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the PANDA@FAIR processes

2

tude and the TDAs, defined from the Fourier transform1

of a matrix element of a three-quark-light-cone operator
between a proton and a meson state. We have shown that
these TDAs obey QCD evolution equations, which follow
from the renormalisation-group equation of the three-
quark operator. Their Q2 dependence is thus completely
under control.

FIG. 1: γ!π pair production in pp̄ exclusive annihilation in
the proton rest frame (laboratory).
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FIG. 2: The factorisation of the annihilation process pp̄ →

γ!π into antiproton-distribution amplitudes (DA), the hard-
subprocess amplitude (Mh) and proton → pion transition dis-
tribution amplitudes (TDA) .

The momenta of the process pp̄ → γ!π are defined as
shown in Fig. 1 and Fig. 2. The z-axis is chosen along
the colliding proton and antiproton and the x − z plane
is identified with the collision or hadronic plane. Then,
we define the light-cone vectors p and n (p2=n2=0) such
that 2 p.n = 1, as well as P = 1

2 (pp + pπ), ∆ = pπ − pp

and its transverse component ∆T (∆T .∆T = ∆2
T < 0),

which we choose to be along the y-axis. From those, we
define ξ in an usual way as ξ = − ∆.n

2P.n .
We can then express the momenta of the particles

through their Sudakov decomposition and we have:

pp =(1 + ξ)p +
M2

1 + ξ
n,

pp̄ =
2M2(1 + ξ)

W 2 − 2M2 + W
√

W 2 − 4M2
p+

W 2 − 2M2 + W
√

W 2 − 4M2

2(1 + ξ)
n

pπ =(1 − ξ)p +
m2

π − ∆2
T

1 − ξ
n + ∆T ,

q $2ξp +
M2

W 2
(1 + ξ) +

[W 2 + M2

1 + ξ
− m2

π − ∆2
T

1 − ξ

]

n − ∆T ,

to be checked

∆ = − 2ξp +
[m2

π − ∆2
T

1 − ξ
− M2

1 + ξ

]

n + ∆T

(5)

We then have (for ξ %= 1 and neglecting ∆2
T as well as

m2
π)

Q2 $ 2ξ
W 2

1 + ξ
or W 2 $ (1 + ξ)Q2

2ξ
(6)

which gives

ξ $ Q2

2W 2 − Q2
. (7)

In the proton target mode, the maximal reachable
value for W 2 at GSI will be (5.46)2 $ 30 GeV2 (for
Ep̄ = 15 GeV). Neglecting the pion mass, the highest
invariant mass of the photon could be Q2

max = 30 GeV2.
For Q2 > 20 GeV2 and W 2 $ 30 GeV2, ξ is large than
1/2.

Finally, we have :

∆2
T =

1 − ξ

1 + ξ

(

t − 2ξ
[ M2

1 + ξ
− m2

π

1 − ξ

]
)

. (8)

In Ref. [2], we have defined the leading-twist proton to
pion P → π transition distribution amplitudes from the
Fourier transform of the matrix element

〈π| εijkqi
α(z1n) [z1; z0] q

j
β(z2n) [z2; z0] q

k
γ(z3n) [z3; z0] |P 〉.

(9)

The brackets [zi; z0] in Eq. (9) account for the insertion
of a path-ordered gluonic exponential along the straight
line connecting an arbitrary initial point z0n and a final
one zin:

[zi; z0] ≡ P exp

[

ig

∫ 1

0
dt (zi − z0)nµAµ(n[tzi + (1 − t)z0])

]

(10)

which provide the QCD-gauge invariance for such non-
local operator and equal unity in a light-like (axial)
gauge.

J/ψ

p̄

c

c̄

π0p

N̄N → πγ∗→ πe+e− N̄N → πψ → πe+e−

but also

N̄N → ηγ∗→ ηe+e− , N̄N → ππγ∗→ ππe+e− , ...
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Forward and Backward kinematics
Ideas for PANDA

J.P. Lansberg, B. Pire, L. Szymanowski’07: πN TDAs arise in the factorized
description of

N(p1) + N̄(p2)→ γ∗(q) + π(pπ)→ l+(k1) + l−(k2) + π(pπ)

W 2 = (p1 + p2)2 and q2 = Q2 - large; (p1 − pπ)2-small (θπ ∼ 0 in C.M.S: near
forward kinematics)

Test of universality of TDAs

+ reversed case small u where

π0 is forward and γ∗ backward in CMS ( γ∗ almost at rest in lab)
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Interpretation of the (π → N)or(N → π) TDAs

Develop proton wave function as (schematically) |qqq > + |qqqπ > +...

|qqq > is described by proton DA : 〈0| εijkuiα(z1)ujβ(z2)dkγ(z3) |p(p, s)〉
∣∣∣
z+=0, zT=0

Define matrix elements sensitive to |qqq π > part : the TDAs

〈π(p′)| εijkuiα(z1)ujβ(z2)dkγ(z3) |p(p, s)〉
∣∣∣∣
z+=0, zT=0

light cone matrix elements of operators obeying usual RG evolution equations

ë The π → N TDAs provides information on the next to minimal Fock state
in the baryon

=
p p′

∗

p
×

p′

Proton = |u d d π+ > with small transverse separation for the quark triplet

or how one can find a meson in a proton
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Impact parameter interpretation

• As for GPDs Fourier transform ∆T → bT

F (xi, ξ, u = ∆2)→ F̃ (xi, ξ, bT )

→ Transverse picture of pion cloud in the proton
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if factorization works
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Crossing to πN final state

Crossing πN TDA ↔ πN GDA and soft pion theorem

Crossing relates πN TDA in γ∗N → πN � and πN GDAs (light-cone wave
function)

Physical domain in (∆2, ξ)-plane (defined by ∆2
T ≤ 0) in the chiral limit

(m = 0):

Soft pion theorem Pobylitsa, Polyakov and Strikman’01 (Q2 � Λ3
QCD/m)

constrains πN GDA at the threshold ξ = 1, ∆2 = M2.
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Soft pion limit

Soft pion theorem for πN GDA

Soft pion theorem Pobylitsa, Polyakov and Strikman’01 (Q2 � Λ3
QCD/m):

�0| �Oαβγ
ρτχ (z1, z2, z3)|πaNι� = − i

fπ
�0|

�
�Qa

5 , �Oαβγ
ρτχ (z1, z2, z3)

�
|Nι� ,

with
�

�Qa
5 , Ψα

η

�
= − 1

2
(σa)α

δγ
5
ητΨδ

τ ;

At the pion threshold (ξ = 1, ∆2 = M2 in the chiral limit) soft pion theorem
fixes πN TDAs/GDAs in terms of nucleon DAs V p, Ap, T p (see V. Braun,
D. Ivanov, A.Lenz, A.Peters’08).

E.g. soft pion theorem for uud proton to π0 TDAs:

{V pπ0

1 , Apπ0

1 }(x1, x2, x3, ξ = 1, ∆2 = M2) = −1

8
{V p, Ap}(x1

2
,
x2

2
,
x3

2
) ;

T pπ0

1 (x1, x2, x3, ξ = 1, ∆2 = M2) =
3

8
T p(

x1

2
,
x2

2
,
x3

2
)

{V pπ0

2 , Apπ0

2 , T pπ0

2 } = −1

2
{V pπ0

1 , Apπ0

1 , T pπ0

1 } T pπ0

3,4 = 0 ;

C.f. soft pion theorems for isoscalar and isovector pion GPDs:

HI=0(x, ξ = 1) = 0; HI=1(x, ξ = 1) = φπ(x)
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A skewing ansatz

“Skewing” ξ = 1 limit for πN TDAs

After suitable change of spectral variables (κ = α3 + β3, θ = α1+β1−α2−β2
2

,

µ = α3 − β3, λ = α1−β1−α2+β2
2

) and introduction of “quark-diquark” coordinates

w = x3 − ξ; v = x1−x2
2

:

H(w, v, ξ) =

� 1

−1
dκ

� 1−κ
2

− 1−κ
2

dθ

� 1

−1
dµi

� 1−µ
2

− 1−µ
2

dλ δ(w − κ− µ

2
(1− ξ)− κξ)

×δ
�

v − θ − λ
2

(1− ξ)− θξ
�

F (κ, θ, µ, λ)

A factorized Ansatz for quadruple distribution Fi:

F (κ, θ, µ, λ) = V (κ, θ) h(µ, λ)

with the profile h(µ, λ) normalized as
�

dµ
�

dλh(µ, λ) = 1.

Since H(w, v, ξ = 1) = V (w, v) for V one may use input from the soft pion
theorem

A possible choice for the profile: h(µ, λ) = 15
16

(1 + µ)((1− µ)2 − 4λ2);
vanishes at the borders of the definition domain.
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From ξ = 0 to ξ = 1
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Nucleon exchange through a TDA

Nucleon pole contribution

u-channel nucleon exchange is complementary to the spectral representation
(D-term like contributions) non-zero in the ERBL-like region 0 ≤ xi ≤ 2ξ .

The effective Hamiltonian for πN̄N :

Heff = igπNN N̄α(σa)α
βγ5Nβπa

�πa(pπ)| �Oα β γ
ρτχ (λ1n, λ2n, λ3n)|Nι(p1, s1)�

=
�

sp

�0| �Oαβγ
ρτχ (λ1n, λ2n, λ3n)|Nκ(−∆, sp)�(σa)κ

ι

igπNN Ū�(−∆, sp)

∆2 −M2

�
γ5U(p1, s1)

�
�

.

After decomposition over the Dirac structures:
�
V1, A1, T1

�(πN)
(x1, x2, x3)

= ΘERBL(x1, x2, x3)× MfπgπNN

∆2 −M2

1

(2ξ)

�
V p, Ap, T p

� �
x1

2ξ
,
x2

2ξ
,
x3

2ξ

�
;

Composite model for πN TDAs: spectral representation with input at ξ = 1
plus D-term
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a 2 - component model for TDA

ë A spectral representation with input fixed at ξ = 1 through soft

pion theorem

and deskewing (i.e. ξ →6= 1 ) through an ansatz

ë A nucleon pole exchange in the u−channel

These two components are additive and there is no double counting

(one may also add a ∆−pole exchange but small contribution )

ë A model driven by a nucleon DA parametrization

various existing DAs : CZ, COZ, KS, GS, BLW ...
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input dependence

Cross section ( for electroproduction now) calculated from the
modeled TDA depends much on the DA model
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Conclusions

TDAs explore confinement dynamics of quarks in hadrons .

TDA extraction is crucial to probe meson content of baryons

ë First signals at JLab at 6 GeV + CLAS12 : spacelike channels

CLAS γ∗p→ π+n very preliminary analysis by Kijun Park I

Table: Determination of kinematic bin

variable unit num. bin range bin size
W GeV 1 > 2.0 0.4
Q2 GeV2 5 1.6 ∼ 4.5 various
|∆2

T | GeV2 1 < 0.5 0.5

ë PANDA @FAIR : timelike channels
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