

Feasibility studies of the $\overline{p}p \rightarrow \pi^{o}e^{+}e^{-}$ electromagnetic channel at PANDA

Jérôme Boucher

January, 12th 2012

Outline

I. Physics motivations: the proton electromagnetic form factors

2

- II. Model for $\bar{p}p \rightarrow \pi^{o}e^{+}e^{-}$
- III. Hadronic tensor extraction
- IV. Proton electromagnetic form factor extraction
- V. Conclusion and outlook

Outline

I. Physics motivations: the proton electromagnetic form factors

5

- II. Model for $\bar{p}p \rightarrow \pi^{o}e^{+}e^{-}$
- III. Hadronic tensor extraction
- IV. Proton electromagnetic form factor extraction
- V. Conclusion and outlook

$\overline{pp} \rightarrow \pi^{\circ}e^{+}e^{-} \text{ in the one nucleon exchange model}$ $\overbrace{d^{5}\sigma}^{d^{2}}d\Omega_{\pi^{\circ}}d\Omega_{e}^{*} \propto L^{\mu\nu}H_{\mu\nu}(s,q^{2},\theta_{\pi^{\circ}},G_{E},G_{M})$ Calculation by J. Van de Wiele $\overbrace{p}^{p} \xrightarrow{\gamma^{*}}e^{-}e^{-}$ In the γ^{*} rest frame (unpolarized experiment)

$$L^{\mu\nu}H_{\mu\nu} = 4e^{2}\frac{q^{2}}{2}\left(H_{11} + H_{22} + H_{33}\right)$$

$$-8e^{2}p_{e}^{*2}\left(H_{1}\sin^{2}\theta_{e}^{*}\cos^{2}\varphi_{e}^{*} + 2H_{13}\sin\theta_{e}^{*}\cos\theta_{e}^{*}\cos\varphi_{e}^{*}\right)$$

$$+H_{22}\sin^{2}\theta_{e}^{*}\sin^{2}\varphi_{e}^{*} + H_{33}\cos^{2}\theta_{e}^{*}\right)$$

The angular distribution in $\theta_e{}^*$ and $\phi_e{}^*$ gives access to 4 $H_{\mu\nu}$

J. Boucher

Constraint by the $\bar{p}p \rightarrow \pi^{\circ}\gamma$ data

Model constraints

- No data for $\bar{p}p \rightarrow \pi^{o}e^{+}e^{-}$
- Data for $\bar{p}p \rightarrow \pi^{o}\gamma$

Differential cross section $1^2 - ||x||^2 = 4^{12} + 4^{$

$$d^2 \sigma \propto |M|^2 \propto g^{\mu\nu} H_{\mu\nu}(s, q^2 = 0, \theta_{\pi^0}, G_E(q^2 = 0), G_M(q^2 = 0))$$

Outline

I. Physics motivations: the proton electromagnetic form factors

9

- II. Model for $\bar{p}p \rightarrow \pi^{o}e^{+}e^{-}$
- III. Hadronic tensor extraction
- IV. Proton electromagnetic form factor extraction
- V. Conclusion and outlook

Hadronic tensor extraction: proof of principle

11

- T_p=1GeV
- q^2 =2.0 ± 0.125 (GeV/c²)²

For each θ_{π^0} interval ($\Delta \theta_{\pi^0} = 1^{\circ}$):

- $d^2\sigma/d\Omega_e^*$ is generated in the γ^* rest frame (θ_e^*, ϕ_e^* :10°/bin)
- $d^2\sigma/d\Omega_e^*$ is fitted in the γ^* rest frame taking into account all bins. Monte Carlo method is used to determined the errors.

 \rightarrow experimental determination of H_{µv}

Direct access to $H_{\mu\nu}$ via the angular distribution valid whatever the model is

Only statistical errors without acceptance nor efficiency

Outline

I. Physics motivations: the proton electromagnetic form factors

12

- II. Model for $\bar{p}p \rightarrow \pi^{o}e^{+}e^{-}$
- III. Hadronic tensor extraction
- IV. Proton electromagnetic form factor extraction
- V. Conclusion and outlook

1/16/2012

J. Boucher

Background studies

Background channel rejection:

- More than 2 charged particles
 → Supression using tracking constraints
- 2. Two charged particles
 - \rightarrow Dominated by pions
 - Particle Identification (PID) for e/π discrimination
 - Kinematical constraints

Signal acceptance and efficiency matrix

 $\overline{p}p \rightarrow \pi^{\circ}e^+e^-$ at $T_{\overline{p}}=1$ GeV, $q^2=2.0 \pm 0.125 (GeV/c^2)^2, 10^{\circ} < \theta_{\pi^{\circ}} < 30^{\circ}$

 10^6 events generated per case

Full event characterization:

- 1. Two unlike sign charged particles (c⁺,c⁻)
- 2. Reconstruction of a π^{o}
 - a. Two photons (γ_1, γ_2) of at least 30 MeV each
 - b. 0.115<Invariant mass (γ_1, γ_2) <0.150 GeV/c²
- 3. Particle identification combined likelihood (truncated dE/dx, ECAL, Cherenkov angle)
 - a. c^+ is e^+ with a probability larger than 99.8%
 - b. c^{-} is e^{-} with a probability larger than 99.8%
- 4. Kinematical constraints

 $[\]theta_{e}^{*}$ (γ^{*} rest frame)

Experimental distributions corrected for acceptance and efficiency

J. Boucher

From experimental to physical information

20

$$T_{\overline{p}}=1$$
GeV, q²=2.0 ± 0.125 (GeV/c²)²

Corrected experimental distribution

Projections:

Avoid fitting problems due to low statistics. Extraction of 3 independent asymmetry parameters

Information on the form factors

 $\int_{0}^{2\pi} N(\Omega_{e}^{*}) d\varphi_{e}^{*}$

 $\int N(\Omega_e^*) d\cos\theta_e^*$

J. Boucher

$$L_{\rm int} - 2JD$$

Expected precision

$q^2=0.605 \pm 0.005 (GeV/c^2)^2$ $q^2=2.0 \pm 0.125 (GeV/c^2)^2$

10² [%] $\sigma_{\rm R}/{ m R}$ [%] $r_{\cos(\delta \phi)}/\cos(\delta \phi)$ 0 160 18 θ_{π°} [degree] 140 160 18 θ_π₀ [degree] 60 20 80 100 20 40 80 100 120 140 180 60 120 180

Form factor ratio R can be extracted close to the ω resonance with 1% precision and at q² close to 2 (GeV/c²)² with 10% precision For the first time $\cos(\phi_E - \phi_M)$ can be extracted with 10-30% precision

 $L_{\rm int} = 2 f b^{-1}$

Conclusion

• $\bar{p}p \rightarrow \pi^o e^+ e^-$ was proposed to access the proton FFs in the unphysical region.

• A model for $\overline{p}p \rightarrow \pi^{o}e^{+}e^{-}$ was developed and constrained by $\overline{p}p \rightarrow \pi^{o}\gamma$ data.

23

- Access to the hadronic tensors $H_{\mu\nu}$ is possible via the lepton angular distribution.
- Access to $R = |G_E| / |G_M|$ and $\cos(\phi_E \phi_M)$ via the lepton angular distribution.
- Background studies:
 - Model for background to signal cross section ratio
 - $\circ~$ Background supression studies useful for other models (s-channel, Δ or N* in t-channel, TDA, ...)
 - Determination of signal contamination
- $R=|G_E|/|G_M|$ and $cos(\phi_E-\phi_M)$ are extracted and the precision is estimated via a Monte Carlo method.

Outlook

•Measurement of the angular distribution of the $\overline{p}p \rightarrow \pi^{\circ}\gamma$ channel to constrain better the model.

•Measurement of angular distribution of the $\overline{p}p \rightarrow \pi^{\circ}\pi^{+}\pi^{-}$ channel over the whole phase space.

- •Angular distribution of the $\overline{p}p \rightarrow \pi^{\circ}e^+e^-$ channel
 - Is the one nucleon exchange diagram dominant?
 - Comparison of R from $\overline{p}p \rightarrow \pi^{\circ}e^+e^-$ and $\overline{p}p \rightarrow e^+e^-$ for $q^2 > 4M_p^2$
 - Dependence of the extracted R and $\cos(\phi_E \phi_M)$ on θ_{π^o} , s, ...

Merci!

J. Boucher

Transition Distribution Amplitude approach

26

J.P. Lansberg, B. Pire an L. Szymanowski PRD 76, 111502 (2007)

Validity:

- \circ q² of the order of s
- Small t or small u

Not suited for the study of the proton form factors far below threshold $(q^2 \ll M_p^2)$

1/16/2012

J. Boucher

- The proton (S=1/2) has 2S+1 FFs: the electric G_E and the magnetic G_M FFs.
- G_E and G_M are analytical function of one kinematical variable: the 4momentum transferred squared (q²) of the virtual photon.
- Schematically:
 - at low energy, they are interpreted in terms of charge and magnetization distributions,
 - at high energy, they test the pQCD predictions

1/16/2012

J. Boucher

Time-Like region

1. From the differential cross section

$$\left(\frac{d\sigma}{d\cos\theta_e}\right)_{cm} = \frac{\pi(\alpha\hbar c)^2}{8M_p^2\sqrt{\tau(\tau-1)}} \left(\left|G_M\right|^2 \left(1+\cos^2\theta_e\right) + \frac{\left|G_E\right|^2}{\tau}\sin^2\theta_e\right)\right)$$

In the Time-Like region, G_E and G_M are complex functions of q^2 .

2. From the total cross section

$$\sigma_{tot} = \frac{\pi (\alpha \hbar c)^2}{6M_p^2} \frac{(2\tau + 1) |G_{eff}|^2}{\tau \sqrt{\tau (\tau - 1)}}$$
$$|G_{eff}|^2 = \frac{2\tau |G_M|^2 + |G_E|^2}{2\tau + 1}$$

My PhD thesis

 Demonstrate the feasibility of the proton electromagnetic form factor measurements in the unphysical region using the pp→π^oe⁺e⁻ reaction (original idea by M. P. Rekalo, Sov. J. Nucl. Phys. 1, 1965)

35

2. Test the prototype of the $\overline{P}ANDA$ electromagnetic calorimeter.

Case $\overline{p}p \rightarrow e^+e^-$

In the γ^* rest frame (equivalent to $\overline{p}p$ CM)

$$\mathcal{L}^{\mu\nu}H_{\mu\nu} = 4e^2 \frac{q^2}{2} \left(2H_{11} + H_{33}\right)$$
$$-8e^2 p_e^{*2} \left(H_{11} \sin^2 \theta_e^* + H_{33} \cos^2 \theta_e^*\right)$$

$$\left(\frac{d\sigma}{d\cos\theta_e}\right)_{cm} = \frac{\pi(\alpha\hbar c)^2}{8M_p^2\sqrt{\tau(\tau-1)}} \left(\left|G_M\right|^2 \left(1+\cos^2\theta_e\right) + \frac{\left|G_E\right|^2}{\tau}\sin^2\theta_e\right)\right)$$

1/16/2012

Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR Sudoł et al., EPJA 44, 473-384 (2010)

36

- 1. Access to $|G_E|$ and $|G_M|$ via the lepton angular distribution
- 2. Sensitivity to $|G_E|$ and $|G_M|$
- 3. Background studies
- 4. Expected precision

J. Boucher

Outline

Physics motivations: the proton electromagnetic form factors

37

- II. The \overline{P} ANDA detector at FAIR
 - 1. Facility for Antiproton and Ion Research
 - 2. antiProton ANnihilation at Darmstadt
 - 3. Electromagnetic calorimeter prototype
- III. Formalism
- IV. Feasibility studies of the proton electromagnetic form factor measurements using the $\overline{p}p \rightarrow \pi^{o}e^{+}e^{-}$ reaction

- 1. Model for $\overline{p}p \rightarrow \pi^{\circ}e^+e^-$
- 2. Hadronic tensor extraction
- 3. **Proton electromagnetic form factor extraction**
 - Choice of the test cases
 - Background studies
 - Expected precision
- v. Conclusion and outlook

Facility for Antiproton and Ion Research FAIR

38

CBM

- Compressed Bayonic Matter
- Nuclear matter physics

NuSTAR

- Nuclear Structure, Astrophysics and Reactions
- Rare isotope beams

APPA

- Atomic, Plasma Physics and Applications
- Heavy ion beams

FLAIR

 Facility for Low energy Antiproton and Ion Research

PANDA

- antiProton Annihilation at Darmstadt
- Hadron and nuclear physics
- Antiproton beams

p̄ momentum from 1.5 to 15 GeV/c, luminosity up to 2 10³² cm⁻²s⁻¹
First experiment expected around 2019

Electromagnetic calorimeter prototype 40 **PWO EMC** • Entrance/exit Test of the 60 crystal prototype built at the IPN Orsay Lead tungstate (PWO) crystals Cooled down to -25.0°C Avalanche Photo Diodes for photon detection 6x10 crystal block Cosmic ray Prototype crystals Front face: 21.9x21.3 mm² Rear face: 27.5x27.3 mm² Length: 200 mm View of the prototype from the back

General formalism for the e⁺e⁻ production via one virtual photon exchange

Differential cross section

$$d^{3n-4}\sigma \propto \left|M\right|^2 \propto \frac{1}{q^4} L^{\mu\nu} H_{\mu\nu}(s,q^2,...)$$

Calculation by J. Van de Wiele

In the γ^* rest frame (unpolarized experiment) $L^{\mu\nu}H_{\mu\nu} = 4e^2 \frac{q^2}{2} \left(H_{11} + H_{22} + H_{33}\right)$ $-8e^2 p_e^{*2} \left(H_{11} \sin^2\theta_e^* \cos^2\varphi_e^* + 2H_{12} \sin^2\theta_e^* \sin\varphi_e^* \cos\varphi_e^* + 2H_{13} \sin\theta_e^* \cos\theta_e^* \cos\varphi_e^* + H_{22} \sin^2\theta_e^* \sin^2\varphi_e^* + 2H_{13} \sin\theta_e^* \cos\theta_e^* \cos\varphi_e^* + H_{22} \sin^2\theta_e^* \sin^2\varphi_e^* + 2H_{23} \sin\theta_e^* \cos\theta_e^* \sin\varphi_e^* + H_{33} \cos^2\theta_e^*\right)$

The angular distribution in θ_e^* and φ_e^* gives access to 6 $H_{\mu\nu}$