Falsifying

Dark Energy Paradigms

Wayne Hu Saclay, June 2012

Outline

- Falsifiable Predictions of
 - ACDM
 - Smooth Dark Energy
- Confrontation with
 - Clusters of Galaxies
 - Cosmic Shear

Collaborators

Tim Eifler
Dragan Huterer
Michael Mortonson
Ali Vanderveld

Falsifying ACDM

Geometric measures of distance redshift from SN, CMB, BAO

Standard Ruler
Sound Horizon
v CMB, BAO angular
and redshift separation

Fixed Deceleration Epoch

- CMB gives matter density assuming standard radiation content
- WMAP7: $\Omega_m h^2 = 0.133 \pm 0.006 \rightarrow 4.5\%$
- Distance to recombination D_* determined to $\frac{1}{4}4.5\% \approx 1\%$
- Expansion rate during any redshift in the deceleration epoch determined to $\frac{1}{2}4.5\%$
- Distance to any redshift in the deceleration epoch determined as

$$D(z) = D_* - \int_z^{z_*} \frac{dz}{H(z)}$$

- Volumes determined by a combination $dV = D_A^2 d\Omega dz/H(z)$
- Structure also determined by growth of fluctuations from z_*
- $\Omega_m h^2$ can be determined to $\sim 1\%$ from Planck.

Flat ACDM

- CMB predicts expansion history and distance redshift relation at all redshifts to few percent precision
- Any violation falsifies flat ΛCDM (violation of flatness falsifies standard inflation)

$H_0 = \text{Dark Energy}$

- Flat constant w dark energy model
- Determination of Hubble constant gives w to comparable precision

- For evolving w, equal precision on average or pivot w, equally useful for testing a cosmological constant
- If $w \ge -1$, then Hubble constant can only decrease

Forecasts for CMB+ H_0

• To complement CMB observations with $\Omega_{\rm m}h^2$ to 1%, an H_0 of ~1% enables constant w measurement to ~2% in a flat universe

Falsifying ACDM

• A slows growth of structure in highly predictive way

Cosmological Constant

Beyond ACDM

Smooth Dark Energy

- Scalar field dark energy has $\delta p = \delta \rho$ (in constant field gauge) relativistic sound speed, no anisotropic stress
- Jeans stability implies that its energy density is spatially smooth compared with the matter below the sound horizon

$$ds^2 = -(1+2\Psi)dt^2 + a^2(1+2\Phi)dx^2$$

 $\nabla^2\Phi \propto \text{matter density fluctuation}$

• Anisotropic stress changes the amount of space curvature per unit dynamical mass: negligible for both matter and smooth dark energy

$$\nabla^2(\Phi + \Psi) \propto \text{anisotropic stress approx } 0$$

in contrast to modified gravity or force-law models

Falsifiability of Smooth Dark Energy

- With the smoothness assumption, dark energy only affects gravitational growth of structure through changing the expansion rate
- Hence geometric measurements of the expansion rate predict the growth of structure
 - Hubble Constant
 - Supernovae
 - Baryon Acoustic Oscillations
- Growth of structure measurements can therefore falsify the whole smooth dark energy paradigm
 - Cluster Abundance
 - Weak Lensing
 - Velocity Field (Redshift Space Distortion)

Why PCs

- Principal components are the eigenbasis of the projected or actual covariance matrix for a discrete representation of $f(x_i)$
- Rank ordered in observability and decorrelated linear combination
 Advantages:
 - Define according to Fisher projected covariance matrix no a posteriori bias in looking for features
 - Efficient can keep only observable modes and never requires
 MCMC over large correlated discrete space
 - Complete can include as many modes as required to make basis observationally complete
 - Paradigm testing rapidly explore all possible observational outcome of a given paradigm
 - Falsifiable predictions for other observables not yet measured

Equation of State PCs

• 10 PCs defined for StageIV (SNAP+Planck) define an observationally complete basis out to *z*=1.7

Falsifying Quintessence

Dark energy slows growth of structure in highly predictive way

- Deviation significantly > 2% rules out Λ with or without curvature
- Excess >2% rules out quintessence with or without curvature and early dark energy [as does >2% excess in H_0]

Dynamical Tests of Acceleration

Dark energy slows growth of structure in highly predictive way

Elephantine Predictions

- Geometric constraints on the cosmological parameters of ΛCDM
- Convert to distributions for the predicted average number of clusters above a given mass and redshift

ACDM Falsified?

- 95% of Λ CDM parameter space predicts less than 1 cluster in 95% of samples of the survey area above the M(z) curve
- No currently known high mass, high redshift cluster violates this bound

ACDM Falsified?

- 95% of Λ CDM parameter space predicts less than 1 cluster in 95% of samples of the survey area above the M(z) curve
- Convenient fitting formulae for future elephants: http://background.uchicago.edu/abundance

Number Bias

- For $>M_{\rm obs}$, scatter and steep mass function gives excess over >M
- Equate the number $> M_{\rm obs}$ to $> M_{\rm eff}$
- Not the same as best estimate of true mass given model!

Number Bias

- For $>M_{\rm obs}$, scatter and steep mass function gives excess over >M
- Equate the number $> M_{\rm obs}$ to $> M_{\rm eff}$
- Not the same as best estimate of true mass given model!

Pink Elephant Parade

• SPT catalogue on 2500 sq degrees

Cosmic Shear Tests

• Convergence power spectrum of CFHLT-like survey; currently consistent with Λ CDM

Cosmic Shear Tests

- Systematics from baryonic feedback (e.g. AGN, cooling, star formation in clusters) comparable to statistical errors
- Calibration must be improved
- Residual uncertainties characterized by variations in Halofit parameters

Summary

- Flat ΛCDM is highly predictive and falsifiable
- Distance-redshift relation at all redshifts, including z=0 and H_0 fixed at the few percent level largely from CMB
- Smooth dark energy predicts growth given distance-redshift
- Even including arbitrary w(z) and uncertainties of current distance constraints, smooth dark energy make sharp predictions
- Λ CDM places firm upper bound on growth of structure for all quintessence models (smooth dark energy with $w \geq -1$)
- Observations of excess clusters or cosmic shear that falisfy ΛCDM also falsifies quintessence