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“... and a lot of Astrophysics is 
messy.” Mark Wyman

• Evading Solar System Bounds : Screening 
Mechanisms

• “Real” Astrophysical Probes : spectra/structure 
of galaxies, stars, HI regions.

• Stellar structure and modified Gravity

• Simulating stellar evolution in the presence of 
modified gravity
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New Exotic Matter or New Gravity?

General Relativity is very strongly constrained on solar 
system scales. 
Large Scales (GR Broken?)

CMB, 
Large Scale Structure,
Supernova Type Ia

Solar System Scales (GR OK)

Mercury Precession,
Torsion Tests, lensing by sun,
Spacecraft trajectories
lunar ranging etc.

vs

Our Ingredients : gravity + 1 scalar d.o.f.
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“Screening” Mechanisms
Loophole : change gravity at large scales, but keep 
gravity “the same” at small scales

Screening : suppress the effects of the extra scalar 
degree of freedom ‘locally’, while allowing it to change 
GR globally.

Hubble expansion (not GR)

Solar/Galaxy scales(?) (“GR”)
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“Screening” Mechanisms

Three known mechanisms :

Chameleons

Symmetrons

Vainshstein Mechanism

Relies on changing gravity as 
a function of local ambient potential

Khoury + Weltman (2004)

Pietroni (2004), Hinterbichler + Khoury (2010)

Vainshstein (1972)

operate via non-trivial
scalar self-couplings (e.g. massive gravity)

Our Ingredients : gravity + 1 scalar d.o.f.

f(R)e.g.
Brax et al (2010)

Any viable theory of modified gravity must have some 
form of screening mechanism
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Screened and Unscreened ObjectsMotivation Screening Mechanisms Stellar Structure Galaxies Summary and Outlook

The Screening Mechanism (4)

How is this achieved?

The effective potential has a minimum whose position is

density dependent.

If the perturbing body is large then the field inside the object

will be able to minimise the potential and so will be locked in

at a constant value throughout the majority of the

perturbation.

There is no fifth force except in a very thin shell near the

surface and the body is said to be screened.

Φ�r�

Motivation Screening Mechanisms Stellar Structure Galaxies Summary and Outlook

The Screening Mechanism (5)

If the perturbation is small then the potential will not be
minimised and the field will vary throughout the entire body.

In this case the body feels the fifth force and is said to be
unscreened.

Φ�r�

Big Perturbation from ambient 
density

“Thin Shell Screening”

Fφ ∝ ∇φ = 0

ρbρb

Minimum φb

Minimum φin

5th force is proportional to gradient of 

β(φ) =
d lnA(φ)

dφ
Fφ ∝

√
Gβ(φ)�∇φ

φ

Homogenous ambient     = no gradients = no 5th forceρb

Perturbation around ambient generates gradients

Small Perturbation from ambient 
density

“Fully Unscreened”
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Motivation Screening Mechanisms Stellar Structure Galaxies Summary and Outlook

Partially Screened Stars (1)

In practice, stars will be partially screened i.e. there is a screening
radius rs that separates the screened interior from the unscreened
exterior of the star.

r�R

r� rs

Φ�r�

ρb

Partially Screened Objects

Screening Radius

�∇2φ ≈
�

β0ρ(r)/Mpl rs < r � m−1
0

0 r < rs

→ fφ ≈ 2β0fN

Friday, June 29, 2012



Parameterizing Modified Gravity

αb ≡ 2β2
b

Two Parameters :

βb =
d lnA(φb)

dφ

Example: f(R) theories , αb = 1/3

Current constraints : χb < 10−4

Halo Cluster, Schmidt (2009)
χb < 10−6

Solar System (?)

χb , αb

χb ≡
φb

2Mpβb
> Newtonian Potential ΦN

Screening? If unscreened, how strong?

Is it unscreened? If it is, how strong is the fifth force?
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Who screens What?
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FIG. 4: A schematic illustration of observational tests. Φself

and Φenv represent the gravitational potentials of an object
and its environment. They can be thought of as ∼ (v/c)2,
where v is the internal velocity. The value ϕ∗/(2α) delineates
screening or lack thereof—objects/environments with a po-
tential deeper than ϕ∗/(2α) are screened (shaded), and those
with a shallower potential are unscreened (unshaded). Cur-
rent constraints tell us ϕ∗/(2α) has to be less than ∼ 10−6.
There are many comparison tests one can make. For instance,
an unscreened diffuse gas cloud residing in a dwarf galaxy
(A), versus a screened star residing in the same galaxy (B)—
A falls faster than B. This situation can be replicated on a
larger scale e.g. a dwarf galaxy in the fields/voids (A) ver-
sus a massive galaxy in the same fields/voids (B). Another
example: a dwarf galaxy out in the fields/voids (A), versus a
dwarf galaxy residing in a group or cluster (D)—D is blanket
screened by its environment and would exhibit no equivalence
principle violations in its internal motions of gas clouds and
stars, while A would have observable violations. On the other
hand, a massive galaxy would have no such (internal) equiva-
lence principle violations whether it be in the fields/voids (B)
or in a group/cluster (C).

Yukawa suppression that plagues the bulk motion tests
of some f(R) models i.e. the scalar Compton wavelength
probably exceeds the size of a galaxy (Eq. (81)). To max-
imize the chance that the galaxy studied is unscreened,
one should look for the smallest galaxies, preferably in
voids or at least in the fields 16. A small galaxy with

should unveil systematic difference in the mass estimated from
HI and that from stars, should the chameleon mechanism be at
work.

16 Screened galaxies are not interesting for this test because both
the stars and the HI gas would be blanket screened.

internal v ∼ 30 km/s would provide us either a positive
detection of the chameleon mechanism, or an upper limit
on ϕ∗/(2α) of about 10−8, for an O(1) α like in f(R).

Test 4. In addition to estimating masses of galax-
ies from their internal dynamics, one could also esti-
mate their masses using gravitational lensing. Photons
should behave as unscreened particles and move on null
geodesics in the Jordan frame. They therefore see the
(Φ + Ψ)/2 potential. Unscreened non-relativistic objects
(such as HI gas clouds) on the other hand should move ac-
cording to the Φ potential, while screened non-relativistic
objects (such as stars) should move according to Eq. (72)
with ε ∼ 0. Eq. (C6) together with the assumption of
negligible Yukawa suppression then tells us that the mass
estimate from photons should equal the mass estimate
from stars, and both should be smaller than the mass
estimate from HI by a factor of 1 + 2α2. Carrying out
this test might be a bit challenging as one would ideally
like to measure the lensing mass for the smallest galaxies
possible to avoid screening of the whole galaxy. Stack-
ing small galaxies and performing a weak lensing shear
measurement is likely the way to go.

Incidentally, returning briefly to the subject of bulk
motion: for the same reasons articulated above, weak
lensing measurements on large scales should yield con-
sistent results when compared against redshift distortion
measurements of screened (large) galaxies, but inconsis-
tent results when compared against redshift distortions
of unscreened (small) galaxies 17. This adds a possible
new twist to existing tests of this sort proposed in the
literature [64].

Test 5. Kesden and Kamionkowski [65] recently pro-
posed an interesting test of the equivalence principle: if
dark matter particles and stars fall at different rates un-
der gravity, the tidal streams from infalling galactic satel-
lites would be asymmetric. To this the chameleon mech-
anism adds a new twist: only unscreened (small) galax-
ies will exhibit this asymmetry; screened (large) galaxies
will not, because both dark matter and stars are blanket
screened. The current limit of ϕ∗/(2α) ∼< 10−6 guaran-
tees that the Milky Way does not exhibit the Kesden-
Kamionkowski effect. To see it, one would have to ex-
amine smaller galaxies, preferably out in the fields or
voids. It is also important to emphasize the difference in
the origin of equivalence principle violation in this paper
from that in most of the cosmology literature, including
[65]. In most of the literature, equivalence principle vi-
olation is there from the beginning, in the sense that it
exists at the level of the microscopic action i.e. elemen-
tary baryons and dark matter particles are coupled to
the scalar differently (see discussion in §I). In this pa-
per, there is no explicit equivalence principle violation at
the level of the microscopic action—it gets turned on by
the chameleon mechanism and differentiates not so much

17 Modulo Yukawa suppression, as usual.

Hui, Nicolis + Stubbs (2009)

χb

χb

For MG to act, should be not self-screened or screened by other objects.
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Some Assumptions/Fine Print

• Quasi-static Limit : dφ

dt
≈ 0

• Scalar field contributes little energy density

• Conformal/Coupling factor A2(φ) ≈ 1
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A ton of Astrophysical Data!!
• Large Galaxy Surveys (SDSS/LSST) : galaxy spectra, 

metallicities, morphology

• Internal structure of galaxies : orbits of HI gas clouds, 
globular clusters, satellites

• Stellar census of globular clusters, nearby dwarfs 
(ANGST), Cepheids/RR Lyrae, red giants stars

The ACS Nearby Galaxy Survey Treasury

home
project
data
search
publications
outreach
gallery
people
faq

The ANGST Galaxy Sample

Antlia SexA N3109 SexB

KKR25 KK230 E294-010 E410-005

I5152 GR8 N55 N300

UA438 DDO187 KKH98 DDO125

SDSS Spectroscopic Survey HST Cepheids Survey
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Messy, but also a lot of information

• Complex interaction between different 
processes at many different energy scales

• Some standard physical processes not well 
understood (e.g. supernova feedback, effects of 
galactic B field, galaxy-galaxy interaction etc.)

• MG => O(1) effects! Problem are : degeneracies 
between modified gravity signatures and 
“regular observables”.

• We want to figure out what are the signatures 
and how to break the degeneracies.
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Next : Modified Gravity 
Changes Stellar Behavior

• Modified Gravity makes gravity stronger 

• To support itself, stars need higher pressures

• Hence it needs to be hotter and burns fuel at a 
higher rate

• Stars are then more luminous, but live shorter 
lives!

Chang + Hui (2010), 
Davis, Lim, Sakstein, Shaw (2011)

Rest of the Talk will be about Stars!
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The Life of a Star

Sun lifetime ~ 10 Gyr

Lo
g 

Lu
m

in
os

ity

Astronomy-in-a-minute

Roughly : Burn H to make He to 
make C to make N and O as 

Temperature increase
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The Life of a Star

Zero Age MS (ZAMS)

~ 0.1 Gyr

~ 10 Gyr

~ 1 Gyr
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The Life of a Star

• Hertzrung-Russell 
Diagram (HR diagram)

• Evolutionary tracks 
(isochrones) depends on 
mass, composition and its 
environment. And 
gravitational model!

• Assumption (dangerous) : 
ambient density remains 
the same.
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Stellar Structure Equations

dP

dr
= −Gρm

r2
,
dm

dr
= 4πr2ρ

dT

dr
= − 3

4ac

κρ

T 3

L(r)

4πr2
,
dL(r)

dr
= 4πr2�(r)

Hydrostatic Equilibrium Mass Conservation

Radiative Transfer Energy Generation

P = (ρ, T )

Equation of State
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Stellar Structure Equations

dT

dr
= − 3

4ac

κρ

T 3

L(r)

4πr2
,
dL(r)

dr
= 4πr2�(r)

Radiative Transfer Energy Generation

The only component of the system of equations that 
needs changing is the Hydrostatics Equilibrium 

Equation

dP

dr
= −Gρm

r2
,
dm

dr
= 4πr2ρ

Hydrostatic Equilibrium Mass Conservation

P = (ρ, T )

Equation of State
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Lonely Star Model

Am I self-screened?
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Solving the Stellar Structure 
Equations

• Dimension Analysis

• Analytic solution : Eddington Standard model 

• Numerical solution (with MESA)

Friday, June 29, 2012



1. Dimension Analysis
Assuming completely unscreened stars : Geff → (1 + αb)G

Low Mass / Gas Supported Stars L ∝ G4
effM

3

High Mass / Radiation Supported Stars L ∝ GeffM

f(R) theories , αb = 1/3Example : 

See also Fred Adams (2008)

Pgas ∝ ρT , Prad ∝ T 4 , ρ ∼ MR−3
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2. Analytic solution : 
Eddington Standard Model

dT

dr
= − 3

4ac

κρ

T 3

L(r)

4πr2
,
dL(r)

dr
= 4πr2�(r)

Radiative Transfer Energy Generation

dP

dr
= −Gρm

r2
,
dm

dr
= 4πr2ρ

Hydrostatic Equilibrium Mass Conservation

P = (ρ, T )

Equation of State
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2. Analytic solution : 
Eddington Standard Model

dT

dr
= − 3

4ac

κρ

T 3

L(r)

4πr2
,
dL(r)

dr
= 4πr2�(r)

Radiative Transfer Energy Generation

Hydrostatic Equilibrium Mass Conservation

P = (ρ, T )

Equation of State

dP

dr
= −Ftotal(r)ρ ,

dm

dr
= 4πr2ρ

5

equation, the presence of modified gravity only changes
that particular equation and not the others [12].

Let’s focus on the HSE equation. For hydrostatic equi-
librium the pressure gradient must balance the other ra-
dial forces, F , i.e. gravitational and φ force,

F (r) = fgrav + fφ =
dΦN

dr
+

β(φ)

Mpl

dφ

dr
.

Hydrostatic equilibrium, Eqn. (26), then requires:

dP (r)

dr
= −

�
dΦN

dr
+

β(φ)

Mpl

dφ

dr

�
ρ(r). (30)

It is clear from this equation that the pressure support
must act against both the gravitational force and the
force carried by the scalar. To find the gravitational
force, we integrate the Poisson Eqn. (13) and use the
continuity Eqn. (27) to obtain the solution to the gravi-
tational potential as a function of mass m(r),

dΦN

dr
=

Gm(r)

r2
, m(r) = 4π

� r

0

r
� 2 dr� ρ(r�). (31)

Meanwhile, the scalar forces are given as functions of the
gravitational potential and α0 governed by Eqns. (22)
and (17). Combining these with Eqn. (31) we then find

β(φ)

Mpl

dφ

dr
≈ α0

�
G (m(r)−m(rs))

r2

�
H(r − rs). (32)

To finally close the system of equations, we find rs from
Eq. (23), which after integrating by parts and using the
Poisson Eqn. (13) yields an implicit solution for rs

4πG

� R

rs

rρ(r) dr = χ0 ≡ φ0

2β0 Mpl

. (33)

The implicity of the solution for rs means that we have
to iterate to find the complete solution. We will do this
in the next section for a polytropic star, but first we note
that we can write the HSE in a very suggestive form by
combining Eqns. (30) and (32) to obtain the modified

HSE equation

dP

dr
= −ρ(r)

Gm(r)

r2

�
1 + α0

�
1− m(rs)

m(r)

�
H(r − rs)

�
.,

(34)
By defining an effective force coupling αeff(r),

αeff = α0

�
1− m(rs)

m(r)

�
, (35)

it is clear that the effective

Geff(r) = G(1 + αeff(r)) (36)

scales similarly. In an unscreened theory, the screened
mass m(rs) = 0 and the effective Geff = (1 + α0)G. One
can think of the quantity 1 − m(rs)/m(r) as a “scalar
charge”, the existence of which is the source of equiva-
lence principle violation in such theories.

B. Scaling Relations

Ultimately, we will consider the general case where 0 <

αeff(r) < α0, however let us first build up intuition by
considering simple scaling relations [6] in the two limits
where

• the fifth force is highly suppressed rs ≈ R or gravity
unmodified α0 = 0: Geff ≈ G = const and

• the fifth force is completely unsuppressed: rs = 0,
Geff(r) = (1 + α0)G = const.

Suppose that P ∝ ρpT q where the constant of pro-
portionality depends only on non-gravitational physics.
Under G → G(1 + α�), we assume that the solutions to
the stellar structure equations simply scale as P (r) →
cPP (r), ρ(r) → cρρ(r), r → crr, l(r) → cLl(r) and
T (r) → cTT (r) for some constant ci which depend on
α�; we take κop(r) ≈ κes = const. We consider a star of
fixed mass M , this imposes the condition cρc

3

r = 1. The
equation of state imposes cP = c

p
ρc

q
T . The scaling of the

hydrostatic equilibrium and radiative transfer equations
gives:

cP = c
2

ρc
2

r(1 + α0) = c
4/3
ρ (1 + α0), (37)

cL =
c
4

T cr

cρ
=

cT

c
4/3
ρ

. (38)

Using the equation of state and hydrostatic equilibrium

gives cp−4/3
ρ c

q
T
= (1 + α0) and so:

cL = (1 + α0)
4/q

c

4(4−q−3p)
3q

ρ .

Stars can be supported by two kinds of pressure terms
– radiation Prad or gas Pgas. Stars of around solar mass or
less are domoinated by gas pressure Pgas = kBρT/µmH

and so p = q = 1. On the other hand, massive stars
are dominated by radiation pressure Prad = aT

4
/3 and

so p = 0, and q = 4. In both cases the cρ dependence
disappears from the cL scaling relation, and cL depends
only on α0. Simple algebra than yields the relationship
between Luminosity L and Geff and M

For massive stars L ∝ GM hence

L → (1 + α0)L, (39)

whereas for low mass stars L ∝ G
4
M

3

L → (1 + α0)
4
L. (40)

For α0 = 1/3, then such simple scaling relations tell
us that we should expect unscreened less (more) mas-
sive stars’ luminosity to be 3 (0.33) times more than its
screene counterparts. We will see this explicitly in the
next section when we solve for the equations of stellar
structure.

gravity 5th force
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2. Analytic solution : 
Eddington Standard Model

5

equation, the presence of modified gravity only changes
that particular equation and not the others [12].

Let’s focus on the HSE equation. For hydrostatic equi-
librium the pressure gradient must balance the other ra-
dial forces, F , i.e. gravitational and φ force,

F (r) = fgrav + fφ =
dΦN

dr
+

β(φ)

Mpl

dφ

dr
.

Hydrostatic equilibrium, Eqn. (26), then requires:

dP (r)

dr
= −

�
dΦN

dr
+

β(φ)

Mpl

dφ

dr

�
ρ(r). (30)

It is clear from this equation that the pressure support
must act against both the gravitational force and the
force carried by the scalar. To find the gravitational
force, we integrate the Poisson Eqn. (13) and use the
continuity Eqn. (27) to obtain the solution to the gravi-
tational potential as a function of mass m(r),

dΦN

dr
=

Gm(r)

r2
, m(r) = 4π

� r

0

r
� 2 dr� ρ(r�). (31)

Meanwhile, the scalar forces are given as functions of the
gravitational potential and α0 governed by Eqns. (22)
and (17). Combining these with Eqn. (31) we then find

β(φ)

Mpl

dφ

dr
≈ α0

�
G (m(r)−m(rs))

r2

�
H(r − rs). (32)

To finally close the system of equations, we find rs from
Eq. (23), which after integrating by parts and using the
Poisson Eqn. (13) yields an implicit solution for rs

4πG

� R

rs

rρ(r) dr = χ0 ≡ φ0

2β0 Mpl

. (33)

The implicity of the solution for rs means that we have
to iterate to find the complete solution. We will do this
in the next section for a polytropic star, but first we note
that we can write the HSE in a very suggestive form by
combining Eqns. (30) and (32) to obtain the modified

HSE equation

dP

dr
= −ρ(r)

Gm(r)

r2

�
1 + α0

�
1− m(rs)

m(r)

�
H(r − rs)

�
.,

(34)
By defining an effective force coupling αeff(r),

αeff = α0

�
1− m(rs)

m(r)

�
, (35)

it is clear that the effective

Geff(r) = G(1 + αeff(r)) (36)

scales similarly. In an unscreened theory, the screened
mass m(rs) = 0 and the effective Geff = (1 + α0)G. One
can think of the quantity 1 − m(rs)/m(r) as a “scalar
charge”, the existence of which is the source of equiva-
lence principle violation in such theories.

B. Scaling Relations

Ultimately, we will consider the general case where 0 <

αeff(r) < α0, however let us first build up intuition by
considering simple scaling relations [6] in the two limits
where

• the fifth force is highly suppressed rs ≈ R or gravity
unmodified α0 = 0: Geff ≈ G = const and

• the fifth force is completely unsuppressed: rs = 0,
Geff(r) = (1 + α0)G = const.

Suppose that P ∝ ρpT q where the constant of pro-
portionality depends only on non-gravitational physics.
Under G → G(1 + α�), we assume that the solutions to
the stellar structure equations simply scale as P (r) →
cPP (r), ρ(r) → cρρ(r), r → crr, l(r) → cLl(r) and
T (r) → cTT (r) for some constant ci which depend on
α�; we take κop(r) ≈ κes = const. We consider a star of
fixed mass M , this imposes the condition cρc

3

r = 1. The
equation of state imposes cP = c

p
ρc

q
T . The scaling of the

hydrostatic equilibrium and radiative transfer equations
gives:

cP = c
2

ρc
2

r(1 + α0) = c
4/3
ρ (1 + α0), (37)

cL =
c
4

T cr

cρ
=

cT

c
4/3
ρ

. (38)

Using the equation of state and hydrostatic equilibrium

gives cp−4/3
ρ c

q
T
= (1 + α0) and so:

cL = (1 + α0)
4/q

c

4(4−q−3p)
3q

ρ .

Stars can be supported by two kinds of pressure terms
– radiation Prad or gas Pgas. Stars of around solar mass or
less are domoinated by gas pressure Pgas = kBρT/µmH

and so p = q = 1. On the other hand, massive stars
are dominated by radiation pressure Prad = aT

4
/3 and

so p = 0, and q = 4. In both cases the cρ dependence
disappears from the cL scaling relation, and cL depends
only on α0. Simple algebra than yields the relationship
between Luminosity L and Geff and M

For massive stars L ∝ GM hence

L → (1 + α0)L, (39)

whereas for low mass stars L ∝ G
4
M

3

L → (1 + α0)
4
L. (40)

For α0 = 1/3, then such simple scaling relations tell
us that we should expect unscreened less (more) mas-
sive stars’ luminosity to be 3 (0.33) times more than its
screene counterparts. We will see this explicitly in the
next section when we solve for the equations of stellar
structure.

gravity 5th force

5

equation, the presence of modified gravity only changes
that particular equation and not the others [12].

Let’s focus on the HSE equation. For hydrostatic equi-
librium the pressure gradient must balance the other ra-
dial forces, F , i.e. gravitational and φ force,

F (r) = fgrav + fφ =
dΦN

dr
+

β(φ)

Mpl

dφ

dr
.

Hydrostatic equilibrium, Eqn. (26), then requires:

dP (r)

dr
= −

�
dΦN

dr
+

β(φ)

Mpl

dφ

dr

�
ρ(r). (30)

It is clear from this equation that the pressure support
must act against both the gravitational force and the
force carried by the scalar. To find the gravitational
force, we integrate the Poisson Eqn. (13) and use the
continuity Eqn. (27) to obtain the solution to the gravi-
tational potential as a function of mass m(r),

dΦN

dr
=

Gm(r)

r2
, m(r) = 4π

� r

0

r
� 2 dr� ρ(r�). (31)

Meanwhile, the scalar forces are given as functions of the
gravitational potential and α0 governed by Eqns. (22)
and (17). Combining these with Eqn. (31) we then find

β(φ)

Mpl

dφ

dr
≈ α0

�
G (m(r)−m(rs))

r2

�
H(r − rs). (32)

To finally close the system of equations, we find rs from
Eq. (23), which after integrating by parts and using the
Poisson Eqn. (13) yields an implicit solution for rs

4πG

� R

rs

rρ(r) dr = χ0 ≡ φ0

2β0 Mpl

. (33)

The implicity of the solution for rs means that we have
to iterate to find the complete solution. We will do this
in the next section for a polytropic star, but first we note
that we can write the HSE in a very suggestive form by
combining Eqns. (30) and (32) to obtain the modified

HSE equation

dP

dr
= −ρ(r)

Gm(r)

r2

�
1 + α0

�
1− m(rs)

m(r)

�
H(r − rs)

�
.,

(34)
By defining an effective force coupling αeff(r),

αeff = α0

�
1− m(rs)

m(r)

�
, (35)

it is clear that the effective

Geff(r) = G(1 + αeff(r)) (36)

scales similarly. In an unscreened theory, the screened
mass m(rs) = 0 and the effective Geff = (1 + α0)G. One
can think of the quantity 1 − m(rs)/m(r) as a “scalar
charge”, the existence of which is the source of equiva-
lence principle violation in such theories.

B. Scaling Relations

Ultimately, we will consider the general case where 0 <

αeff(r) < α0, however let us first build up intuition by
considering simple scaling relations [6] in the two limits
where

• the fifth force is highly suppressed rs ≈ R or gravity
unmodified α0 = 0: Geff ≈ G = const and

• the fifth force is completely unsuppressed: rs = 0,
Geff(r) = (1 + α0)G = const.

Suppose that P ∝ ρpT q where the constant of pro-
portionality depends only on non-gravitational physics.
Under G → G(1 + α�), we assume that the solutions to
the stellar structure equations simply scale as P (r) →
cPP (r), ρ(r) → cρρ(r), r → crr, l(r) → cLl(r) and
T (r) → cTT (r) for some constant ci which depend on
α�; we take κop(r) ≈ κes = const. We consider a star of
fixed mass M , this imposes the condition cρc

3

r = 1. The
equation of state imposes cP = c

p
ρc

q
T . The scaling of the

hydrostatic equilibrium and radiative transfer equations
gives:

cP = c
2

ρc
2

r(1 + α0) = c
4/3
ρ (1 + α0), (37)

cL =
c
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T cr

cρ
=

cT
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4/3
ρ

. (38)

Using the equation of state and hydrostatic equilibrium

gives cp−4/3
ρ c

q
T
= (1 + α0) and so:

cL = (1 + α0)
4/q

c

4(4−q−3p)
3q

ρ .

Stars can be supported by two kinds of pressure terms
– radiation Prad or gas Pgas. Stars of around solar mass or
less are domoinated by gas pressure Pgas = kBρT/µmH

and so p = q = 1. On the other hand, massive stars
are dominated by radiation pressure Prad = aT

4
/3 and

so p = 0, and q = 4. In both cases the cρ dependence
disappears from the cL scaling relation, and cL depends
only on α0. Simple algebra than yields the relationship
between Luminosity L and Geff and M

For massive stars L ∝ GM hence

L → (1 + α0)L, (39)

whereas for low mass stars L ∝ G
4
M

3

L → (1 + α0)
4
L. (40)

For α0 = 1/3, then such simple scaling relations tell
us that we should expect unscreened less (more) mas-
sive stars’ luminosity to be 3 (0.33) times more than its
screene counterparts. We will see this explicitly in the
next section when we solve for the equations of stellar
structure.

�∇2φ ≈
�

β0ρ(r)/Mpl rs < r � m−1
0

0 r < rs
using

5

equation, the presence of modified gravity only changes
that particular equation and not the others [12].

Let’s focus on the HSE equation. For hydrostatic equi-
librium the pressure gradient must balance the other ra-
dial forces, F , i.e. gravitational and φ force,

F (r) = fgrav + fφ =
dΦN
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Mpl
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Hydrostatic equilibrium, Eqn. (26), then requires:
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+
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It is clear from this equation that the pressure support
must act against both the gravitational force and the
force carried by the scalar. To find the gravitational
force, we integrate the Poisson Eqn. (13) and use the
continuity Eqn. (27) to obtain the solution to the gravi-
tational potential as a function of mass m(r),

dΦN

dr
=

Gm(r)

r2
, m(r) = 4π

� r

0

r
� 2 dr� ρ(r�). (31)

Meanwhile, the scalar forces are given as functions of the
gravitational potential and α0 governed by Eqns. (22)
and (17). Combining these with Eqn. (31) we then find
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�
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r2

�
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To finally close the system of equations, we find rs from
Eq. (23), which after integrating by parts and using the
Poisson Eqn. (13) yields an implicit solution for rs

4πG

� R

rs

rρ(r) dr = χ0 ≡ φ0

2β0 Mpl

. (33)

The implicity of the solution for rs means that we have
to iterate to find the complete solution. We will do this
in the next section for a polytropic star, but first we note
that we can write the HSE in a very suggestive form by
combining Eqns. (30) and (32) to obtain the modified

HSE equation
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�
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By defining an effective force coupling αeff(r),

αeff = α0
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m(r)

�
, (35)

it is clear that the effective

Geff(r) = G(1 + αeff(r)) (36)

scales similarly. In an unscreened theory, the screened
mass m(rs) = 0 and the effective Geff = (1 + α0)G. One
can think of the quantity 1 − m(rs)/m(r) as a “scalar
charge”, the existence of which is the source of equiva-
lence principle violation in such theories.

B. Scaling Relations

Ultimately, we will consider the general case where 0 <

αeff(r) < α0, however let us first build up intuition by
considering simple scaling relations [6] in the two limits
where

• the fifth force is highly suppressed rs ≈ R or gravity
unmodified α0 = 0: Geff ≈ G = const and

• the fifth force is completely unsuppressed: rs = 0,
Geff(r) = (1 + α0)G = const.

Suppose that P ∝ ρpT q where the constant of pro-
portionality depends only on non-gravitational physics.
Under G → G(1 + α�), we assume that the solutions to
the stellar structure equations simply scale as P (r) →
cPP (r), ρ(r) → cρρ(r), r → crr, l(r) → cLl(r) and
T (r) → cTT (r) for some constant ci which depend on
α�; we take κop(r) ≈ κes = const. We consider a star of
fixed mass M , this imposes the condition cρc

3

r = 1. The
equation of state imposes cP = c

p
ρc

q
T . The scaling of the

hydrostatic equilibrium and radiative transfer equations
gives:

cP = c
2

ρc
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r(1 + α0) = c
4/3
ρ (1 + α0), (37)

cL =
c
4

T cr
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=
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c
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Using the equation of state and hydrostatic equilibrium

gives cp−4/3
ρ c

q
T
= (1 + α0) and so:

cL = (1 + α0)
4/q

c

4(4−q−3p)
3q

ρ .

Stars can be supported by two kinds of pressure terms
– radiation Prad or gas Pgas. Stars of around solar mass or
less are domoinated by gas pressure Pgas = kBρT/µmH

and so p = q = 1. On the other hand, massive stars
are dominated by radiation pressure Prad = aT

4
/3 and

so p = 0, and q = 4. In both cases the cρ dependence
disappears from the cL scaling relation, and cL depends
only on α0. Simple algebra than yields the relationship
between Luminosity L and Geff and M

For massive stars L ∝ GM hence

L → (1 + α0)L, (39)

whereas for low mass stars L ∝ G
4
M

3

L → (1 + α0)
4
L. (40)

For α0 = 1/3, then such simple scaling relations tell
us that we should expect unscreened less (more) mas-
sive stars’ luminosity to be 3 (0.33) times more than its
screene counterparts. We will see this explicitly in the
next section when we solve for the equations of stellar
structure.

Implicit equation for 
screening radius

Motivation Screening Mechanisms Stellar Structure Galaxies Summary and Outlook

Partially Screened Stars (1)

In practice, stars will be partially screened i.e. there is a screening
radius rs that separates the screened interior from the unscreened
exterior of the star.

r�R

r� rs

Φ�r�

Geff → G(1 + αeff (r))

αeff (r) = αb

�
1− m(rs)

m(r)

�
H(r − rs)
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2. Analytic solution : 
Eddington Standard Model

dT

dr
= − 3

4ac

κρ

T 3

L(r)

4πr2
,
dL(r)

dr
= 4πr2�(r)

Radiative Transfer Energy Generation

Hydrostatic Equilibrium Mass Conservation

P = (ρ, T )

Equation of State

dP

dr
= −Geffρm

r2
,
dm

dr
= 4πr2ρ
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2. Analytic solution : 
Eddington Standard Model

dT

dr
= − 3

4ac

κρ

T 3

L(r)

4πr2
,
dL(r)

dr
= 4πr2�(r)

Radiative Transfer Energy Generation

Hydrostatic Equilibrium Mass Conservation

P = (ρ, T )

Equation of State

dP

dr
= −Geffρm

r2
,
dm

dr
= 4πr2ρ

Constant entropy gradient T 3 ∝ ρ

Decoupled
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2. Analytic solution : 
Eddington Standard Model

dT

dr
= − 3

4ac

κρ

T 3

L(r)

4πr2
,
dL(r)

dr
= 4πr2�(r)

Radiative Transfer Energy Generation

Hydrostatic Equilibrium Mass Conservation Equation of State

dP

dr
= −Geffρm

r2
,
dm

dr
= 4πr2ρ

Total gas + radiation pressure

T 3 ∝ ρ

Decoupled

P = Pgas + Prad =
Prad

(1− b(αeff ))

P = Kρ4/3

Constant entropy gradient
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2. Analytic solution : 
Eddington Standard Model

dT

dr
= − 3

4ac

κρ

T 3

L(r)

4πr2
,
dL(r)

dr
= 4πr2�(r)

Radiative Transfer Energy Generation

Hydrostatic Equilibrium Mass Conservation Equation of State

dP

dr
= −Geffρm

r2
,
dm

dr
= 4πr2ρ

Total gas + radiation pressure

T 3 ∝ ρ

Decoupled

P = Pgas + Prad =
Prad

(1− b(αeff ))

P = Kρ4/3

Constant entropy gradient

Opacity is constant κ = constant
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Semi-Analytic Prescription

L =
4πc(1− b(αeff ))[1 + αeff (R)]GM

κ

1

ξ2
d

dξ

�
ξ2

dθ(ξ)

dξ

�
= −[1 + αbΘ(ξ − ξs)]θ

3(ξ)

Modified Lane-Emden Equations 

ξ ≡ r(Pc/πGρc)
−1/2

Upshot : Luminosity as a function of stellar mass       and 

(Totally screened star is an n=3 polytrope.)
χbM

P = Pcθ
4(ξ) , ρ = ρcθ

3(ξ) , T = Tcθ(ξ)
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Zeroth-order effect : Stellar LuminosityMotivation Screening Mechanisms Stellar Structure Galaxies Summary and Outlook

Luminosity Increase

�1 0 1 2 3
Log� M

Msun
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3.0
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L �Χ��
Lstd

10�4 10�5 5x 10�6 10�6χb

f(R) theories , αb = 1/3

Gas Supported

Radiation
Supported

L ∝ G4
effM

3

L ∝ GeffM
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Live Fast, Die Young
τMS = 10

�
M

M⊙

��
L⊙

L(M)

�
GyrMain Sequence Lifetime

3 times increase in luminosity = 3 times shorter in life!

Stars make metals : MG galaxies more metal rich?
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• The Sun must be screened, or almost screened. 
Self-screening bounds  

• Not self-screened, but screened by Milky Way 
bounds        

• But perhaps the Local Group dominates? I.e. the 
Sun is screened by a much deeper potential well?

• Most conservative constraints                      from 
galaxy cluster statistics. (Schmidt 2009)

What about the Sun?

χb ∼ 10−6

χb ∼ 10−4

χb ∼ 10−6
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3. Building Realistic Stars/
Galaxies (Numerical)

• To test all this stuff, we need more precise 
predictions.

• Construct stars/isochrones using stellar 
simulator (modified MESA code). (w/ Bill 
Paxton)

• Construct galaxies with galaxy synthesis code 
(GALEV). 
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Modified MESA code
• MESA is a 1-D stellar evolution code with complete 

convective, nuclear energy generation, opacity 
modeling.

– 39 –

toward surface

toward center

!" 1! #" 1! $" 1! %" 1, ...face k-1

!"! #"! $"! %"! σ

σ

"!

! !

&'!" !(!" )"! * "! *! "face k

!"!1! #"!1! $"!1! %"!1! "!1! &'!"!1, ...face k!1

(!" 1 " 1! *" 1! +'!" 1! )" 1, ...cell k-1

(!" "! *"! +'!"! )"! ,(!" εnuc!k εgrav!kcell k

Fig. 9.— Schematic of some cell and face variables for MESA star.

Each cell has some variables that are mass-averaged and others that are defined at
the outer face, as shown in Figure 9. This way of defining the variables is a consequence
of the finite volume, flux conservation formulation of the equations and improves stability
and efficiency (Sugimoto et al. 1981). The inner boundary of the innermost cell is usually
the center of the star and, therefore, has radius, luminosity, and velocity equal to zero.
Nonzero center values can be used for applications that remove the underlying star (e.g., the
envelope of a neutron star), in which case the user must define the values of Mc and Lc at
the inner radius Rc. The cell mass-averaged variables are density ρk, temperature Tk, and
mass fraction vector Xi,k. The boundary variables are mass interior to the face mk, radius
rk, luminosity Lk, and velocity vk. In addition to these basic variables, composite variables
are calculated for every cell and face, such as �nuc, κ, σk, and Fk (see Table 1 for variable
definitions). All variables are evaluated at time t+ δ t unless otherwise specified.

Geff
k−1

Geff
k

Geff
k+1

Calculate Geff and rs using previous step ρ(r)

Bill Paxton (KITP)
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Evolution of screened and unscreened stars11

FIG. 2: The Hertsprung-Russell diagram for stars of one solar mass with initial metallicity Z = 0.02. The black line shows

the tracks for stars in general relativity while the red, blue and green tracks correspond to stars in modified gravity with

χ0 = 10
−7, 10−6

and 5×10
−6

respectively. The radius and age at the point where the central hydrogen mass fraction has fallen

to 0.5, 0.1 and 10
−5

is shown for each star except the χ0 = 10
−7

case.

This will form the basis of any observational method of
searching for these theories using stellar effects.

The number of stars born with massM within a galaxy
is given by the initial mass function (IMF) Φ(M) =
dN/dM . In many stellar populations of, where we can
resolve individual stars, this relation is empirically found
to be roughly universal[29]. For simplicity, in this work
we use the Salpeter IMF [13], Φ(M) ∝ M−2.35 with
0.08 ≤ M ≤ 100M ; leaving aside questions of whether
this function is valid at very high and very low masses.
We can then estimate the luminosity increase for an un-
screened dwarf galaxy by integrating luminosity ?? using
the fitting functions 55 over the IMF.

Before doing so however, we must account for the stars
that have gone off the main sequence as the IMF only
gives the number of stars born. We do this by making
use of equation 56. If the age of the galaxy is τage then

we assume that all stars with τMS > τage contribute in
their entirety to the luminosity whereas stars whose main
sequence lifetimes are less than the age of the galaxy con-
tribute a fraction τMS/τage of their luminosity. We note
that stars that have gone off the main sequence still have
a luminosity enhancement in the red giant phase (and
beyond), however we do not account for their contribu-
tion here due to our inability to model them analytically.
This effect is accounted for in our analysis by including
a factor f0(M ; τage) where

f0(M ; τage) =

�
1 τMS > τage
τMS
τage

τMS < τage
(59)

so that the galactic luminosity is

Lgal(τage,χ0) =
� 100M⊙

0.08M⊙

dMf0(M, τage)L(M ;χ0)
dN

dM
.

(60)

Black : Unmodified

Red  Blue Green :
Modified

rs
Rtotal

∼ 0.01

Almost unscreened 
by radius

Compare Eddington Standard model prediction
in the Main Sequence ∆Teff ∼ O(100) K
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ruled out?
• 65% Solar Mass Main sequence star unscreened, 

O(100) Kelvins temperature boost 

χb = 10−6

• Degenerate with metallicities

• Degenerate with stellar lifetime

• Degenerate with stellar mass.

• Lonely star model breaks -- screening from 
environment?
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Zeroth Order prediction : unscreened 
Galaxies are brighter

Total luminosity is the sum of all stars’ output

Lgal =

� 100M⊙

0.08M⊙

dM f0(M, τage)Lstar(M ;χa)Ψ(M)

Initial Mass Function IMF Ψ(M) =
dN

dM
∝ M−2.35

Number of stars born in mass range dM (Salpeter IMF)

Fraction of stars that have gone off main sequence

f0(M, τage) =

�
1 τage < τMS

τMS/τage(M) τage > τMS(M)

τMS ∝ L−1
starNote                       so high mass (more luminous) 

stars scale out of the integral.
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Motivation Screening Mechanisms Stellar Structure Galaxies Summary and Outlook

Luminosity Enhancement (1)

�6.5 �6.0 �5.5 �5.0 �4.5 �4.0
Log�Χ��

10

20

30

40

� increase Lgal
stars burnt out too fast

Most stars screened

Most additional contribution comes from low mass 
stars : redder? But they are hotter : bluer?

Galaxy Luminosity
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Galaxy Clusters and Void 
Galaxies

• Galaxy Clusters are sitting in deep potential 
well                    : galaxies and stars inside must 
be screened 

• Milky Way Class galaxies                     possibly 
screening out all the stars inside.

• Dwarf Galaxies residing in intercluster voids 
only feel their own grav potential : 

χb ∼ 10−6

χb ∼ 10−6

χb ∼ 10−8

Void Dwarf Galaxies should look very 
different from Cluster Dwarf Galaxies
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Observational tests?

• Void Dwarf galaxies are more luminous

• Void Dwarf galaxies are roughly redder

• Hertzsprung-Russell diagram different

• Shorter life-cycles : higher metalicities (look 
older?)

• Look for deviations in populations of dwarfs in  
SDSS color-color diagrams.

w/Davis, Sakstein, Banerji
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Dwarf Populations in Voids
w/Davis, Sakstein, Banerji

1 2

SDSS  Local Volume galaxies
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2

Dwarf Populations in Voids

1
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Other tests

τfree ∝ (Geffρ)
−1/2

arXiv:1204.6044 Jain,Vikram, Sakstein,

• Stellar Pulsations (Cepheids) and distance 
indicators

• Angular momentum of Galactic Halos : MG 
halos have higher specific AM.

arXiv:1204.6608 Lee,Zhao,Li,Koyama

– 13 –

Fig. 3.— The P − L relation for the galaxies in our sample. In the left panel, we show all the

cepheids observed along with the reported error bars. The right panel shows the mean period and

dispersion within bins in absolute magnitude of size 0.5. The red and black points show unscreened

and screened galaxies respectively. There is no evidence for a difference in the shape of the P − L

relation between the two samples.

3.3. Observations of Cepheids

Cepheid distances have been calibrated using parallaxes for 10 Milky Way cepheids in the

distance range ≈ 0.3 − 0.6 kpc, with periods ranging from ≈ 3 − 30 days. The error on the mean

distance is ±3% or 0.06 magnitude. The slope has in the past been obtained from the LMC since

the sample size is bigger, but at the cost of possible uncertainty due to metallicity effects. More

recently the maser distance to NGC 4258 has superseded the calibration with the LMC. Outside

the Local Group, cepheid distances have been measured to over 50 galaxies (see the review by

Freedman & Madore 2010 for more details). The final uncertainty in the distance modulus, which

includes zero point calibration, metallicity, reddening and other effects, is ±0.09 magnitude or 5%

in distance. 5 As discussed in Sasselov et al (1997) and subsequent work, the three basic ingredients

in the P − L relation (pulsation theory, stellar evolution and stellar atmospheres) are sensitive to

metallicity. A metal-poor cepheid is fainter for given period and temperature. The net dependence

on metallicity however is weak, in particular the slope of the relation between period and bolometric

luminosity is nearly unchanged.

The data for the P −L relation used in our analysis was compiled for individual cepheids in 19

galaxies – see Appendix C for details. Five galaxies were removed from the sample due to the large

5The GAIA space telescope will improve cepheid calibration. An important recent development is the measurement

of the P − L−C relation in the IR. The slope is steeper and the scatter is significantly smaller in the IR, so Spitzer

and JWST should improve the calibration. A factor of two improvement is anticipated – see Table 2 in Freedman &

Madore (2010).

– 23 –

Fig. 5.— Upper limits on the two parameters of chameleon theories: the coupling parameter αc

and the background field value χc. The boundaries of the shaded regions show the upper limits at

68% and 95% confidence level. These are obtained using an interpolation of our tests for the two

gravity parameters as discussed in the text. The effects of discreteness are due to the small sample

of galaxies used. The upper end of the y-axis is extended to χc = 10−4 to show the upper limit

from cosmological+cluster constraints which was obtained for the f(R) model parameter fR0 ≡ χc

with αc = 1/3.

discrepancies.

We have shown that current data is consistent with GR and is inconsistent with chameleon

theories over a parameter range that is more than two orders of magnitude below previous astro-

physical tests. Figures 4 and 5 show our upper limits for the two parameters: the coupling αc and

the background field value χc. For chameleon theories with αc = 1/3 (all f(R) models) the upper

limit on χc is about 5 × 10−7 at 95% confidence. We show results for values of αc in the range

0.1 − 1. The upper limit on χc drops just below 10−7 for αc = 1. The comparison of maser and

TRGB distances to NGC 4258 provides an independent test of field values χc > 2× 10−6.

Cosmological observations so far have probed field values larger than 10−4 (Reyes et al 2010;

Schmidt, Vikhlinin & Hu 2009; Lombriser et al 2010 and references therein). Thus our limits

exceed the combined analysis of cosmological probes by over two orders of magnitude. Our upper

limits also exceed solar system and lab tests for some range of chameleon potentials (see e.g. the

discussion in Hu & Sawicki 2007 on the comparison of field values in galaxies vs. local tests). With
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Understanding degeneracies
• Mass vs Modified Gravity 

• Metallicities vs Modified Gravity

• Environmental evolution (void galaxies vs 
cluster galaxies) vs Modified Gravity

• Galactic Mass vs Modified Gravity

• Many others etc....
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Summary

• MG = O(1) Effects! Stellar structure are 
modified.

• Main sequence stars are affected!

• MG stars are more luminous, more blue, 
smaller, and live shorter lifetimes.

• Individual stars are hard (no statistics), but 
galactic effects may be observable.
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Thanks!
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