Development of a transverse polarised target in the PANDA-Detektor

- Experiment and the PANDA-Detektor
- Options for realisation of a transverse polarisation
- Setup with superconducting shielding tube
- Mathematic modell and assumptions
- Preliminary Results
- Conclusion

PANDA

Extraction of the immaginary part of the FF with singel spin measurement

Realisation

Helmholtz-like constellation

• Superconducting tube (long. or transv.)

Assumptions (Model)

- Tube operates like a usuall solenoid (passive)
 - Dense winded solenoid with current density y_c
 - Simulation with Mathematica (Biot-Savart)
 - Calculation of pressure and torque

 $\vec{\gamma}(t) = (x(t), y(t), z(t))$

 $dl = \sqrt{\dot{\overrightarrow{\gamma}}(t)} \dot{\overrightarrow{\gamma}}(t) dt$

$$\overrightarrow{B}(\overrightarrow{x_0}) = \frac{\mu_0}{4\pi} I \int \frac{(\overrightarrow{\gamma}(t) - \overrightarrow{x_0}) \times \frac{\dot{\overrightarrow{\gamma}(t)}}{|\overrightarrow{\gamma}(t)|}}{|(\overrightarrow{\gamma}(t) - \overrightarrow{x_0})|^3} dl$$

Superconducting tube (upstream)

Superconducting Tube upstream (200 mm)

SL-Material $Bi_2Sr_2Ca_1Cu_2O_8$

$$J_{C}(T) = 2,3 \cdot 10^{4} \left(1 - \frac{T}{92}\right)^{2,5}$$

Specification

Radiation length	Pressure	Stored Energy	Upper limit of temperature increasing because of operation failure	Length	Diameter	Thickness	Radiation length
1.5 cm (25% Energy loss of sec. el.)	Gleichgewicht	ca. 500 J	ca. 50 K	200 mm	160 mm	5 mm	1.5 cm (25% Energy loss of sec. el.)

Conclusion

- Various solutions for the problem
- One possible solution is shielding
- Simulation
- Specification

Next steps

- More Specifications
 - AC-Losses
 - Phase transition
- Test with 70 mm, 5mm SC-Tube

Test of the SC-Tube

