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The key principle tacitly assumed: 

Lorentz invariance
checked with high accuracy for visible matter

What if it is broken in the dark sector ?

Is this breaking useful for anything ?

Can we observationally probe the validity of LI in the 
dark sector ? 



Plan

• Phenomenological description of LV in gravity

• A simple (and technically natural) model of 
dark energy with LV: cosmological signatures

• Deviation from LI in dark matter: cosmological 
signatures



Theoretical motivations for violation of LI

• May be a consequence of quantum gravity (emergent 
geometry, Horava-Lifshitz gravity, ...)

• Infrared modifications (e.g. massive gravity, ghost 
condensation, ...)

Important: violation of LI requires presence of new light 
degrees of freedom 

LV propagates to all scales



Einstein-aether

There is a preferred frame at each point of the space-time set 
by a dynamical unit vector      - aether

Jacobson, Mattingly, 2000 

uµ

S = −M2
P

2

∫
d4x
√
−g

[
R + Kµν

σρ∇µuσ∇νuρ + l(uµuµ − 1)
]

Kµν
σρ ≡ c1g

µνgσρ + c2δ
µ
σδν

ρ + c3δ
µ
ρ δν

σ + c4u
µuνgσρ

Lagrange multiplier:
enforces unit norm



Variation: khrono-metric model
Blas, Pujolas, S.S., 2010 

uµ = ∂µσ√
(∂σ)2

Aether restricted to be hypersurface-orthogonal:

Scalar          - khronon - defines preferred foliation of the 
space-time                

preferred time

σ(x)
σ

NB. Can be embedded into Horava-Lifshitz gravity (candidate 
for quantum gravity)

Number of couplings reduced:

                         ,                          ,α = c1 + c4 β = c1 + c3 λ′ = c2



Constraints from the visible sector

• LI of the Standard Model

no direct coupling of aether to visible matter,
interaction only through gravity
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observations: |αPPN
1 | ! 10−4 , |αPPN

2 | ! 10−7



• no cancellations               

•           vanishes when          ,               

• both vanish if

αPPN
2 β = 0 λ′ = α

α , β , λ′ ! 10−7 ÷ 10−6

αPPN
1 = −4(α− 2β)

αPPN
2 =

(α− 2β)(α− λ′ − 3β)
2(λ′ + β)

α = 2β

α, β, λ′ ! 10−4

α , β , λ′ ! 0.01

from gravitational wave emission and BBN



LV DARK ENERGY



Consider a scalar     with shift symmetry
(e.g. Goldstone boson of a broken global symmetry )

In general it will have dim 2 coupling to the aether:

CDMΘ
Θ Θ !→ Θ + const

LΘ =
(∂νΘ)2

2
+ µ2uν∂νΘ

stable under radiative corrections: 
breaks                  
Small    is technically natural !

Θ !→ −Θ

Has high UV cutoff                            
(and can be UV completed by Horava gravity) 

Mα ≡MPl
√

α

µ



Homogeneous cosmology

d

dt

(
a3Θ̇ + µ2a3

)
= 0

H2 =
8πGcosm

3

(
Θ̇2

2
+ ρmat

)

Θ̇ = −µ2 +
C

a3

ρΘ → µ4/2
w = −1

ds2 = dt2 − a2(t)dx2 Θ = Θ(t), σ = t ,



Homogeneous cosmology

d

dt

(
a3Θ̇ + µ2a3

)
= 0

H2 =
8πGcosm

3

(
Θ̇2

2
+ ρmat

)

Θ̇ = −µ2 +
C

a3

ρΘ → µ4/2

NB. If and only if                there is Minkowski solution 
with           .  But it is unstable    

ρmat = 0
Θ̇ = 0

Minkowski

de Sitter

w = −1

ds2 = dt2 − a2(t)dx2 Θ = Θ(t), σ = t ,



• For short waves: two decoupled relativistic excitations

• Minkowski background is unstable at long distances

• de Sitter solution is stable at all scales; 
at             there is a slow mode

Perturbations of            systemσ −Θ

kc ≡ µ2/Mα ∼ H0/
√

α

L >
2π

kc

clustering DE: expect enhancement of 
structure formation at large scales

ω ∝ k

k < kc

ω ∝ k2/kc



Cosmological perturbations in    CDM vs   CDMΘ Λ

• Solve linear equations numerically with 
                                 ,                   ,  

(assuming Lorentz-invariant dark matter) 

ds2 = a2(t)[(1 + 2φ)dt2 − (1− 2ψ)δijdxidxj ]

Ωγ = 5 · 10−5 Ωcm = 0.25 ΩDE = 0.75

∆φ(k) =
Pφ(k)

PφΛCDM (k)
− 1

∆δ(k) =
Pδ(k)

PδΛCDM (k)
− 1

δ ≡ δρcm

ρcm
• Find    ,     ,φ ψ

• Plot 



Peaks             at                           + logarithmic tails k1/2 =
√

kcH0∼
√

α
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Cosmological perturbations in    CDM vs   CDMΘ Λ
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Newton potential: Matter density contrast:



Anisotropic stress in    CDMΘ
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Cosmic Microwave Background

ΛCDM
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LV DARK MATTER



Dark matter is non-relativistic. Impossible to probe whether 
it is Lorentz invariant or not ? 



Dark matter is non-relativistic. Impossible to probe whether 
it is Lorentz invariant or not ? 

Yes, it is possible !



Dark matter is non-relativistic. Impossible to probe whether 
it is Lorentz invariant or not ? 

Yes, it is possible !

Violation of LI           direct coupling to the aether

additional attraction between DM particles 

violation of the equivalence principle

enhanced growth of structures 



Generalized point particle action

Spp = −m

∫
ds =⇒

dxµ

ds

−m

∫
ds f(uµvµ)



Generalized point particle action

Spp = −m

∫
ds =⇒

dxµ

dsNewtonian limit:     ,      -- small,          g00 = 1 + 2φvi ui

DM density

S =
∫

d4x
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M2

P φ∆φ +
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P c1

2
ui∆ui

]
+

∫
d4x ρ

[
(vi)2

2
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]

−m

∫
ds f(uµvµ)

f ′(1)



Generalized point particle action

Spp = −m

∫
ds =⇒

dxµ

dsNewtonian limit:     ,      -- small,          g00 = 1 + 2φvi ui

DM density

• modified the inertial mass = violation of the 
equivalence principle
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Generalized point particle action

Spp = −m

∫
ds =⇒

dxµ

dsNewtonian limit:     ,      -- small,          g00 = 1 + 2φvi ui

DM density

• modified the inertial mass = violation of the 
equivalence principle

• effective potential for aether in matter

S =
∫

d4x

[
M2

P φ∆φ +
M2

P c1

2
ui∆ui

]
+

∫
d4x ρ

[
(vi)2

2
− φ− Y

(ui − vi)2

2

]

m2
eff ∼

Y ρ

M2
P c1

−m

∫
ds f(uµvµ)

f ′(1)



F

F

Accelerated Jeans instability

δ ∝ τγ,

density 
contrast

L <

(
M2

P c1

Y ρ

)1/2

F =
FN

(1− Y )

γ =
1
6

[
− 1 +

√
25− Y

1− Y

]



F
F

F = FN

v1

v2

u

u

screening of the additional force 
     chameleon-type mechanism ≈

Standard Jeans instability 

NB. Standard homogeneous cosmology

δ ∝ τ2/3

L >

(
M2

P c1

Y ρ

)1/2
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+
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Qualitative power spectrum

k2 = k1

√
1 + Zeq, ,k1 = H0

√
3Y Ωdm
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κ =

√
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− 5
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Power spectra in ΛCDM model

Power spectra in the proposed model
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Numerical power spectrum

Ωγ = 5 · 10−5

Ωcm = 0.25

Ωdm = 0.2

ΩΛ = 0.75
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Figure 3: The ratio of density contrasts in the proposed model and ΛCDM versus time for

several values of the mode momentum k. The values of parameters are the same as for Fig. 2.
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Figure 4: The power spectra for the gravitational potential(multiplied by k4, upper panel)

and the matter density contrast (lower panel) in the LVDM and ΛCDM cosmologies. The

curves correspond to the values of the model parameters listed in Table 6.Fig:5

the horizon. Note that the overall amplitude 10−2 for long wavelength modes agrees with

the estimates (φ− ψ) ∼ α = 0.02.

One expects that the enhancement in the gravitational perturbations will lead to the

increase of structure growth rate. To illustrate this point we plot in Fig. 3 the ratio δ/δΛCDM ,

where δ and δΛCDM are the cold matter density contrasts in the case of the present model

and ΛCDM respectively. As expected we observe the increase in the growth of structure at

recent times. The relative effect is stronger for shorter modes and can be large for our choice

of parameters.

The next plots show the power spectra of perturbations in the proposed model and ΛCDM

cosmologies evaluated at the present moment of time. Fig. 4 shows the power spectra for the

gravitational potential φ, multiplied by k4 for presentational purposes and the cold matter

density contrast δ. These plots were computed for several values of the model parameters

that are listed in Table 6. We also present the corresponding values of the momenta kY .

Note that, as expected from the results of the previous section, the power spectra is enhanced

for large momenta and its peak is shifted in the short-wavelength area. The value of shift

depends mostly on the parameters Y1, Y2 if kmax > k1 (see 121) and approximately may be

described by the formula 123.

Next, we plot in Fig. 5 the spectrum of the relative difference (φ−ψ)/φ between the two

31
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increase of structure growth rate. To illustrate this point we plot in Fig. 3 the ratio δ/δΛCDM ,

where δ and δΛCDM are the cold matter density contrasts in the case of the present model

and ΛCDM respectively. As expected we observe the increase in the growth of structure at

recent times. The relative effect is stronger for shorter modes and can be large for our choice

of parameters.

The next plots show the power spectra of perturbations in the proposed model and ΛCDM

cosmologies evaluated at the present moment of time. Fig. 4 shows the power spectra for the

gravitational potential φ, multiplied by k4 for presentational purposes and the cold matter

density contrast δ. These plots were computed for several values of the model parameters

that are listed in Table 6. We also present the corresponding values of the momenta kY .

Note that, as expected from the results of the previous section, the power spectra is enhanced

for large momenta and its peak is shifted in the short-wavelength area. The value of shift

depends mostly on the parameters Y1, Y2 if kmax > k1 (see 121) and approximately may be

described by the formula 123.

Next, we plot in Fig. 5 the spectrum of the relative difference (φ−ψ)/φ between the two
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Rough constraint on LV in dark matter:

Y < 10−2



Summary
Breaking of LI + scalar with shift symmetry = technically 
natural dark energy (  CDM) with high cutoff

Predictions of    CDM:              , growth of structure is 
enhanced and effective anisotropic stress appears at scales 
of a few hundred Mpc

Deviation from LI in dark matter accelerates growth of 
structures at short to intermediate lengths 

Bounds on Lorentz violation in DM at the level          or 
better

Cosmological perturbations provide a sensitive probe of 
LV in the dark sector 

Θ

Θ w = −1

10−2


