sin 2\phi \bar{F}_{TT}^{\sin 2\phi})]$.

What PANDA can measure with a transversely polarized proton target

- Any confined quark must have transverse momentum
- Therefore, colinear PDFs cannot give the whole story
- \bullet Transverse momentum is related to L_z
- There has been much recent work trying to understand transverse momentum distributions (TMDs)

Leading Order Unpolarized DY

$$\mathcal{C}[w(\vec{k}_{aT}, \vec{k}_{bT})f_{1}\bar{f}_{2}] = \frac{1}{N_{c}}\sum_{q}e_{q}^{2}\int d^{2}\vec{k}_{aT}d^{2}\vec{k}_{bT} \\ \times \delta^{(2)}(\vec{q}_{T} - \vec{k}_{aT} - \vec{k}_{bT})w(\vec{k}_{aT}, \vec{k}_{bT}) \\ \times \delta^{(2)}(\vec{q}_{T} - \vec{k}_{aT} - \vec{k}_{bT})w(\vec{k}_{aT}, \vec{k}_{bT}) \\ \times [f_{1}^{q}(x_{a}, \vec{k}_{aT}^{2})f_{2}^{\bar{q}}(x_{b}, \vec{k}_{bT}^{2}) \\ + f_{1}^{\bar{q}}(x_{a}, \vec{k}_{aT}^{2})f_{2}^{\bar{q}}(x_{b}, \vec{k}_{bT}) \\ + f_{1}^{\bar{q}}(x_{a}, \vec{k}_{aT}^{2})f_{2}^{q}(x_{b}, \vec{k}_{bT}^{2})].$$
(89)
$$F_{UU}^{cos2\phi} = \mathcal{C}\left[\frac{2(\vec{h} \cdot \vec{k}_{aT})(\vec{h} \cdot \vec{k}_{bT}) - \vec{k}_{aT} \cdot \vec{k}_{bT}}{M_{a}M_{b}}h_{1}^{\perp}\bar{h}_{1}^{\perp}\right]$$

- Antiproton \overline{q} = proton q
- $\mathbf{q}_{\mathsf{T}} = \mathbf{k}_{\mathsf{a}\mathsf{T}} + \mathbf{k}_{\mathsf{b}\mathsf{T}}$
- Gaussian q_T-dependence often assumed (unrealistic)

 $\left(F^{1}_{UU}(x_{1}, x_{2}, q_{T}^{2}) \sim f_{1}^{q}(x_{1})f^{q}(x_{2})exp(-q_{T}^{2}/\mu^{2})\right)$

Boer-Mulders

Complementarity of pp, ep, ee

 $\frac{d\sigma}{dq_T^2} \sim \sum_q e_q^2 f_1^q(x, p_T^2) \otimes f_1^{\bar{q}}(\bar{x}, \bar{p}_T^2)$ $q_{\mathrm{T}} = p_{\mathrm{T}} + \bar{p}_{\mathrm{T}}$

SIDIS

 $\frac{d\sigma}{dq_T^2} \sim \sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)$ $q_T = zp_T + k_T$

$$\begin{array}{l} \begin{array}{l} \left(\mathbf{e}^{+}\mathbf{e}^{-}\operatorname{Annihilation} \right) \ \frac{d\sigma}{dq_{T}^{2}} \sim \sum_{q} e_{q}^{2} \ D_{1}^{q}(z,k_{T}^{2}) \otimes D_{1}^{\bar{q}}(\bar{z},\bar{k}_{T}^{2}) \\ \\ \mathbf{q}_{\mathrm{T}} = \mathbf{k}_{\mathrm{T}} + \bar{\mathbf{k}}_{\mathrm{T}} \end{array} \end{array}$$

Leading Order Polarized DY

DSSV PDFs: Where's L?

x range in Eq. (35)	Q^2 [GeV ²]	$\Delta u + \Delta \bar{u}$	$\Delta d + \Delta ar{d}$	$\Delta \bar{u}$	$\Delta ar{d}$	$\Delta \bar{s}$	Δg	$\Delta\Sigma$
0.001-1.0	1	0.809	-0.417	0.034	-0.089	-0.006	-0.118	0.381
	4	0.798	-0.417	0.030	-0.090	-0.006	-0.035	0.369
	10	0.793	-0.416	0.028	-0.089	-0.006	0.013	0.366
	100	0.785	-0.412	0.026	-0.088	-0.005	0.117	0.363
0.0–1.0	1	0.817	-0.453	0.037	-0.112	-0.055	-0.118	0.255
	4	0.814	-0.456	0.036	-0.114	-0.056	-0.096	0.245
	10	0.813	-0.458	0.036	-0.115	-0.057	-0.084	0.242
	100	0.812	-0.459	0.036	-0.116	-0.058	-0.058	0.238

$$\frac{1}{2} = \frac{\Delta \Sigma}{2} + \Delta G + L_z$$

- Significant contributions from x<0.001
- ΔG vanishes with increasing Q^2
- At Q²=4 GeV², L_z = 0.474 (large)
- Errors on ΔG are still very large

Quark Angular Momentum

Bacchetta and Radici arXiv:1107.5755

$$\begin{split} J^{a}(Q^{2}) &= \frac{1}{2} \int_{0}^{1} dx \, x \left(H^{a}(x,0,0;Q^{2}) + E^{a}(x,0,0;Q^{2}) \right) & \text{H GPD: colinear } f_{1}^{a} \, \text{PDF} \\ &\sum_{q} \int_{0}^{1} dx \, E^{q_{v}}(x,0,0) = \kappa & \text{E GPD: does not correspond to a colinear PDF} \\ f_{1T}^{\perp(0)a}(x;Q_{L}^{2}) &= -L(x) \, E^{a}(x,0,0;Q_{L}^{2}) & \text{Sivers TMD can be related to E} \\ f_{1T}^{\perp(n)a}(x;Q^{2}) &= \int d^{2}p_{T} \left(\frac{p_{T}^{2}}{2M^{2}}\right)^{n} f_{1T}^{\perp a}(x,p_{T}^{2};Q^{2}) & \text{Definition of (n)th moment of } p_{T}^{2} \\ \text{Need much better} & L(x) &= \frac{K}{(1-x)^{\eta}} & \text{Anzatz for lensing factor} \\ \text{Fit using all Sivers data and nucleon magnetic moments} \\ \kappa^{u_{v}} &= 1.673 \pm 0.003^{+0.011}_{-0.000}, \quad \kappa^{d_{v}} &= -2.033 \pm 0.002^{+0.011}_{-0.000}, \\ J^{u} &= 0.266 \pm 0.002^{+0.002}_{-0.014}, \quad J^{\bar{u}} &= 0.014 \pm 0.004^{+0.001}_{-0.000}, \\ J^{u} &= 0.266 \pm 0.002^{+0.024}_{-0.006}, \quad J^{\bar{u}} &= 0.022 \pm 0.006^{+0.001}_{-0.000}, \\ J^{s} &= 0.005^{+0.007}_{-0.007}, \qquad J^{\bar{s}} &= 0.004^{+0.001}_{-0.000}. \end{split}$$

Diquark Spectator Model

13 January 2012

A_NDY at RHIC

Fig. III-3 Kinematic distributions for the virtual photon. Model 1 would be a final facility and model 2 is the first stage of the proposed feasibility test for studying DY production at RHIC.

- E. Aschenauer, et al., Large Rapidity Drell-Yan Production at RHIC; Proposal 16 May 2011
- $\sqrt{s} = 500 \text{ GeV}, p^{\uparrow} p \rightarrow e^+ e^- X \text{ in IP2}$
- 16 < q² < 150 GeV²
- $x_F = x_1 x_2 = 2q_L/\sqrt{s} = 0.1 0.6$
- x₁~0.1 0.6; x₂ < 0.01
- Run 2013 estimate 150 pb⁻¹

DY at COMPASS

DY at COMPASS

Predictions for asymmetries: $4-9 \text{ GeV/c}^2$ @ COMPASS

DY at J-PARC

Rapidity:
$$y = \frac{1}{2} \ln \frac{x_1}{x_2}$$

- Y. Goto, PoS(DIS2010)264
- p_{beam} = 30-50 GeV/c
- $\sqrt{s} = 8-10 \text{ GeV}, p^{\uparrow} p \rightarrow \mu^{+} \mu^{-} X$
- 16< q² < 25 GeV²
- x₁ / x₂ ~ 1.2 -4;
- Estimates for 120 days at 50% efficiency and 75% polarization
- Early in the planning stage

Red: 5% Interaction Length LH₂ target Blue: 20% I.L. solid nuclear target

13 January

DY at Fermilab E906

- M.X. Liu, JPCS295(11)012165; SPIN2010;
 P. Reimer, JPCS295(11)012011
- p_{beam} = 120 GeV/c
- $\sqrt{s} = 15 \text{ GeV}, p p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X$
- 16 < q² < 81 GeV²
- $x_F = x_1 x_2 = 2q_L/\sqrt{s} = -0.4 0.2$
- $x_1 \sim 0.1 0.45$; $x_2 \sim 0.05 0.5$
- Estimates for 120 days at 50% efficiency and 75% polarization

13 January

DY Comparisons

Experiment	Reaction	√s (GeV)	q ² (GeV ²)	XF	X 1, X 2
ANDY @	$p^{\uparrow} p \rightarrow e^+ e^- X$	500	16-150	0.1-0.6	0.1-0.6
RHIC					<0.01
COMPASS	$\pi p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X$	17.4	4-6	-0.1-0.9	0.2-0.9
@ CERN			16-81		0.05-0.4
J-PARC	$p p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X$	8-10	16-25	?	?
E906 @	$p p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X$	15	16-81	-0.4-0.2	0.1-0.45
Fermilab					0.05-0.5
Panda @	$p^{-}p^{\uparrow} \rightarrow e^{+}e^{-}X$	2.1-5.5	1-10	depends	depends
FAIR	$p^{-} p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X$		\sim	on target	on target
				shielding	shielding
only proton PDEs					
($\int f^{q}(x_{1})f^{q}(x_{2})$ JLab kinematics				
2012		Orsay	2012		22

DY Simulations for PANDA

A. Bianconi, EPJA44(10)313

Generates Drell-Yan events with PYTHIA

Fig. 1. Multiplicity of final particles in Drell-Yan dilepton production, including the lepton pair (so, by definition N > 2 here). The cutoffs on the dilepton mass and transverse momentum are $M > 2 \text{ GeV}/c^2$, $q_T > 0.8 \text{ GeV}/c$.

Total number of events	50000
Events with no (anti)baryons	179
Events with $1N\bar{N}$ pair	49805
Events with $2N\bar{N}$ pairs	16
Events with a $p\bar{p}$ pair	21765
Events with an $n\bar{n}$ pair	20078
Events with a $p\bar{n}$ or $n\bar{p}$ pair	7993
Events with a p	25761
Events with a \bar{p}	25754
Events with an n	24068
Events with a \bar{n}	24074

Exclusive DY

$$rac{d^2 \sigma_{DY}}{dx_1 dx_2} = rac{4 \pi lpha^2}{9 M_{e^+ e^-}^2} \sum_i e_i^2 [q_1^i(x_1) ar q_2^i(x_2) + ar q_1^i(x_1) q_2^i(x_2)]$$

 $\frac{d^2\sigma_{DY}}{dx_1dx_2} = \frac{4\pi\alpha^2}{9M_{e^+e^-}^2} \frac{1}{9} [4\bar{u}(x_1)\bar{u}(x_2) + 4u(x_1)u(x_2) + \bar{d}(x_1)\bar{d}(x_2) + d(x_1)d(x_2)] \quad \text{for} \quad \bar{p}p$

$$\begin{array}{lll} (uud) + (\bar{u}\bar{u}\bar{d}) & \rightarrow & [u\bar{u} \rightarrow e^+e^- + u\bar{u}] \rightarrow (uud) + (\bar{u}\bar{u}\bar{d}) \equiv p\bar{p} \\ (uud) + (\bar{u}\bar{u}\bar{d}) & \rightarrow & [u\bar{u} \rightarrow e^+e^- + d\bar{d}] \rightarrow (udd) + (\bar{u}\bar{d}\bar{d}) \equiv n\bar{n} \\ (uud) + (\bar{u}\bar{u}\bar{d}) & \rightarrow & [u\bar{u} \rightarrow e^+e^- + s\bar{s}] \rightarrow (uds) + (\bar{u}\bar{d}\bar{s}) \equiv \Lambda\bar{\Lambda} \\ (uud) + (\bar{u}\bar{u}\bar{d}) & \rightarrow & [d\bar{d} \rightarrow e^+e^- + u\bar{u}] \rightarrow (uuu) + (\bar{u}\bar{u}\bar{u}) \equiv \Delta^{++}\overline{\Delta^{++}} \\ (uud) + (\bar{u}\bar{u}\bar{d}) & \rightarrow & [d\bar{d} \rightarrow e^+e^- + d\bar{d}] \rightarrow (uud) + (\bar{u}\bar{u}\bar{d}) \equiv p\bar{p} \\ (uud) + (\bar{u}\bar{u}\bar{d}) & \rightarrow & [d\bar{d} \rightarrow e^+e^- + s\bar{s}] \rightarrow (uus) + (\bar{u}\bar{u}\bar{s}) \equiv \Sigma^+\overline{\Sigma^+} \end{array}$$

$$\bar{p}(p, e^+e^-p)\bar{p}$$
$$\bar{p}(p, e^+e^-[p\pi^-]_{\Lambda})\bar{\Lambda}$$
$$\bar{p}(p, e^+e^-[p\pi^+]_{\Delta^{++}})\bar{\Delta}$$

DY Simulations for PANDA

Table 2. Distribution of the events associated with given finalparticle multiplicities and with the presence of specific nucleonantinucleon pairs. The total multiplicity of an event (including the e^+e^- or $\mu^+\mu^-$ pair, possible $\bar{N}N$ pairs, charged pions and hard photons) is reported in the left column.

Total	Events	Events	Events	Events	Ev.s with	
final	with no	with a	with a	with a	a $p ar{n} / n ar{p}$	
part.	baryon	$\bar{N}N$ pair	$p \bar{p}$ pair	$n ar{n}$ pair	pair	
4	1	21286	10747	10538	0	ĺ
5	1	9897	2793	2764	4338	
6	19	10863	5428	4306	1110	
7	9	4186	1521	1086	1578	
8	50	1990	708	703	531	
9	11	880	290	346	234	
10	37	329	97	93	106	
11	15	281	101	136	29	
12	15	98	15	25	43	
13	11	106	40	53	2	
14	2	23	6	3	12	
15	2	39	17	17	3	
> 15	5	22	2	8	7	

Table 5. Number of charged particles surviving a forward cutoff at 7.5° .

	All	Particles with	Cutoff-surviving
		$ heta > 7.5^\circ$	fraction
p	25766	22540	87%
\bar{p}	25762	13370	52%
π^{\pm}	15223	12452	82%
γ	34696	29316	84%

A. Bianconi, EPJA44(10)313

Table 3. Distribution of the number of events presenting a given multiplicity of final charged pions or of final photons. Photons are subject to the cutoff $E_{\gamma} > 0.2$ GeV. Neutral pions are "hidden" in the photon pairs produced by their decay.

N	Events with	Events with
	N charged pions	N photons
0	38882	31645
1	7836	7051
2	2814	8411
3	192	1678
4	225	723
5	25	275
6	25	99
7	1	68
8	0	19
9	0	18
10	0	9
> 10	0	4

These can be measured in events with one proton, 0 or 2 charged pions and a missing mass of the unobserved antinucleon, which is likely at small angles.

We have 5428 true $p\bar{p}+2$ events, of which we detect 5428-1683 = 3745.

&

Large Background from Pions

Fig. 1. Inclusive pion production. Two events (**a**) and (**b**), symmetric with respect to the $\hat{y}\hat{z}$ plane, are represented. Without polarization, they would have the same probability. In the polarized case, the Collins effect favours the case (**a**). The arrows labelled q_i represent the momenta of the quarks in the subprocess. The spins are denoted by the arch-like arrows. The Collins effect acts at the last stage, where the quark q_c fragments into the pion carrying momentum **p**. h_{\perp} is the pion's transverse momentum with respect to the quark q_c

Bravar, PRL77(1996)2626 FNAL E704

$$\bar{p}\uparrow + p \rightarrow \pi^-(\pi^+) + X$$

Fig. 5. Single spin asymmetry measured by E704 collaboration for charged pions at $0.2 < p_{\perp} < 2.0$ GeV [6]. The curves are our model results calculated with quark transverse polarizations $\Delta_{\perp} u/u = -\Delta_{\perp} d/d = x^2$ and $\beta = 1$

$$A_N = \frac{1}{P_B \langle \cos \phi \rangle} \frac{N \uparrow -N \downarrow}{N \uparrow +N \downarrow}$$

 ϕ is angle between beam polarization axis and the normal to the production plane Collins effect gives the right trend to explain the large asymmetries seen

13 January 2012

- Structure functions generally depend on x_1 , x_2 , q_T , (and q^2)
- Let's look at where electron pair events show up for fixed x_1 , x_2 , q_T and P_{beam}
- $s = 2M(M+E_{beam})$ $q_L = (x_1 x_2)\sqrt{s/2}$ $q^2 = x_1x_2s$
- This gives $q^{\mu}_{CM} = (q_0, q_T, 0, q_L)$
- Electron angles in CS frame are picked from a $(1+\cos^2\theta)\sin\theta$ distribution with ϕ random over 2π .
- Electrons are Lorentz transformed from CS to CM frame.
- Electrons are Lorentz transformed from CM to Lab frame.
- 1000 events were generated for (θ, ϕ) with all other kinematic variables fixed.

e⁺ vs e⁻ Angles

Acceptance

- Pick x₁, x₂ and q_T given various models of the structure functions F.
- Explore the kinematic sensitivity to measuring the TMDs expected to be convoluted in the structure functions F. We need good (θ,φ) coverage to extract various Fs.
- Build in hadronization products to make an exclusive Drell-Yan event generator.
- Analyze with realistic backgrounds in PANDA ROOT.
- Similar constraints on backgrounds as in time-like form factors.

- In order to truly understand the nucleon, we will need to explore transverse momentum distributions (TMDs).
- Drell-Yan structure functions are convolutions of two TMDs, and as such are free of hadronization processes (i.e. fragmentation functions).
- TMDs like the Sivers function are sensitive to quark orbital angular momenta.
- Drell-Yan is essential to prove the universality of TMDs.
- A transversely polarized target allows access to 4 different TMDs.
- Exclusive Drell-Yan production can lead to separation of flavor-dependence of the TMDs.
- PANDA has a unique niche among Drell-Yan experiments in that it overlaps with JLab12 kinematics, and the anti-proton simplifies the TMD convolutions.

Kinematic Coverage

Where We Stand

SIDIS Cross Section

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} &= & \text{Bacchetta, et al., JHEP 2(2007)093} \\ \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)\left\{F_{UU,T}+\varepsilon F_{UU,L}+\sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h}F_{UU}^{\cos\phi_{h}}\right.\\ &+\varepsilon\cos(2\phi_{h})F_{UU}^{\cos2\phi_{h}}+\lambda_{e}\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h}F_{LU}^{\sin\phi_{h}}\right. & \text{Leading Twist} \\ &+S_{\parallel}\left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h}F_{UL}^{\sin\phi_{h}}+\varepsilon\sin(2\phi_{h})F_{UL}^{\sin2\phi_{h}}\right] & \text{Sub-Leading Twist} \\ &+S_{\parallel}\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}F_{LL}+\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{LL}^{\cos\phi_{h}}\right] & 0 \text{ (i.e. } R=\sigma_{L}/\sigma_{T}=0) \\ &+|S_{\perp}|\left[\sin(\phi_{h}-\phi_{S})\left(F_{UT,T}^{\sin(\phi_{h}-\phi_{S})}+\varepsilon F_{UT,L}^{\sin(\phi_{h}-\phi_{S})}\right)\right. & A_{\mathrm{UL}}=\{\mathrm{UL \ terms}\} / \{\mathrm{UU \ terms}\} \\ &+\varepsilon\sin(\phi_{h}+\phi_{S})F_{UT}^{\sin(\phi_{h}+\phi_{S})}+\varepsilon\sin(3\phi_{h}-\phi_{S})F_{UT}^{\sin(2\phi_{h}-\phi_{S})} & \mathrm{etc.} \\ &+\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S}F_{UT}^{\sin\phi_{S}}+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h}-\phi_{S})F_{UT}^{\sin(2\phi_{h}-\phi_{S})}\right] \\ &+|S_{\perp}|\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\cos(\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}+\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S}F_{LT}^{\cos\phi_{S}}\right] \\ &+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right] \bigg\}, \end{split}$$

13 January 2012

TMD Structure Functions

Function Zoo

Leading Twist TMDs

Sub-Leading Twist TMDs

Leading Twist FFs

Sub-Leading Twist FFs

13 January 2012

Diquark Spectator Model

Bacchetta, PRD78(08)074010

13 January 2012

Diquark Spectator Model

13 January 2012

Polarized PDFs

DSSV fits

 Q^2 evolution is used to determine Δg

Large uncertainties remain

deFlorian, Sassot, Stratmann, Vogelzang

Fits to all the world's data yield the probability distributions for finding a quark or a gluon with momentum fraction x at scale Q².

Collins Fragmentation

Seidl, PRD78(08)032011 (Belle)

$$N(\phi_1 + \phi_2) \sim a_{12} \cos(\phi_1 + \phi_2), \ a_{12} \sim H_1^{\perp}(z_1) H_1^{\perp}(z_2)$$
$$A_{12} = a_{12}^{\pi^+, \pi^-} / a_{12}^{(\pi^+, \pi^+), (\pi^-, \pi^-), (\pi^+, \pi^-)}$$

Anselmino, AIPCP1149(09)465 [Fits]

- e⁺e⁻→ππ
- A₁₂: Ratio cancels QCD radiative and acceptance effects
- CM energy ~10.5 GeV; L=550 fb⁻¹

Intuitive TMDs

from Bacchetta

