Nucleon Form Factor Processes at Panda: Theoretical Analysis

Julia Guttmann

Institut für Kernphysik, Johannes Gutenberg-Universität, Mainz

January 2012

Julia Guttmann Nucleon Form Factor Processes at Panda: Theoretical Analysis

Outline

Introduction:

Electromagnetic Form Factors of the Nucleon and Two-Photon Exchange

- Two-Photon Exchange in the Timelike Region: $p\bar{p} \rightarrow e^+e^$ in coll. with: N. Kivel, M. Vanderhaeghen
- Form Factors in the Unphysical Region: pp
 → π⁰e⁺e⁻ in coll. with: C. Adamuščín, F. Maas, M. Vanderhaeghen, M. Zambrana

Summary

Electromagnetic Form Factors of the Nucleon

Spacelike Region ($q^2 < 0$)

Elastic eN-scattering:

Electromagnetic current:

$$\langle N(p') | J_{em}^{\mu} | N(p) \rangle = \bar{u}(p') \bigg[F_1(Q^2) \gamma^{\mu} + F_2(Q^2) \frac{i\sigma^{\mu\nu} q_{\nu}}{2m} \bigg] u(p)$$

• Form factors are real functions of $Q^2 = -q^2$

Timelike Region ($q^2 > 0$)

pp-Annihilation:

Crossing symmetry: $\langle N(p') | J^{\mu}_{em} | N(p) \rangle \rightarrow \langle 0 | J^{\mu}_{em} | N(p) \overline{N}(p') \rangle$

$$0|J_{em}^{\mu}|N(p)\overline{N}(p')\rangle = \\ \bar{v}(p') \bigg[F_{1}(q^{2})\gamma^{\mu} - F_{2}(q^{2})\frac{i\sigma^{\mu\nu}q_{\nu}}{2m} \bigg] u(p)$$

• Form factors are complex functions of *q*²

Spacelike Electromagnetic Form Factors

e-p-Scattering: Rosenbluth separation

Obtain form factors from ε -dependence of unpolarized cross section Rosenbluth cross section in 1 γ -exchange approximation:

$$d\sigma = \mathcal{C}(\boldsymbol{Q}^2, \epsilon) \left[\boldsymbol{G}_{\boldsymbol{M}}^2(\boldsymbol{Q}^2) + \frac{\varepsilon}{\tau} \boldsymbol{G}_{\boldsymbol{E}}^2(\boldsymbol{Q}^2) \right]$$

reduced cross section σ_R

with
$$au = rac{Q^2}{4m^2}$$
 and $arepsilon = \left(1+2(1+ au)\tan^2rac{ heta}{2}
ight)^-$

e-p-Scattering: Polarization transfer

Scatter polarized electron beam & measure outgoing proton polarization:

$$\vec{e} + p
ightarrow e + \vec{p}$$

Polarization ratio:
$$\frac{P_t}{P_l} = -\sqrt{\frac{2\epsilon}{\tau(1+\epsilon)}} \frac{G_E(Q^2)}{G_M(Q^2)}$$

Spacelike Electromagnetic Form Factors

A possible explanation for the discrepancy: **Two-photon exchange corrections** (Guichon, Vanderhaeghen (2003), Blunden et al. (2003), ...)

Two-Photon Exchange in the Timelike Region

Julia Guttmann Nucleon Form Factor Processes at Panda: Theoretical Analysis

Two-Photon Exchange in Timelike Processes?

$p \,\overline{p} ightarrow e^+ \, e^-$

Cross section in Born approximation: $d\sigma_{1\gamma} = C(q^2) \left[|\mathbf{G}_{\mathbf{M}}|^2 (1 + \cos^2 \vartheta) + \frac{1}{\tau} |\mathbf{G}_{\mathbf{E}}|^2 \sin^2 \vartheta \right]$

Leading pQCD Analysis of 2γ -Exchange

- 2γ -exchange at large q^2
- \Rightarrow consider factorization approach:

 2γ -exchange correction as convolution of:

- Hard amplitude (calculable in pQCD)
- nonperturbative contribution:
 Nucleon Distribution Amplitudes φ_N

 $\varphi_N(x_i') \ast T_H(q^2,\varepsilon) \ast \varphi_N(x_i)$

 2γ exchange amplitudes:

$$\begin{split} \delta \widetilde{G_M} &\sim \frac{s}{m^2} \widetilde{F_3} \sim \frac{\alpha_{em} \alpha_s}{q^4} \\ \delta \widetilde{F_2} &\sim 1/q^6 \ \text{(suppressed)} \end{split}$$

Nucleon Distribution Amplitudes

Distribution Amplitude φ_N :

describes how the longitudinal momentum is shared between the constituents Model for asymptotic behavior of the DAs and the first corrections:

 $\varphi_N(x_i) \simeq 120 f_N x_1 x_2 x_3 (1+r_{-}(x_1-x_2)+r_{+}(1-3x_3)+\dots)$

DAs include 3 parameters: f_N , r_- , r_+

	<i>f_N</i> (10 ^{−3} GeV ²)	<i>r_</i>	<i>r</i> +
COZ ¹	5.0	4.0	1.1
BLW ²	5.0	1.37	0.35

¹Chernyak et al., Z.Phys C (1989)

JGU IOHANNES GUTENBERG UNIVERSITÄT MAINZ

Results

(JG, Kivel, Vanderhaeghen, PRD(2011))

<u>Two-Photon Contribution</u> $\delta_{2\gamma}$: $d\sigma_{1\gamma+2\gamma} = d\sigma_{1\gamma} (1 + \delta_{2\gamma})$

• Form factor from QCD-fit: $|G_M(q^2)| = \frac{C}{q^4 \log^2(\frac{q^2}{\Lambda^2})}$ (Lepage, Brodsky PRL43)

• Assumptions: $|G_M| = |G_E|$, $G_M = G_M^*$

•
$$\delta \widetilde{G}_E = \lambda \ \delta \widetilde{G}_M$$
, with $-1 < \lambda < 1$ (bands)

Results

(JG, Kivel, Vanderhaeghen, PRD(2011))

<u>Two-Photon Contribution</u> $\delta_{2\gamma}$: $d\sigma_{1\gamma+2\gamma} = d\sigma_{1\gamma} (1 + \delta_{2\gamma})$

• Form factor from QCD-fit: $|G_M(q^2)| = \frac{C}{q^4 \log^2(\frac{q^2}{\Lambda^2})}$ (Lepage, Brodsky PRL43)

• Assumption
$$|G_M| = |G_E|, G_M = G_M^*$$

• $\delta \widetilde{G}_E = \lambda \ \delta \widetilde{G}_M$, with $-1 < \lambda < 1$ (bands)

Results

(JG, Kivel, Vanderhaeghen, PRD(2011))

<u>Two-Photon Contribution</u> $\delta_{2\gamma}$: $d\sigma_{1\gamma+2\gamma} = d\sigma_{1\gamma} (1 + \delta_{2\gamma})$

3 parametrizations give similiar results:

- Form factor from QCD-fit using $|G_M| = |G_E|$, $G_M = G_M^*$
- Fit incl. logarithmic corrections, Brodsky et al. (2004)
- VMD model, lachello et al. (2004)

Nucleon Form Factors in the Unphysical Region

Julia Guttmann Nucleon Form Factor Processes at Panda: Theoretical Analysis

Form Factors in the Unphysical Region

- Unphysical region:
 0 < q² < 4m²
- Not accessible by process $ho + ar{
 ho}
 ightarrow e^+ + e^-$
- Idea: Consider process $p + \bar{p} \rightarrow \pi^0 + \gamma^*$ $\rightarrow \pi^0 + e^+ + e^-$

(Dubničková et al., ZPhys. (1996), Adamuščín et al., PRC (2007))

Process $p + \bar{p} \rightarrow \pi^0 + e^+ + e^-$

Phenomenological Approach: (Adamuščín et al., PRC (2007))

$$ar{p}(p_1) + p(p_2) o \pi^0(q_\pi) + e^-(k_1) + e^+(k_2)$$

- Decribed by nucleon exchange
- Neglecting off shell effects $\rightarrow \gamma^* NN$ -vertices parametrized by:

$$\left[F_1(q^2)\gamma^{\mu}-\frac{i}{2m}F_2(q^2)\sigma^{\mu\nu}q_{\nu}\right]$$

JOHANNES GUTENBERG UNIVERSITÄT MAINA

Process
$$p + \bar{p} \rightarrow \pi^0 + e^+ + e^-$$

$p\bar{p} \rightarrow \pi^0 e^+ e^-$: Model Independent Calculation

Amplitude:

Separate amplitude of the process:

$$|\mathcal{T}|^{2} = \sum_{\lambda} \left| \underbrace{\left(\mathcal{M}^{\mu} \cdot \varepsilon_{\mu}^{*}(\boldsymbol{q}, \lambda) \right)}_{\text{evaluate in}} \frac{1}{q^{2}} \underbrace{\left(\varepsilon_{\nu}(\boldsymbol{q}, \lambda) \bar{\boldsymbol{u}}(\boldsymbol{k}_{1}) \, \boldsymbol{e} \gamma^{\nu} \, \boldsymbol{v}(\boldsymbol{k}_{2}) \right)}_{\text{evaluate in}} \right|^{2}$$

$$\underbrace{\text{evaluate in}}_{\gamma^{*} \text{-rest frame}} \mathcal{M}^{\mu} : p\bar{p} \to \pi^{0}\gamma^{*} \text{amplitude}$$

Variables:
s,
$$t \leftrightarrow \theta_{\pi}$$
 $\theta_{e^+e^-}, \Phi_{e^+e^-}$
Photon-virtuality q^2

$p\bar{p} \rightarrow \pi^0 e^+ e^-$: Model Independent Calculation

Cross Section

$$\frac{d\sigma}{dt\,dq^2\,d\Omega_l} = \frac{1}{16\pi^2 s(s-4m^2)}\,\frac{e^2}{(4\pi)^2\,2\,q^2}\,\frac{4\pi}{3}\cdot\mathcal{W}(\theta_{e^+e^-},\Phi_{e^+e^-})$$

$$\mathcal{W}(\theta_{e^+e^-}, \Phi_{e^+e^-}) = \frac{3}{4\pi} \Big[\sin^2 \theta_{e^+e^-} \rho_{00} + (1 + \cos^2 \theta_{e^+e^-}) \rho_{11} \\ + \sqrt{2} \sin 2\theta_{e^+e^-} \cos \Phi_{e^+e^-} \mathbf{Re}[\rho_{10}] \\ + \sin^2 \theta_{e^+e^-} \cos 2\Phi_{e^+e^-} \mathbf{Re}[\rho_{1-1}] \Big]$$

Density matrix:
$$\rho_{\lambda\lambda'} = \left(\mathcal{M}^{\mu}\varepsilon_{\mu}^{*}(\boldsymbol{q},\lambda)\right) \cdot \left(\mathcal{M}^{\mu}\varepsilon_{\mu}^{*}(\boldsymbol{q},\lambda')\right)^{*}$$

Results: (within Born-Model)

sin $2\theta_{e^+e^-} \cos \Phi_{e^+e^-}$ structure: basically proportional to $(G_E - G_M) \sim F_2$

Results: (within Born-Model)

• $\sin 2\theta_{e^+e^-} \cos \Phi_{e^+e^-}$ structure: basically proportional to $(G_E - G_M) \sim F_2$

Summary

 2γ -exchange in the **timelike region**:

- Estimate of 2γ-exchange using a pQCD factorization approach
- Contribution $\delta_{2\gamma} \lesssim 1\%$

Proton form factor in the unphysical region:

- Accessible in the process $p\bar{p} \rightarrow \pi^0 e^+ e^-$
- General form for decay angular distribution
- Measurement necessitates fixed q², different t values
- Form factor extraction: requires model
 - \rightarrow can be tested through t dependence

