February 2012 - seminar Antonin MAIRE - P.I. Heidelberg, ALICE group

 $\Omega^{-} \rightarrow \Lambda + K^{-}$

Strangeness and charm in pp and Pb–Pb collisions at the LHC p+p, √s = 7 TeV

studies through multi-strange baryons (Ξ^{\pm} , Ω^{\pm}) and J/Ψ mesons

Outline

I. Introduction : QGP, QCD, pp and A-A

Part A - Strangeness : Ξ^{-} , $\overline{\Xi}^{+}$, Ω^{-} , $\overline{\Omega}^{+}$

- II. Context : strangeness, ALICE, cascade reco.
- III. $(\Xi^{-} + \overline{\Xi}^{+})$ spectrum in pp at $\sqrt{s} = 0.9$ TeV
- IV. Ξ^- , $\overline{\Xi}^+$, Ω^- , $\overline{\Omega}^+$ spectra in pp at $\sqrt{s} = 7$ TeV
- V. Azimuthal correlations $(\Xi^{\pm} h^{\pm})$ and $(h^{\pm} \Xi^{\pm})$
- VI. Ξ^- , $\overline{\Xi}^+$, Ω^- , $\overline{\Omega}^+$ in Pb–Pb at $\sqrt{s_{_{NN}}}$ = 2.76 TeV

Part B - Charmonium : J/Ψ

VII. Context : charmonium stakes VIII. Measurement status of J/Ψ

IX. Conclusion (3 points towards the exit)

Introduction

I.1 - Intro. : QGP and AA

QGP hadronisation t = 7.5649 t = 74.813 Temperature MO adronic gas Teritical ? Free hadrons - $\left(\begin{array}{c} 0 \\ 0 \\ \end{array} \right)$ Tchemical Hadronization freeze-out Tkinetic freeze-out Time QGP Hadronic phase Chemical freeze-out Kinetic freeze-out Heavy ions t = -15.800 Initial t = .66000System

I.2 – **Intro.** : pp vs. AA, different physics ?

Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

I.3 – Intro. : pp, AA, continuum of physics ?

February 2012 Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

I.4 – **Intro.** : defining some notions...

<u>Notes :</u> $\rightarrow R_{AA} = 1$, nothing special in A–A .. *e.g.* photons, W[±], Z⁰.

> $\rightarrow R_{AA} > 1$, enhancement in the A–A system e.g. strange hadrons at low momenta (p_T < 3 GeV/c)

 $\rightarrow R_{AA} < 1$, suppression in the A–A system *e.g.* light flavour quarks at mid/high p_T (p_T > 3 GeV/c)

February 2012 Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

II.1 – Strange. : QGP, strangeness

s quarks seem thermalised as *u*,*d* quarks \rightarrow s obey bulk physics ...

p_T (GeV/c)

All need proper study of the benchmark system : **pp** ...

9/39

February 2012 Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

II.2 – Strange. : p+p, strangeness

• Physical incentives :

Strangeness in p+p = benchmark for heavy-ion physics ...

+ interest in itself = strangeness production mechanisms :

pQCD (*high* p_{τ})

vs. **soft interaction** (low p_{τ})

- \rightarrow understand the *soft part* of the event + its interplay with the *hard part*,
- → constrain the phenomenology (*Multi-Parton Interaction* ? ... ?) of QCD-inspired models (*PYTHIA, EPOS, Sherpa ...*)
- Measurement status : (p+p) or (p+p) measurements at high energies :

√s	Experiment(s)	Collisions	Particles	Ref./Link
0.2 TeV	(UA5) + STAR	(p+ p) + p+p	K ⁰ s, $\Lambda, \Xi^{\pm}, \Omega^{\pm}$	STAR
0.9 TeV	UA5	p+p	K^0 s, Λ , Ξ^-	UA5
1,96 TeV	CDF Run II	p+p	$\Lambda, \Xi^{\pm}, \Omega^{\pm}$	CDF

 \rightarrow LHC : 0.9, 2.76, 7 TeV ?

(NB: CMS paper (0.9 + 7 TeV), in preparation ATLAS, in PLHC 2010 ...)

10/39

February 2012 Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

II.3 – Strange. : strangeness, ALICE

- Experimental paths : <u>A.</u> Strangeness via detector-PID = K^{\pm}
 - **B.** Strangeness via *topology* =
 - s = 0 (ϕ meson)
 - + s = 1 (K^os, Λ neutral hadrons)
 - $+ s \ge 2$ (multi-strange baryons)
- NB : identification from low p_t (~0.2 GeV/c)
 - to high p_t (~10 GeV/c)
- ALICE designed for it : good identification capabilities at mid-rapidity

February 2012

1. < very good detector-PID capabilities (ITS, TPC, TRD, TOF, HMPID)

11 / 39 Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

II.4 – Strange. : ALICE, multi-strange baryons

ALICE (in 2009-11): – pp collisions at 0.9 TeV,

(at 2.36 TeV), at 2.76 TeV, at 7 TeV, – Pb-Pb collisions at 2.76 TeV Charged multi-strange baryons : $\Xi^{-}(dss) \qquad \Xi^{+}(\overline{dss})$ $\Omega^{-}(sss) \qquad \Omega^{+}(sss)$

Sub-detectors needed :

1. Inner Tracking System

2. Time Projection Chamber

What we detect from $\Xi^{-}, \overline{\Xi}^{+}, \Omega^{-}, \overline{\Omega}^{+}$:

- bachelor,

- V0 daughters.

12/39

Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

II.5 – Strange. : cascade reconstruction

• Decay channel :

 $\Xi^{-}(\mathrm{dss}) \quad (\mathrm{m}_{PDG} = \mathbf{1.322} \ \mathrm{GeV}/c^{2} \ ; \ \mathrm{c\tau} = \mathbf{4.91} \ \mathrm{cm}) \rightarrow \Lambda(\mathrm{uds}) + \pi^{-} \rightarrow \mathrm{p} + \pi^{-} + \pi^{-} \ (\mathrm{B.R.} = 63.6 \ \%)$ $\overline{\Omega}^{+}(\overline{\mathrm{sss}}) \ (\mathrm{m}_{PDG} = \mathbf{1.672} \ \mathrm{GeV}/c^{2} \ ; \ \mathrm{c\tau} = \mathbf{2.46} \ \mathrm{cm}) \rightarrow \overline{\Lambda(\mathrm{uds})} + \mathrm{K}^{+} \rightarrow \overline{\mathrm{p}} + \pi^{+} + \mathrm{K}^{+} \ (\mathrm{B.R.} = 43.3 \ \%)$

Part A.a – 900 GeV : Cascades, Ξ^{\pm}

• Data :

December 2009 p+p, 900 GeV

~ 250 x 10³ evts

Pass4 - Run 09000104892 / Chunk 020.30 / Event 108

III.1 – 900 GeV : signal extraction principle

15 / 39 Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

February 2012

III.2 – 900 GeV : systematics, summary

February 2012 Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

III.3 – 900 GeV : corrected spectra

- All MC models tested = under data ~ factor 3-5
- **<u>2.</u>** In terms of data :
 - dN/dy compatible with the ones from UA5 and CMS
 - CMS spectrum in accordance
 with ALICE one
 - Spectrum in accordance with ALICE 2010 data ...

Table 6. Rapidity and p_T ranges, $\langle p_T \rangle$, corrected yields and extrapolated fraction at low p_T using the Lévy function (2).

Par	ticles	y	$p_{\rm T}$ range (GeV/c)	$\langle p_{\rm T} \rangle$ (GeV/c)	$\mathrm{d}N/\mathrm{d}y$	Extrapolation (%)
Mesons	${f K_S^0} \phi$	$< 0.75 \\ < 0.60$	[0.2 - 3.0] [0.7 - 3.0]	$\begin{array}{c} 0.65 \pm 0.01 \pm 0.01 \\ 1.00 \pm 0.14 \pm 0.20 \end{array}$	$\begin{array}{c} 0.184 \pm 0.002 \pm 0.006 \\ 0.021 \pm 0.004 \pm 0.003 \end{array}$	$\begin{array}{c} 12 \pm 0.4 \pm 0.5 \\ 48 \pm 18 \pm 7 \end{array}$
Baryons	$\frac{\Lambda}{\overline{\Lambda}} \\ \Xi^- + \overline{\Xi}^+$	< 0.75 < 0.75 < 0.8	$[0.6 - 3.5] \\ [0.6 - 3.5] \\ [0.6 - 3.0]$	$\begin{array}{c} 0.86 \pm 0.01 \pm 0.01 \\ 0.84 \pm 0.02 \pm 0.02 \\ 0.95 \pm 0.14 \pm 0.03 \end{array}$	$\begin{array}{c} 0.048 \pm 0.001 \pm 0.004 \\ 0.047 \pm 0.002 \pm 0.005 \\ 0.0101 \pm 0.0020 \pm 0.0009 \end{array}$	$36 \pm 2 \pm 4$ $39 \pm 3 \pm 4$ $35 \pm 8 \pm 4$

17/39

February 2012 Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

Part A.b – 7 TeV : Ξ^{-} , $\overline{\Xi}^{+}$, Ω^{-} , $\overline{\Omega}^{+}$

Pass1 - Run 10000115322 / Chunk 029.150 / Event 2428

• Data :

Summer 2010 *(LHC10d)* p+p, 7 TeV

≈ 165 x 10⁶ evts

IV – Min. Bias p_t spectra at $\sqrt{s} = 7$ TeV

 $\overline{\Xi}^{\star}$ inv. mass : integration in Pt, all cand.

IV.1 – MinB spectra : Ξ^- , $\overline{\Xi}^+$, Ω^- , $\overline{\Omega}^+$

20/39

February 2012 Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

IV.2 – Comparison : ALICE and CMS

 \rightarrow good agreement between the two experiments (provided the INEL/NSD difference...)

February 2012 Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

IV.3 – Comparison : PYTHIA tunes

→ PYTHIA tune with the highest yields = still well below the data, at intermediate p_t (*NB* : Perugia 2011 looks ok for Ξ^- and $\overline{\Xi}^+$ at $p_t > 6$ GeV/c...)

V – Azimuthal Correlations

V.1 – Correlations : (Cascade – h[±])

24/39

Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

V.2 – Correlations : results

February 2012

Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

V.3 – Correlations : qualitative results

26 / 39 Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

February 2012

VI.1 – In Pb–Pb : enhanced production ...

 R_{AA} integrated in p_{T} as measured by ALICE in Pb–Pb at $\sqrt{s_{NN}} = 2.76$ TeV

<u>Status :</u>

- corrected spectra,
- for $\Xi^{\scriptscriptstyle -},\,\overline{\Xi}{}^{\scriptscriptstyle +},\,\Omega^{\scriptscriptstyle -},\,\overline{\Omega}{}^{\scriptscriptstyle +}$
- in different centrality bins,
- strangeness enhancementseen...
 - i.e. larger enhancement for Ω than Ξ ,
 - + enhancement increasing with centrality

 \rightarrow "Strangeness enhancement" decreases from SPS to LHC...

February 2012 Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

Part B – Charmonium (J/Ψ[cc])

VII.1 – **Intro.** : charmed hadrons, J/Ψ *et al*.

Total charm cross section and distribution expected at the LHC in pp

$J/\Psi(1S) (cc)$ m_{PDG} = 3.0969 GeV/c²

<u>Note :</u>

- → Open charm (D mesons)
 ~ 90 % of the charm cross-section.
- → Charmonium does not stand for most of the charm cross section

but still, hidden charm...

VII.2 – **Intro.** : cumulative difficulties of J/Ψ

- In pp
 - <u>1</u>. understand production mechanisms
 <u>2</u>. understand polarisation
- e.g. Colour singlet model, Colour octet model, NRQCD, Colour evaporation model, ...
 - <u>**3.**</u> *prompt* J/ Ψ include decay from higher mass resonance states

<u>4.</u> - non-prompt J/Ψ i.e. from b hadron decays

In pA

- 5. Cold nuclear matter effects (nPDF, absorption)
- In A–A
 - 6. suppressed production (Matsui & Satz, 1986)

7. - enhanced production at LHC ? $(q\overline{q} \text{ coalescence})$

31/39 Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

VIII.1 – Charmo. : phase space at the LHC

ATLAS, **CMS**, **LHCb** : higher luminosity, access to very high p_T ; down to $p_T = 0$ (LHCb) **ALICE** : key potential at (mid-rapidity + low p_T) + alone at forward rapidity in A–A ... 32/39

February 2012 Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

In A–A

VIII.2 – **Charmo.** : J/Ψ detection at the LHC

•
$$J/\Psi \rightarrow e^+e^-$$

ALICE (mid-rapidity)

•
$$J/\Psi \rightarrow \mu^+\mu^-$$

ALICE (forward rapidity) ATLAS CMS LHCb

33 / 39 Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

February 2012

VIII.3 – **Charmo.** : J/Ψ measurement status

February 2012

Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

(Conclusion) : charm and strangeness

as pieces of a wide puzzle

Ccl°.1 – Puzzle : PYTHIA and EPOS 7000 GeV Minimum Bias (1/N NSD) dN/dp_T (GeV/c)⁻¹ MCplots $pT(\Xi) (|y| < 2)$ 1. MC models (e.g. **PYTHIA**) ~ constrained by CDF data (at the TeV scale) lerwia++ Pvthia 6 = via *unidentified* particles, essentially. Pythia 8 Sherna LHC may have a say ... = join MCplots/Rivet effort ! $(1/N_{ev}) dn/dn d^2 p_t (c^2/GeV^2)$ chrg ALICE inel **EPOS 2.07** 10^{-3} n = 22K.Werner, MPI@LHC 2010 .9TeV < 0.810⁻⁴ CMS 2011 S8978280 Herwig++ 2.5.2, Pythia 6.426, Pythia 8.157, Sherpa Ξ⁻ p₋ [GeV/č] Ratio to CMS full model (solid) 1.5 no casc (dashed) no hydro (dotted) + -6 2011 10 $p_t (GeV/c)$ 2. <u>EPOS 2.0</u> = 0.5 2 multiple scattering + Core/Corona + Hydro

Put it to the test : description of strange hadrons ? w/o hydro, w/o mini-plasma, ... ?

February 2012

36 / 39 Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

Ccl°.2 – **Puzzle** : Au-Au vs pp $\langle p_T \rangle$

February 2012

Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

February 2012

B. Hippolyte (ALICE) SQM 2011

Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

Ccl°.4 – **Conclusion** : map of flavour physics.

February 2012

Completing the picture :

- 1. Particle wise ...
 - strangeness related : K^+ , K^0 s, Λ + resonances $\varphi(1020)$, $\Lambda(1520)$, $\Sigma^*(1385)$, Ξ^* etc - charm related : D meson, charmed baryon...
- 2. Analysis wise ...
 - in pp : azimuthal correlations, studies in multiplicity, Underlying Event vs. jet...
 in A-A :
 - in A–A :
 elliptic flow,
 - polarisation

Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

A.3 – Comparison : Perugia 2011

Perugia 2011 (All)

350

359

0.087

0.19

0.95

0.043

1.0

1.0

0.35

0.40

0.54

0.33

0.63

0.12

0.35

0.80

0.55

1.0

1.0

 $\mathbf{5}$

- The default suppression of strangeness in association with popcorn mesons (PARJ(6) and PARJ(7)) was removed to help improve Ξ and Ω yields at LEP [104]. (Note, however, the consequences of this on particle-particle correlations have not been checked.)

Tuning Monte Car	lo Generators:	The Perugia	Tunes
http://arxiv.org/abs	s/1005.3457		

Table 5: Hadronisation Parameters of the Perugia 2011 tunes compared to Perugia 0 and Perugia 2010. Parameters that were not explicitly part of the Perugia 0 and Perugia 2010 tuning but were included in Perugia 2011 are highlighted in blue. For more information on each parameter, see 14.

Perugia 0 Perugia 2010

327

0.08

0.21

0.94

0.04

0.5

0.5

0.35

0.35

0.54

0.36

0.63

0.12

0.35

0.9

0.5

1.0

1.0

 $\mathbf{5}$

310

0.073

0.2

0.5

0.5

0.31

0.4

0.54

0.313

0.63

0.12

0.49

1.2

0.5

1.0

1.0

0.94

0.032

 $\mathbf{5}$

Type

Tune

HAD

Parameter MSTP(5)

MSTJ(11)

PARJ(1)

PARJ(2)

PARJ(3)

PARJ(4)

PARJ(6)

PARJ(7)

PARJ(11)

PARJ(12)

PARJ(13)

PARJ(21)

PARJ(25)

PARJ(26)

PARJ(41)

PARJ(42)

PARJ(45)

PARJ(46)

PARJ(47)

[14] *PYTHIA 6.4 Physics and Manual* http://arxiv.org/abs/hep-ph/0603175

- PARJ(6) : (D = 0.5) extra suppression for having a ss pair shared by the B and \overline{B} of a $BM\overline{B}$ situation.
- **PARJ(7)** : (D = 0.5) extra suppression for having a strange meson M in a $BM\overline{B}$ configuration.

41/39

February 2012 Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

A.4 – **After comparison** : Z1C ?

PARJ(1) : (D = 0.10) is $\mathcal{P}(qq)/\mathcal{P}(q)$, the suppression of diquark-antidiquark pair production in the colour field, compared with quark-antiquark production.

- **PARJ(2)** : (D = 0.30) is $\mathcal{P}(s)/\mathcal{P}(u)$, the suppression of s quark pair production in the field compared with u or d pair production.
- **PARJ(3)** : (D = 0.4) is $(\mathcal{P}(us)/\mathcal{P}(ud))/(\mathcal{P}(s)/\mathcal{P}(d))$, the extra suppression of strange diquark production compared with the normal suppression of strange quarks.
- **PARJ(4)** : (D = 0.05) is $(1/3)\mathcal{P}(ud_1)/\mathcal{P}(ud_0)$, the suppression of spin 1 diquarks compared with spin 0 ones (excluding the factor 3 coming from spin counting)
- PARJ(5) : (D = 0.5) parameter determining relative of $BM\overline{B}$ and by $B\overline{B}$ configurations in the simpler roughly $\mathcal{P}(BM\overline{B})/(\mathcal{P}(B\overline{B}) + \mathcal{P}(BM\overline{B})) = PA$ subsequent baryon parameters are modified in see section 14.3.1. Z1C Rick Field (CDF, CMS) : Z1 tune + PARJ(1) = 0.12 PARJ(3) = 0.8 $\to MB \& UE \text{ working group (June, 17th 2011)}$
- PARJ(6) : (D = 0.5) extra suppression for having a ss pair shared by the B and \overline{B} of a $BM\overline{B}$ situation.
- **PARJ(7)** : (D = 0.5) extra suppression for having a strange meson M in a $BM\overline{B}$ configuration.

B – 7 TeV analyses : three Comparisons

B.1 – **Comparison** : ALICE, CMS, STAR

February 2012 Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

B.2 – **Comparison** : dN/dy, $\langle p_t \rangle = f(\sqrt{s})$

Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar

B.3 – **Comparison** : $(\Omega^{\pm}/\Xi^{\pm}) = f(p_t)$

February 2012

Antonin.MAIRE@cern.ch – P.I. Heidelberg / Lab seminar