TDAs for PANDA processes

PANDA 2012, ORSAY, January 2012

B. Pire
CPhT, École Polytechnique

based on work done with
JP Lansberg, K Semenov-Tian-Shansky, L Szymanowski
Phys Rev D76, 2007 ; Phys Rev D82, 2010 ; Phys Rev D84, 2011 ; arXiv 1112.3570

the PANDA@FAIR processes

$\bar{N} N \rightarrow \pi \gamma^{*} \rightarrow \pi e^{+} e^{-}$
$\bar{N} N \rightarrow \pi \psi \rightarrow \pi e^{+} e^{-}$

but also

$$
\bar{N} N \rightarrow \eta \gamma^{*} \rightarrow \eta e^{+} e^{-} \quad, \quad \bar{N} N \rightarrow \pi \pi \gamma^{*} \rightarrow \pi \pi e^{+} e^{-}
$$

Forward and Backward kinematics

- J.P. Lansberg, B. Pire, L. Szymanowski'07: πN TDAs arise in the factorized description of

$$
N\left(p_{1}\right)+\bar{N}\left(p_{2}\right) \rightarrow \gamma^{*}(q)+\pi\left(p_{\pi}\right) \rightarrow l^{+}\left(k_{1}\right)+l^{-}\left(k_{2}\right)+\pi\left(p_{\pi}\right)
$$

- $W^{2}=\left(p_{1}+p_{2}\right)^{2}$ and $q^{2}=Q^{2}$ - large; $\left(p_{1}-p_{\pi}\right)^{2}$-small $\left(\theta_{\pi} \sim 0\right.$ in C.M.S: near forward kinematics)
+ reversed case small u where
π^{0} is forward and γ^{*} backward in CMS (γ^{*} almost at rest in lab)

Interpretation of the $(\pi \rightarrow N) \operatorname{or}(N \rightarrow \pi)$ TDAs

Develop proton wave function as (schematically) $|q q q>+| q q q \pi>+\ldots$
$\mid q q q>$ is described by proton DA : $\left.\langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|p(p, s)\rangle\right|_{z^{+}=0, z_{T}=0}$
Define matrix elements sensitive to $\mid q q q \pi>$ part : the TDAs

$$
\left.\left\langle\pi\left(p^{\prime}\right)\right| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|p(p, s)\rangle\right|_{z^{+}=0, z_{T}=0}
$$

light cone matrix elements of operators obeying usual RG evolution equations
\Rightarrow The $\pi \rightarrow N$ TDAs provides information on the next to minimal Fock state in the baryon

Proton $=\left\lvert\, \begin{array}{ll}u d d & \pi^{+}>\end{array}\right.$with small transverse separation for the quark triplet
or how one can find a meson in a proton

Impact parameter interpretation

- As for GPDs Fourier transform $\Delta_{T} \rightarrow b_{T}$

$$
F\left(x_{i}, \xi, u=\Delta^{2}\right) \rightarrow \tilde{F}\left(x_{i}, \xi, b_{T}\right)
$$

\rightarrow Transverse picture of pion cloud in the proton

if factorization works

Crossing to πN final state

Crossing πN TDA $\leftrightarrow \pi N$ GDA and soft pion theorem

- Crossing relates πN TDA in $\gamma^{*} N \rightarrow \pi N^{\prime}$ and πN GDAs (light-cone wave function)
- Physical domain in $\left(\Delta^{2}, \xi\right)$-plane (defined by $\left.\Delta_{T}^{2} \leq 0\right)$ in the chiral limit ($m=0$):

- Soft pion theorem Pobylitsa, Polyakov and Strikman'01 ($\left.Q^{2} \gg \Lambda_{\mathrm{QCD}}^{3} / m\right)$ constrains πN GDA at the threshold $\xi=1, \Delta^{2}=M^{2}$.

Soft pion limit

Soft pion theorem for πN GDA

- Soft pion theorem Pobylitsa, Polyakov and Strikman'01 $\left(Q^{2} \gg \Lambda_{\mathrm{QCD}}^{3} / m\right)$:

$$
\langle 0| \widehat{O}_{\rho \tau \chi}^{\alpha \beta \gamma}\left(z_{1}, z_{2}, z_{3}\right)\left|\pi_{a} N_{\iota}\right\rangle=-\frac{i}{f_{\pi}}\langle 0|\left[\widehat{Q}_{5}^{a}, \widehat{O}_{\rho \tau \chi}^{\alpha \beta \gamma}\left(z_{1}, z_{2}, z_{3}\right)\right]\left|N_{\iota}\right\rangle,
$$

with $\left[\widehat{Q}_{5}^{a}, \Psi_{\eta}^{\alpha}\right]=-\frac{1}{2}\left(\sigma_{a}\right)_{\delta}^{\alpha} \gamma_{\eta \tau}^{5} \Psi_{\tau}^{\delta} ;$

- At the pion threshold ($\xi=1, \Delta^{2}=M^{2}$ in the chiral limit) soft pion theorem fixes πN TDAs/GDAs in terms of nucleon DAs V^{p}, A^{p}, T^{p} (see V. Braun, D. Ivanov, A.Lenz, A.Peters'08).
- E.g. soft pion theorem for uud proton to π^{0} TDAs:

$$
\begin{aligned}
& \left\{V_{1}^{p \pi^{0}}, A_{1}^{p \pi^{0}}\right\}\left(x_{1}, x_{2}, x_{3}, \xi=1, \Delta^{2}=M^{2}\right)=-\frac{1}{8}\left\{V^{p}, A^{p}\right\}\left(\frac{x_{1}}{2}, \frac{x_{2}}{2}, \frac{x_{3}}{2}\right) \\
& T_{1}^{p \pi^{0}}\left(x_{1}, x_{2}, x_{3}, \xi=1, \Delta^{2}=M^{2}\right)=\frac{3}{8} T^{p}\left(\frac{x_{1}}{2}, \frac{x_{2}}{2}, \frac{x_{3}}{2}\right) \\
& \left\{V_{2}^{p \pi^{0}}, A_{2}^{p \pi^{0}}, T_{2}^{p \pi^{0}}\right\}=-\frac{1}{2}\left\{V_{1}^{p \pi^{0}}, A_{1}^{p \pi^{0}}, T_{1}^{p \pi^{0}}\right\} \quad T_{3,4}^{p \pi^{0}}=0
\end{aligned}
$$

A skewing ansatz

"Skewing" $\xi=1$ limit for πN TDAs

After suitable change of spectral variables $\left(\kappa=\alpha_{3}+\beta_{3}, \theta=\frac{\alpha_{1}+\beta_{1}-\alpha_{2}-\beta_{2}}{2}\right.$, $\mu=\alpha_{3}-\beta_{3}, \lambda=\frac{\alpha_{1}-\beta_{1}-\alpha_{2}+\beta_{2}}{2}$) and introduction of "quark-diquark" coordinates $w=x_{3}-\xi ; v=\frac{x_{1}-x_{2}}{2}$:

$$
\begin{aligned}
& H(w, v, \xi)=\int_{-1}^{1} d \kappa \int_{-\frac{1-\kappa}{2}}^{\frac{1-\kappa}{2}} d \theta \int_{-1}^{1} d \mu_{i} \int_{-\frac{1-\mu}{2}}^{\frac{1-\mu}{2}} d \lambda \delta\left(w-\frac{\kappa-\mu}{2}(1-\xi)-\kappa \xi\right) \\
& \times \delta\left(v-\frac{\theta-\lambda}{2}(1-\xi)-\theta \xi\right) F(\kappa, \theta, \mu, \lambda)
\end{aligned}
$$

- A factorized Ansatz for quadruple distribution F_{i} :

$$
F(\kappa, \theta, \mu, \lambda)=V(\kappa, \theta) h(\mu, \lambda)
$$

with the profile $h(\mu, \lambda)$ normalized as $\int d \mu \int d \lambda h(\mu, \lambda)=1$.
■ Since $H(w, v, \xi=1)=V(w, v)$ for V one may use input from the soft pion theorem

- A possible choice for the profile: $h(\mu, \lambda)=\frac{15}{16}(1+\mu)\left((1-\mu)^{2}-4 \lambda^{2}\right)$; vanishes at the borders of the definition domain.

From $\xi=0$ to $\xi=1$

Nucleon exchange through a TDA

Nucleon pole contribution

- u-channel nucleon exchange is complementary to the spectral representation (D-term like contributions) non-zero in the ERBL-like region $0 \leq x_{i} \leq 2 \xi$.
- The effective Hamiltonian for $\pi \bar{N} N$:

$$
\mathcal{H}_{\mathrm{eff}}=i g_{\pi N N} \bar{N}_{\alpha}\left(\sigma_{a}\right)_{\beta}^{\alpha} \gamma_{5} N^{\beta} \pi_{a}
$$

$$
\begin{aligned}
& \left\langle\pi_{a}\left(p_{\pi}\right)\right| \widehat{O}_{\rho \tau \chi}^{\alpha \beta \gamma}\left(\lambda_{1} n, \lambda_{2} n, \lambda_{3} n\right)\left|N_{\iota}\left(p_{1}, s_{1}\right)\right\rangle \\
& =\sum_{s_{p}}\langle 0| \widehat{O}_{\rho \tau \chi}^{\alpha \beta \gamma}\left(\lambda_{1} n, \lambda_{2} n, \lambda_{3} n\right)\left|N_{\kappa}\left(-\Delta, s_{p}\right)\right\rangle\left(\sigma_{a}\right)_{\iota}^{\kappa} \frac{i g_{\pi N N} \bar{U}_{\varrho}\left(-\Delta, s_{p}\right)}{\Delta^{2}-M^{2}}\left(\gamma^{5} U\left(p_{1}, s_{1}\right)\right)_{\varrho}
\end{aligned}
$$

- After decomposition over the Dirac structures:

$$
\begin{aligned}
& \left\{V_{1}, A_{1}, T_{1}\right\}^{(\pi N)}\left(x_{1}, x_{2}, x_{3}\right) \\
& =\Theta_{\mathrm{ERBL}}\left(x_{1}, x_{2}, x_{3}\right) \times \frac{M f_{\pi} g_{\pi N N}}{\Delta^{2}-M^{2}} \frac{1}{(2 \xi)}\left\{V^{p}, A^{p}, T^{p}\right\}\left(\frac{x_{1}}{2 \xi}, \frac{x_{2}}{2 \underline{\xi}}, \frac{x_{3}}{2 \xi}\right)
\end{aligned}
$$

a 2 - component model for TDA

\Rightarrow A spectral representation with input fixed at $\xi=1$ through soft pion theorem

```
and deskewing (i.e. }\xi->\not=1\mathrm{ ) through an ansatz
```

\leadsto A nucleon pole exchange in the u-channel

These two components are additive and there is no double counting
(one may also add a Δ-pole exchange but small contribution)
\Rightarrow A model driven by a nucleon DA parametrization various existing DAs : CZ, COZ, KS, GS, BLW ...

input dependence

Cross section (for electroproduction now) calculated from the modeled TDA depends much on the DA model

Figure 1: Unpolarized cross section $\frac{d^{2} \sigma_{T}}{d \Omega_{\pi}}$ (in $\mathrm{nb} / \mathrm{sr}$) for backward $\gamma^{*} p \rightarrow p \pi^{0}$ (upper panel) and for backward $\gamma^{*} p \rightarrow n \pi^{+}$(lower panel) as the function of x_{B} computed in the two component model for πN TDAs for $Q^{2}=10 \mathrm{GeV}^{2}, u=-0.5 \mathrm{GeV}^{2}$ as a function of x_{B}. CZ [7] (red solid lines), COZ [8] (dotted lines), KS [9] (dashed lines), GS [10] (dash-dotted lines) nucleon DAs and BLWNNLO [4] (orange solid lines) were used as inputs for our model

Conclusions

TDAs explore confinement dynamics of quarks in hadrons.
TDA extraction is crucial to probe meson content of baryons
\rightleftharpoons First signals at JLab at $6 \mathrm{GeV}+$ CLAS12 : spacelike channels

CLAS $\gamma^{*} p \rightarrow \pi^{+} n$ very preliminary analysis by Kijun Park I

Table: Determination of kinematic bin

variable	unit	num. bin	range	bin size
W	GeV	1	>2.0	0.4
Q^{2}	GeV^{2}	5	$1.6 \sim 4.5$	various
$\left\|\Delta_{T}^{2}\right\|$	GeV^{2}	1	<0.5	0.5

\leadsto PANDA @FAIR : timelike channels

