

Studies of STT response for π^{-} and e^{-} with PANDAroot

Binsong MA 1/12/2012

Goals

- → Validation of PANDAroot simulations for electromagnetic channels:
- Tracking efficiency for electrons and pions: mainly checked for muons up to now
- Momentum reconstruction:

study of momentum resolution for electrons with Kalman filter:

pb of radiation, is another method needed?

- e/ π discrimination using dE/dx
 - Use simulations to check/improve the parameterization of dE/dx
 - Use prototype results to validate the simulations
- \rightarrow Feasibility studies for TDA measurement in pbar p \rightarrow $\pi^0 {\rm e^+e^-}$

STT structure

- → 4636 Straw tubes in 2 semibarrels around beam/target cross-pipe
- → 23-27 planar layers in 6 hexagonal sectors
- → 15-19 axial layers (green) in beam direction
- →4 stereo double-layers for 3D reconstruction, with ±2.89° skew angle (blue /
 - red)
- \rightarrow Gas: Ar/CO₂ at 2 bar

Simulation for $\pi^{\scriptscriptstyle -}$ and $e^{\scriptscriptstyle -}$

- 15000 events π⁻ and e⁻ with pgun mode (single particle events)
- Momentum: from 0.05 GeV/c to 5 GeV/c
- Theta : from 5 $^{\circ}$ to 140 $^{\circ}$
- Phi: [0 $^{\circ}$,360 $^{\circ}$]
- preliminary studies of STT response to π^{-} and e^{-} :
- → Acceptance considerations: select STT hits associate with π^- from MC track
- \rightarrow secondary particles study

Numbers of STT hits for π^-

info from PndSttHit class(simulation level), only hits associated with the primary π^{-} are selected

Dependence on momentum and ψ

Secondary particle(from π⁻) study

At the level of MC simulation(PndSttHit class): \rightarrow 29.1% of hits from STT associated with secondaries \rightarrow 14.8% of events reaching STT with at least 1 secondary particle.

Nature of these secondary particles? → Investigation in PndPidCandidate class (at least 1 charged track reconstructed)

Red: points associate with primary π^- MC track

Numbers of π^{-} interacting before reaching STT

• $N=N_0exp(-\rho eN_A\sigma/A)$

MVD total thickness at 90 $^{\circ}$: 0.67cm(0.07X₀) at 32 $^{\circ}$: 1.34cm(0.14X₀) cross section for π - reaction: 0.7 barn N/N₀ (90 $^{\circ}$) \backsim exp(-0.0235)=97.6% N/N₀ (32 $^{\circ}$) \backsim exp(-0.0887)=91.5%

The secondary particles

Binsong MA

Origins of secondary particle

- Possible reactions producing secondary particle
- \rightarrow $\pi^- \rightarrow \mu^- \nu_{\mu} bar$ (decay)($c\tau = 780 cm$)
- $\pi^{+} \rightarrow \mu^{+} v_{\mu}$
- \rightarrow $\pi^{-}A \rightarrow \pi^{-}A$

 $\rightarrow \pi^{-}A \rightarrow k(\pi) + \dots$ (multi pion product)($\sigma \sim 1$ barn) $\pi^{0} \rightarrow \gamma \gamma \rightarrow e^{+}e^{-}\gamma$ (conversion)(P = 2%~10%) (decay) \rightarrow π^{-} A-> np + (absorption)(σ^{\sim} 500mb) (elastic scatting)(σ ~200mb)

Secondary proton study

Low energy protons: <Tp> = 90 MeV

Contribution important for pions above 700 MeV/c

Secondary π^+ study

Low energy $\pi^{\scriptscriptstyle +}$ from multi-pion production Rapid increase with $\mathsf{P}_{\pi^{\scriptscriptstyle -}}$

Secondary μ^- study

Prob(π^- decay): p = 1- exp(- D/(sqrt(γ^2 -1)*c\tau))

P(MeV/c)	At STT entry	At STT exit	0.6 % survive the reconstruction
50	4%	20%	
>= 1000	1%	5%	

Simulation for electrons

Based on reconstructed primary electrons

Reconstructed primary electron: 13658

Possible natures of secondary particles: $e^{-}A \rightarrow e^{-}A \gamma$ $\gamma \rightarrow e^{-}e^{+}$ (conversion) δ electrons

Secondary particles study

Conclusion and future work

- Simulation of π^{-} and e^{-} [50MeV/c, 5GeV/c]
- Production of secondary particles in MVD not negligible, 29.1% of STT points due to secondary particles (π⁻)
- Global understanding of the origin of secondaries
- After reconstruction ~11.4% of secondaries for π^-

~2.4% of secondaries for e-

dominated by low energy particle.

• Future work: momentum resolution

dE/dx with STT