18th-20th June, 2012 17th Rencontres Itzykson @ IPhT

Precision Power Spectrum Calculations for Large-scale Structure Observations

Atsushi Taruya

RESearch Center for the Early Universe (RESCEU), Univ.Tokyo

In collaboration with Francis Bernardeau, Takahiro Nishimichi, Codis Sandrine

Plan of this talk

Perturbation theory of large-scale structure from practical point-of-view

Recent progress on perturbation theory

Accelerated power spectrum calculation

Large-scale structure (LSS)

Fundamental observable: galaxy clustering patterns (and weak lensing)

Statistical nature of LSS contains valuable cosmological info. Power spectrum P(k), or correlation function $\xi(r)$

Shape &

Historical record of the primordial Universe amplitude (Initial condition & late-time evolution)

Further, additional observational effects give much more benefit: Alcock-Paczynski effect......cosmic expansionRedshift distortion effect......growth of structure With BAOs as standard ruler, measurements of these are now top priority in future surveys

Confronting theory with obs.

High-precision theoretical template of P(k) & $\xi(r)$

Taking account of nonlinear systematics:

- gravity clustering
- Redshift distortions
- galaxy biasing

Small, but non-negligible at ~1% precision

In weakly nonlinear regime, Perturbation theory approach is viable (though role of N-body is still crucial)

is observationally demanding

Perturbation theory approach

Large-scale structure formation based on gravitational instability

Juszkiewicz ('81), Vishniac ('83), Goroff et al. ('86), Suto & Sasaki ('91), Jain & Bertschinger ('94), ...

Cold dark matter + baryons = pressureless & irrotational fluid

Basic eqs.
(GR w/o V)

$$\frac{\partial \delta}{\partial t} + \frac{1}{a} \vec{\nabla} \cdot [(1+\delta)\vec{v}] = 0$$

$$\frac{\partial \vec{v}}{\partial t} + \frac{\dot{a}}{a} \vec{v} + \frac{1}{a} (\vec{v} \cdot \vec{\nabla}) \vec{v} = -\frac{1}{a} \vec{\nabla} \Phi$$

$$\frac{1}{a^2} \nabla^2 \Phi = 4\pi G \overline{\rho}_m \delta$$
standard PT

$$|\delta| \ll 1$$

$$\delta = \delta^{(1)} + \delta^{(2)} + \delta^{(3)} + \cdots \qquad \langle \delta(\mathbf{k}; t) \delta(\mathbf{k}'; t) \rangle = (2\pi)^3 \delta_D(\mathbf{k} + \mathbf{k}') P(|\mathbf{k}|; t)$$

Perturbation theory approach

Large-scale structure formation based on gravitational instability

Juszkiewicz ('81), Vishniac ('83), Goroff et al. ('86), Suto & Sasaki ('91), Jain & Bertschinger ('94), ...

Cold dark matter + baryons = pressureless & irrotational fluid

$$\begin{array}{l} \text{Modern description} \\ \text{Doublet} \quad \Psi_{a}(\boldsymbol{k};\eta) = \begin{pmatrix} \delta_{\mathrm{m}}(\boldsymbol{k};\eta) \\ \theta(\boldsymbol{k};\eta)/f(\eta) \end{pmatrix} \quad \text{Linear growth factor} \\ \hline \theta(\boldsymbol{k};\eta)/f(\eta) \end{pmatrix} \quad \mu_{ab}(\eta) \Psi_{b}(\boldsymbol{k};\eta) \\ \eta \equiv \ln D_{+}(t) \quad f = \frac{d \ln D_{+}}{d \ln a} \\ = \int \frac{d^{3}\boldsymbol{k}_{1}d^{3}\boldsymbol{k}_{2}}{(2\pi)^{3}} \delta_{\mathrm{D}}(\boldsymbol{k} - \boldsymbol{k}_{1} - \boldsymbol{k}_{2}) \gamma_{abc}(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}) \Psi_{b}(\boldsymbol{k}_{1};\eta) \Psi_{c}(\boldsymbol{k}_{2};\eta) \\ \end{array}$$

$$\begin{array}{l} \text{standard PT} \\ |\delta| \ll 1 \\ \delta = \delta^{(1)} + \delta^{(2)} + \delta^{(3)} + \cdots \quad \langle \delta(\boldsymbol{k};t)\delta(\boldsymbol{k}';t) \rangle = (2\pi)^{3} \delta_{\mathrm{D}}(\boldsymbol{k} + \boldsymbol{k}') P(|\boldsymbol{k}|;t) \\ \end{array}$$

Perturbation theory : revolution

Standard PT turns out to have a poor convergence

Good convergence of improved PT is ensured by re-organizing standard PT expansion by means of non-perturbative quantities

Perturbation theory : revolution

Standard PT turns out to have a poor convergence

Good convergence of improved PT is ensured by re-organizing standard PT expansion by means of non-perturbative quantities

Standard PT vs. improved PT

Standard PT

 $P^{(mn)} \simeq \langle \delta^{(m)} \delta^{(n)} \rangle$

$$P(k) = P^{(11)}(k) + \left(P^{(22)}(k) + P^{(13)}(k)\right) + \left(P^{(33)}(k) + P^{(24)}(k) + P^{(15)}(k)\right) + \cdots$$

I-loop

Linear (tree)

2-loop

RPT

Standard PT vs. improved PT

Standard PT

P(k)

 $\underline{P^{(mn)}} \simeq \langle \delta^{(m)} \delta^{(n)} \rangle$

$$P(k) = P^{(11)}(k) + \left(P^{(22)}(k) + P^{(13)}(k)\right) + \left(P^{(33)}(k) + P^{(24)}(k) + P^{(15)}(k)\right) + \cdots$$

 \otimes

Linear (tree) I-loop

2-loop

RegPT (Γ -expansion)

see Francis' talk in detail

initial P(k)

multi-point propagator

Convergence of PT expansion

AT, Bernardeau, Nishimichi, Codis (in prep.) AT et al. ('09)

All corrections become comparable at low-z.
Positivity is not guaranteed.

Corrections are positive and localized, and shifted to higher-k as increasing the order of PT expansion

Extension: improved PT in redshift space

With the sophisticated modeling, redshift-space distortions are mostly under control in weakly nonlinear regime

$$P^{(S)}(k,\mu) = \underline{e^{-(k\mu f \sigma_v)^2}} \text{ Damping func.}$$
$$\times \left[P_{\delta\delta}(k) - 2f\mu^2 P_{\delta\theta}(k) + f^2\mu^4 P_{\theta\theta}(k) + A(k,\mu) + B(k,\mu) \right]$$

AT et al. ('10) Nishimichi & AT ('11) see also Reid & White ('11)

Seljak & McDonald ('11)

Still, Galaxy biasing is pain in the neck

Extension: improved PT in redshift space

With the sophisticated modeling, redshift-space distortions are mostly under control in weakly nonlinear regime

$$P^{(S)}(k,\mu) = e^{-(k\mu f \sigma_v)^2} \text{ Damping func.}$$
$$\times \left[P_{\delta\delta}(k) - 2f\mu^2 P_{\delta\theta}(k) + f^2\mu^4 P_{\theta\theta}(k) + A(k,\mu) + B(k,\mu) \right]$$

AT et al. ('10) Nishimichi & AT ('11) see also Reid & White ('11) Seljak & McDonald ('11)

Yet another issue

"computational cost"

Even with improved PT, higher-order corrections (i.e., 2-loop) need to be computed for a better prediction, but they require a <u>time-consuming calculation</u>

multi-dimensional integration (5D in 2-loop) typically, ~hours (c.f. 2D in 1-loop)

 $P_0(k)$: initial P(k)

ex) $\int \frac{d^3 p \, d^3 q}{(2\pi)^6} F_n(k - p - q, p, q) P_0(|k - p - q|) P_0(p) P_0(q)$

independent of cosmology sensitive to cosmology

·····still impractical for (global) cosmological parameter search

How to accelerate PT calculations

<u>General strategies</u>

• Find a 'sophisticated' treatment at I-loop level calculations

no need for higher-dimensional integration Audren & Lesgourgues '12 but need a trick to effectively improve predictions

• Exploit a clever numerical scheme at 2-loop order

not necessarily force to improve predictions but need to reduce higher-dimensional integrals

For the rest of this talk,

based on improved PT by means of 'regularized' multi-point propagators (RegPT), we present a method to <u>reduce any integrals to ID integrals</u>

Amazingly fast calculation (few sec.) is possible !! RegPTfas

Accelerated calculation: RegPTfast

Given the data set for RegPT calculations in a fiducial cosmology,

General idea

Suppose that linear P(k) in target model is close to the one in the fiducial model:

 $P_{0,\text{target}}(k) = P_{0,\text{fid}}(k) + \delta P_0(k); \quad \delta P_0(k) \ll P_{0,\text{fid}}(k)$

use prepared data set

Corrections needs to be newly evaluated, but with just <u>ID integration</u> (quickly done with just few sec. !!)

Accelerated calculation: RegPT fast Given the data set for RegPT calculations in a fiducial cosmology, General idea Suppose that linear P(k) in target model is close to the one in the fiducial model: $P_{0,\text{target}}(k) = P_{0,\text{fid}}(k) + \delta P_0(k); \quad \delta P_0(k) \ll P_{0,\text{fid}}(k)$ $P(k) \longrightarrow P_{\text{un-pert}}[k, z; P_{0, \text{fid}}] + P_{\text{corr}}[k, z; \delta P_0]$ perturbation use prepared data set Corrections needs to be newly evaluated, but with just <u>ID integration</u> (quickly done with just few sec. !!) $\mathsf{ex}) \quad \int \frac{d^3 \boldsymbol{p} \, d^3 \boldsymbol{q}}{(2\pi)^6} \frac{F_n(\boldsymbol{k} - \boldsymbol{p} - \boldsymbol{q}, \boldsymbol{p}, \boldsymbol{q})}{\mathsf{symmetric kernel}} P_0(|\boldsymbol{k} - \boldsymbol{p} - \boldsymbol{q}|) P_0(\boldsymbol{p}) P_0(\boldsymbol{q})$ symmetric kernel perturbation $3\int \frac{d^{3}p \, d^{3}q}{(2\pi)^{6}} F_{n}(\boldsymbol{k}-\boldsymbol{p}-\boldsymbol{q},\boldsymbol{p},\boldsymbol{q}) P_{0,\mathrm{fid}}(|\boldsymbol{k}-\boldsymbol{p}-\boldsymbol{q}|) P_{0,\mathrm{fid}}(p) \, \delta P_{0}(q)$

Accelerated calculation: RegPT fast Given the data set for RegPT calculations in a fiducial cosmology, General idea Suppose that linear P(k) in target model is close to the one in the fiducial model: $P_{0,\text{target}}(k) = P_{0,\text{fid}}(k) + \delta P_0(k); \quad \delta P_0(k) \ll P_{0,\text{fid}}(k)$ $P(k) \longrightarrow P_{\text{un-pert}}[k, z; P_{0, \text{fid}}] + P_{\text{corr}}[k, z; \delta P_0]$ perturbation use prepared data set Corrections needs to be newly evaluated, but with just <u>ID integration</u> (quickly done with just few sec. !!) ex) $\int \frac{d^3 p \, d^3 q}{(2\pi)^6} \frac{F_n(\boldsymbol{k} - \boldsymbol{p} - \boldsymbol{q}, \boldsymbol{p}, \boldsymbol{q})}{\text{symmetric kernel}} P_0(|\boldsymbol{k} - \boldsymbol{p} - \boldsymbol{q}|) P_0(p) P_0(q)$ perturbation $\int \frac{dq q^2}{2\pi^2} K_n(q,k) \delta P_0(q)$ $3\int \frac{d^2 {m \Omega}_q \ d^3 {m p}}{(2-)^6} F_n({m k}-{m p}-{m q},{m p},{m q}) P_{0,{ m fid}}(|{m k}-{m p}-{m q}|) P_{0,{ m fid}}(p)$

Demonstration

AT, Bernardeau, Nishimichi, Codis (in prep.)

Target (N-body) wmap5 cosmological model Fiducial

wmap3 cosmological model

Fiducial (wmap3)	Target (wmap5)
$\Omega_{\rm m} = 0.234$	$\Omega_{\rm m} = 0.279$
$\Omega_{\Lambda} = 0.766$	$\Omega_{\Lambda} = 0.721$
$\Omega_{ m b}/\Omega_{ m m}=0.175$	$\Omega_{ m b}/\Omega_{ m m}=0.165$
$\sigma_8 = 0.76$	$\sigma_8 = 0.817$

Demonstration

AT, Bernardeau, Nishimichi, Codis (in prep.)

Re-scaling the power spectrum

Re-scaling the amplitude in fiducial model $(P_{0, \text{fid}} \rightarrow \alpha P_{0, \text{fid}})$,

 $\delta P_0(k) = P_{0,\text{target}}(k) - \alpha P_{0,\text{fid}}(k)$

can be small so that the perturbative analysis works well.

enlarge the applicability of the present method (the assumption $|(P_{0,\text{target}} - P_{0,\text{fid}})/P_{0,\text{fid}}| \ll 1$ is not always necessary)

 $P_{\text{un-pert}}[k, z; P_{0, \text{fid}}] = P_{\text{corr}}[k, z; \delta P_0]$

Since we know how the resultant <u>PT predictions</u> are re-scaled, we can easily get a re-scaled power spectrum <u>w/o extra effort</u>.

Then, to what extent the RegPTfast treatment is valid and accurate ?
convergence btw. RegPTfast and rigorous RegPT calculations
validity range of RegPT(fast) predictions

Accuracy of RegPT

AT, Bernardeau, Nishimichi, Codis (in prep.)

Testing accuracy of RegPTfast in 38 cosmological models

Accuracy of RegPT

AT, Bernardeau, Nishimichi, Codis (in prep.)

Testing accuracy of RegPTfast in 38 cosmological models

Summary

PT approach to precision power spectrum calculation for LSS now moves on to the 2nd stage (practical phase)

Though applicability is restricted to weakly non-linear regime,

- gravitational clustering
- redshift-space distortions

are now mostly under control.

In addition,

proposed accelerated calculation method is very powerful few sec. on (my) laptop, no parallelization required

publicly available code: Regr

• fast, exact-modes

• not only P(k), but also $\xi(r)$ major release will be soon