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Plan of this talk

Recent progress on perturbation theory

Accelerated power spectrum calculation

Summary

Perturbation theory of large-scale structure
from practical point-of-view
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Large-scale structure (LSS)
Fundamental observable: galaxy clustering patterns

(and weak lensing)
Statistical nature of LSS contains valuable cosmological info.

Power spectrum P(k),  or correlation function ξ(r)

 Historical record of the primordial Universe
(Initial condition & late-time evolution)

Shape &
amplitude

Further, additional observational effects give much more benefit:

Alcock-Paczynski effect
Redshift distortion effect

 measurements of these are now top priority in future surveys

{
With BAOs as standard ruler, 

cosmic expansion

growth of structure
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Confronting theory with obs.
High-precision theoretical template of P(k) & ξ(r)

is observationally demanding

Taking account of nonlinear systematics:

• gravity clustering

• Redshift distortions

• galaxy biasing

In weakly nonlinear regime,

Perturbation theory approach is viable

Linearly extrapolated
Fully Nonlinear

Linear

z=0.5
1

2
3

regime of our 
interest

Weakly 
nonlinear

(though role of N-body is still crucial)

Small, but non-negligible at ~1% precision
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Perturbation theory approach
Large-scale structure formation based on gravitational instability

Cold dark matter + baryons = pressureless & irrotational fluid

Basic eqs. 
(GR w/o ν)

� = �(1) + �(2) + �(3) + · · · ��(k; t)�(k�; t)� = (2�)3 �D(k + k�) P (|k|; t)

standard PT 
|�|� 1

Juszkiewicz (’81), Vishniac (’83), Goroff et al. (’86), 
Suto & Sasaki (’91), Jain & Bertschinger (’94), ...
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in Fourier space
Doublet �a(k; �) =

�m(k; �)

��(k; �)/f(�)( (
�

��
�a(k; �) + �ab(�)�b(k; �)

=
�

d3k1d3k2

(2�)3
�D(k � k1 � k2) �abc(k1,k2) �b(k1; �)�c(k2; �)

� � ln D+(t) f =
d lnD+

d ln a

Linear 
growth factor

Modern description
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Perturbation theory : revolution
Standard PT turns out to have a poor convergence

Good convergence of improved PT is ensured by re-organizing 
standard PT expansion by means of non-perturbative quantities

Improved PT (’06~’08)

AT et al. (’09)

LRT Matsubara (‘08ab),  Okamura et al. (’11)

Closure theory AT & Hiramatsu (‘08)

RegPT(Γ-expansion)
Bernardeau et al. (’08,’11)

Time-RG Pietroni (’08)

RPT Crocce & Scoccimarro (‘06ab, ’08)

Valageas (’07)Large-N
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Standard PT vs. improved PT
Standard PT

Linear (tree) 1-loop 2-loop

P (k) = P (11)(k) +
�
P (22)(k) + P (13)(k)

�
+

�
P (33)(k) + P (24)(k) + P (15)(k)

�
+ · · ·

P (mn) � ��(m)�(n)�

RPT

P(k)
= + 16+ 2

initial P(k)

k -k k -k k -k k

q -q

k-q -(k-q)
-k

propagator
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Standard PT vs. improved PT
Standard PT

Linear (tree) 1-loop 2-loop

P (k) = P (11)(k) +
�
P (22)(k) + P (13)(k)

�
+

�
P (33)(k) + P (24)(k) + P (15)(k)

�
+ · · ·

P (mn) � ��(m)�(n)�

multi-point 
propagator k

k1

kn

RegPT (Γ-expansion)

P(k)
= + 6+ 2 + ...

initial P(k)

k -k k -k k -k k -k

q -q

k-q -(k-q)

q -q

k-p-q -(k-p-q)

p -p

see Francis' talk in detail
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Convergence of PT expansion

simply chosen at the center of the n-th radial bin, i.e., rn ¼
ðrmin þ rmaxÞ=2.

Equation (4.2) usually suffers from the ambiguity of the
zero-point normalization in the amplitude of two-point
correlation function, because of the lack of the low-k
powers due to the finite boxsize of the simulations. With
the 1; 0243 grids and the boxsize of Lbox ¼ 1h%1 Gpc;
however, we can safely evaluate the two-point correlation
function around the baryon acoustic peak. Comparison
between different computational methods, together with
convergence check of this method, is presented in
Appendix C.

Finally, similar to the estimation of power spectrum, the
finite-mode sampling also affects the calculation of the
two-point correlation function. We thus correct it by sub-
tracting and adding the extrapolated linear density field as
!̂ðrÞ % !̂linðrÞ þ !linðrÞ, where !̂lin is the correlation func-
tion estimated from the Gaussian density field, and !lin is
the linear-theory prediction of two-point correlation
function.

B. Results in real space

1. Power spectrum

Before addressing a quantitative comparison between
the N-body simulation and improved PT, we first discuss
the convergence properties of the improved PT, and con-
sider how well the calculation based on the improved PT
does improve the prediction compared to the standard PT.

Figure 4 plots the overall behaviors of the nonlinear
power spectrum of density fluctuation, Pðk; zÞ &
P11ðk; zÞ, given at z ¼ 0, adopting the WMAP3 cosmologi-
cal parameters. In the left panel, the results of standard PT
are shown, and the contributions to the total power spec-
trum up to the two-loop diagrams are separately plotted.
On the other hand, the right panel shows the results of the
improved PT. We plot the contributions up to the second-
order Born approximation labeled as MC1 and MC2.
In Fig. 4, there are clear distinctions between standard

and improved PTs. While the loop corrections in standard
PT change their signs depending on the scales and exhibit
an oscillatory feature, the corrections coming from the
Born approximation in the improved PT are all positive
and mostly the smooth function of k. Further, the higher-
order corrections in the improved PT have a remarkable
scale-dependent property compared to those in the stan-
dard PT; their contributions are well localized around some
characteristic wave numbers, and they are shifted to the
higher k modes as increasing the order of PT. These trends
clearly indicate that the improved PTwith closure approxi-
mation has a better convergence property. Qualitative be-
haviors of the higher-order corrections quite resemble the
predictions of RPT by Crocce and Scoccimarro [34].
Now, let us focus on the behavior of BAOs, and

discuss how the convergence properties seen in Fig. 4
affect the predictions of BAO features. In Fig. 5, adopting
the WMAP3 cosmological parameters, we plot the ratio
PðkÞ=Pno-wiggleðkÞ, where the function Pno-wiggleðkÞ is the

FIG. 4 (color online). Convergence properties of standard PT (left) and improved PT (right) expansions in the matter power
spectrum. In each panel, the higher-order contributions to the total power spectrum labeled as Pnl is separately plotted. In the left panel,

one-loop and two-loop corrections in the standard PT P1-loop
11 and P2-loop

11 , are plotted, while in the right panel, the mode-coupling

corrections PðMC1Þ
11 and PðMC2Þ

11 in the improved PT given at Eqs. (3.12) and (3.13), respectively, are shown (labeled as MC1 and MC2),
together with the first term in Eq. (3.11) [labeled as G2P0]. Note that the dashed lines indicate the negative values.

TARUYA et al. PHYSICAL REVIEW D 80, 123503 (2009)

123503-8

Standard 
PT

negative

positive
negative

positive positive

Improved 
PT

z=0

Pnl(k)

Linear
Linear

[�(1)]2P0

1-loop

2-loop

(RegPT)

z=0

• All corrections become
comparable at low-z. 

• Positivity is not guaranteed.

Corrections are positive and 
localized, and shifted to higher-k as 

increasing the order of PT expansion

AT et al. (’09)
AT, Bernardeau, Nishimichi, Codis (in prep.)
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Check with N-body simulations

AT, Bernardeau, Nishimichi, Codis (in prep.)

Power spectrum

Lbox = 2, 048 h�1 Mpc
# of particles：1, 0243

45# of runs：
cosmology：wmap5

Correlation function
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Check with N-body simulations

AT, Bernardeau, Nishimichi, Codis (in prep.)

Standard PT
(2-loop)

RegPT
(2-loop)

Linear

Power spectrum

Lbox = 2, 048 h�1 Mpc
# of particles：1, 0243

45# of runs：
cosmology：wmap5

Correlation function
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Extension: improved PT in redshift space
With the sophisticated modeling, redshift-space distortions are

Still, Galaxy biasing is pain in the neck

Monopole

Quadrupole

 mostly under control in weakly nonlinear regime

P (S)(k, µ) = e�(kµf⇤v)2
�
P��(k)� 2fµ2P�⇥(k) + f2µ4P⇥⇥(k)Damping func.

P (S)(k, µ) = e�(kµf⇤v)2
�
P��(k)� 2fµ2P�⇥(k) + f2µ4P⇥⇥(k)

+A(k, µ) + B(k, µ)
�

� z=1

Nishimichi & AT (’11)

AT et al. (’10)

Reid & White (’11)

see also

Seljak & McDonald (’11)
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Massive halos

z=0.35

Halo bias is calibrated 
from N-body sim.

(� 2.8� 1013 h�1M�)

Reid & White (’11)

see also

Seljak & McDonald (’11)
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Yet another issue
“computational cost”

Even with improved PT,  higher-order corrections (i.e., 2-loop) 
need to be computed for a better prediction, but they require 
a time-consuming calculation

typically, ~hours
multi-dimensional integration (5D in 2-loop)

still impractical for (global) cosmological parameter search

(c.f. 2D in 1-loop)

fn(k) =
�

d3p d3q

(2�)6
Fn(k � p� q,p, q) P0(|k � p� q|) P0(p) P0(q)fn(k) =

�
d3p d3q

(2�)6
Fn(k � p� q,p, q) P0(|k � p� q|) P0(p) P0(q)

independent of cosmology 

initial P(k)P0(k) :

sensitive to cosmology 

ex)
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How to accelerate PT calculations

• Find a ‘sophisticated’ treatment at 1-loop level calculations

• Exploit a clever numerical scheme at 2-loop order

no need for higher-dimensional integration

but need a trick to effectively improve predictions

not necessarily force to improve predictions 
but need to reduce higher-dimensional integrals

General strategies

based on improved PT by means of ‘regularized’ multi-point propagators 
(RegPT),  we present a method to reduce any integrals to 1D integrals

RegPTfast

For the rest of this talk,

Amazingly fast calculation (few sec.) is possible !!

Audren & Lesgourgues ’12
Anselmi & Pietroni ’12
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Accelerated calculation: RegPTfast

Corrections needs to be newly evaluated, but with just 1D integration

General idea

Suppose that linear P(k) in target model is close to the one in the fiducial model:

Given the data set for RegPT calculations in a fiducial cosmology, 

P0,target(k) = P0,fid(k) + �P0(k); �P0(k)� P0,fid(k)

perturbation
use prepared data set

P (k) �� Pun-pert[k, z;P0,fid] + Pcorr[k, z; �P0]

(quickly done with just few sec. !!)
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�

dq q2

2�2
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�
dq q2
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Kn(q, k) �P0,fid(q)=perturbation
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Demonstration

�m = 0.234 �m = 0.279

�b/�m = 0.175 �b/�m = 0.165
�8 = 0.76 �8 = 0.817

�� = 0.766 �� = 0.721

Fiducial (wmap3) Target (wmap5)

Fiducial
wmap3 cosmological model

Target (N-body)
wmap5 cosmological model 

P (k) �� Pun-pert[k, z;P0,fid] + Pcorr[k, z; �P0]

P (k) �� Pun-pert[k, z;P0,fid] + Pcorr[k, z; �P0]

AT, Bernardeau, Nishimichi, Codis (in prep.)
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Re-scaling the power spectrum

P (k) �� Pun-pert[k, z;P0,fid] + Pcorr[k, z; �P0]P (k) �� Pun-pert[k, z;P0,fid] + Pcorr[k, z; �P0]

Since we know how the resultant PT predictions are re-scaled, 
we can easily get a re-scaled power spectrum w/o extra effort.

(the assumption is not always necessary)|(P0,target � P0,fid)/P0,fid|� 1
enlarge the applicability of the present method

Then, to what extent the RegPTfast treatment is valid and accurate ?

• convergence btw. RegPTfast and rigorous RegPT calculations

• validity range of RegPT(fast) predictions

Re-scaling the amplitude in fiducial model (P0,fid � � P0,fid)

� P0(k) = P0,target(k)� � P0,fid(k)
can be small so that the perturbative analysis works well.

,
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Convergence of RegPTfast

0.120 < �mh2 < 0.155

�1.30 < w < �0.70
0.616 < �8 < 0.9

0.85 < ns < 1.05
0.0215 < �bh2 < 0.0235

With only 3 fiducial models, one can cover 
a wide range of cosmological models.

Cosmological parameters 
in wCDM model

wmap3
M001
M023wmap3

 Fiducial models used 
for RegPTfast

Linear power spectrum

(38 models) Ratio of RegPTfast to 
(rigorous) RegPT results

AT, Bernardeau, Nishimichi, Codis (in prep.)
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Accuracy of RegPT
Testing accuracy of RegPTfast in 38 cosmological models

Cosmic emulator

gives interpolated result of 
power spectrum from N-body 

simulations for 38 models

Lawrence et al. (’10)

z=1

(restricted to z<1 & k<1 h/Mpc)

Both results agree with each 
other with 1% level at k<k_crit:

: RegPTfast

: Cosmic Emulator

(k � 0.2� 0.3 h Mpc�1 @ z = 1)

AT, Bernardeau, Nishimichi, Codis (in prep.)

0.7
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Summary
PT approach to precision power spectrum calculation for 

LSS now moves on to the 2nd stage (practical phase)

proposed accelerated calculation method  is very powerful

RegPTpublicly available code:

major release will be soon

• fast,  exact-modes

Though applicability is restricted to weakly non-linear regime,

are now mostly under control.

In addition,

• redshift-space distortions

• not only P(k) , but also ξ(r)

• gravitational clustering

few sec. on (my) laptop, no parallelization required
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