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Why Massive Gravity?
Massive Gravity Theories are a remarkably a 
constrained modification of general relativity 
at large distance scales - graviton is assumed to 
acquire a mass

They are interesting in that as in GR, there are 
a finite number of consistent allowed terms in 
the Lagrangian that do not give rise to ghosts

In present talk I shall only be concerned with 
models where this occurs without breaking 
Lorentz or de Sitter symmetries



Markus Fierz and Wolfgang Pauli, 
1939

�hµ� + · · · = m2(hµ� � �µ�h)

Fierz-Pauli mass term

guarantees 5 rather than 6 
propagating degrees of 
freedom
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Massless spin-two in Minkowski makes sense!

5 = 2s + 1

By Massive Gravity we mean a nonlinear completion of Fierz-Pauli 
coupled to matter



Why Massive Gravity?
Adding a mass to gravity weakens the strength 
of gravity at large (cosmological) distances

But thats not all!

Screening mechanism

VY ukawa ⇠ e�mr

r

Degravitation mechanism?

Self-acceleration?



Why Massive Gravity?

Gravitons can condense to form a condensate 
whose energy density sources self-acceleration

Analogous to well-known mechanism in Dvali-
Gabadadze-Porrati model (DGP), however here it 
seems possible to remove the DGP ghost??

Self-acceleration?

Deffayet 2000

Koyama 2005
Charmousis 2006

⇢matter ⇠ 0 H ⇠ m 6= 0



Why Massive Gravity?
Gravitons can condense to form a condensate whose 
energy density compensates the cosmological constant

Screening mechanism - The Cosmological Constant can be 
LARGE with the cosmic acceleration SMALL

In a Massive Theory - the c.c. is a `redundant’ 
operator



Why Massive Gravity?

Gµ⌫ +m2 @LM

@gµ⌫
= �⇤gµ⌫

Graviton condensate:
Spacetime is Minkowski in presence of an arbitrary large 

m2 @LM

@gµ⌫
= �⇤gµ⌫gµ⌫ =

✓
1 + f

✓
⇤

m2

◆◆
⌘µ⌫

⇤

Gµ⌫ = 0

Equivalent Statement: The cosmological constant can be reabsorbed into a 
redefinition of the metric and coupling constants - and is hence a 

redundant operator

mass term



Why Massive Gravity?

Screening Degravitation

One strong motivation for considering Massive Gravity is as a 
toy model of higher dimensional gravity models (eg Cascading 
Gravity) that potentially exhibit degravitation

so far it is safe to say that this idea has not YET been fully realized 

Degravitation = Dynamical Evolution to a    
Screened Solution from generic initial 

conditions
Dvali, Hofmann, Khoury 2007

de Rham et al 2007



Vainshtein Screening mechanism ensures 
recovery of GR in limit m ! 0

Why Massive Gravity?
Departure from GR is governed by essentially 
a single parameter - Graviton Mass

This ensures massive gravity can be easily 
made to be consistent with most tests of GR 
(effectively placing an upper bound on m) 
without spoiling its role as an IR modification



Why Massive Gravity?
Massive Gravity is a natural Infrared Completion of              

Galileon Theories

The allowed Galileon Interactions are in direct 
correspondence with the allowed MG interactions

de Rham and Renaux-Petel 2012 - today!

de Rham and Gabadadze 2010

Galileon: Nicolis, Rattazzi, 
Trincherini 2010

Decoupling limit of Massive Gravity on Minkowski is a 
Galileon Theory

Decoupling limit of Massive Gravity on de Sitter is a 
Galileon Theory (with slightly different coefficients)



Why Massive Gravity?

Massive Gravity models share many nice features in common with 
extra dimensional models such as DGP and Cascading Gravity .....

e.g. Vainshtein mechanism, Galileon limit, self-acceleration, 
possible screening

.... however without the difficulty of having to solve fundamentally 
higher dimensional equations



Ghost-free Massive Gravity

Proven fully ghost free in ADM formalism: Hassan and Rosen 
2011

Result reconfirmed in Stueckelberg decomposition:
de Rham, Gabadadze, Tolley 2011

Hassan, Schmidt-May, von Strauss 2012
Kluson 2012

Result reconfirmed in helicity decomposition:
de Rham, Gabadadze, Tolley 2011

de Rham, Gabadadze, Tolley, PRL, 106, 231101 (2011)

Now several other proofs:  Mehrdad Mirbaryi 2011, AJT to appear

to inflation[31–34]. This theory as a whole also appears to be part of a larger family of
massive theories of gravity[30] some of which first emerged in the study of AdS4/CFT3

correspondence.

2 dRGT Massive Gravity

The theory of massive gravity defined on an arbitrary reference metric fµν is just a
straightforward generalization of the theory proposed in [20]. The Lagrangian takes
the form of Einstein gravity with matter plus a potential that is a scalar function of
the two metrics

L = M2
Pl

√

− (4)g
(

(4)R + 2m2U(g, f)
)

+ LM . (2.1)

The most general potential U that has no ghosts [20] is build out of characteristic
polynomials of the eigenvalues of the tensor

Kµ
ν (g, f) = δµν −

√

gµαfαν (2.2)

so that
U(g,H) = U2 + α3U3 + α4U4, (2.3)

where the αn are free parameters, and

U2 =
(

[K]2 − [K2]
)

, (2.4)

U3 =
(

[K]3 − 3[K][K2] + 2[K3]
)

, (2.5)

U4 =
(

[K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4]
)

, (2.6)

where [. . .] represents the trace of a tensor with respect to the metric gµν . The absence
of ghost for this theory for a Minkowski background metric was shown in the decoupling
limit in [17, 18, 20], fully non-linearly beyond the decoupling limit in [21, 22], as well
as in the Stückelberg and helicity languages in [23, 24].

Varying with respect to the metric gµν we find the equations of motion

Gµν +m2Xµν = M−2
pl Tµν (2.7)

where

Xµν = −
[

Kgµν −Kµν + η

(

K2
µν −KKµν +

1

2
gµν
(

[K]2 − [K2]
)

)

(2.8)

+6ρ

(

K3
µν −KK2

µν +
1

2
Kµν

(

[K]2 − [K2]
)

−
1

6
gµν
(

[K]3 − 3[K][K2] + 2[K3]
)

)

]

.

Using the Bianchi identities, we obtain the following constraint on the metric

m2∇µXµν = 0, (2.9)

Here we have defined the coefficients α and β which are related to those of (2.3) by
α3 = −(−η + 1)/3 and α4 = −ρ/2 + (−η + 1)/12.
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dRGT model: allowed mass terms

Build out of 
unique 

combination

Mass terms are 
characteristic 
polynomials

Finite number of allowed 
interactions in any dimension

Interactions protected by a 
Nonrenormalization theorem

de Rham, Gabadadze, Tolley 2011

Kµ
� = �µ� �

�
gµ�f��

U(g, f) =
�

i

�iUi(K)

det(�µ
� + �Kµ

�) =
n=d�

n=0

�nUn(K)

     Generalized to arbitrary (dynamical - bigravity) 
reference metrics by Hassan, Rosen 2011



A No-Go
The simplest model (dRGT model - Massive Gravity in Minkowski) 

does not support spatially flat (or closed) cosmological solutions 
which are FRW meaning homogeneous and isotropic

Argument is simple: as in GR we have Friedman equation and 
Raychaudhuri equation - the 2nd follows from 1st by diff invariance

 But in MG diff invariance is broken and so 2nd does not follow from 
2st - consistency of two imposes condition on scale factor

where overdot denotes the time derivative ∂0. We emphasize that the quantity ḟ
appears in the Lagrangian only linearly. The same remains true if we keep nonzero
α3 and α4 - it is just the special structure of the terms L(n)

der(K), n = 2, 3, 4 in (12),
that ensures that ḟ enters only linearly! This is a consequence of the fact that in the
decoupling limit the equations of motion of this theory have no more than two time
derivatives acting on the helicity-0 field in particular (and on any field in general)
[3]. Away from the decoupling limit this is related to the constraint that was found
in Refs. [1, 4, 5]. Here we see the constraint for the FRW metric to all orders, by
taking variation of (14) w.r.t. f :

m2∂0(a
3 − a2) = 0 . (15)

This constraint makes time evolution of the scale factor impossible. As we have noted
above, keeping the K3 and K4 terms in (12) can only modify the polynomial function
of a on which ∂0 acts in (15). Therefore, there are no nontrivial homogeneous and
isotropic solutions in the theory of massive GR, defined by (12).

It is also instructive to show the absence of FRW solutions in the unitary gauge,
for which φa = δaµx

µ, and no f field appears in the action to begin with. In this gauge,
the most general homogeneous and isotropic ansatz involves the lapse function N(t),

ds2 = −N2(t)dt2 + a2(t)d%x2 , (16)

and the Lagrangian (12) with α3 = α4 = 0 reads

L = 3M2
Pl

(

−
aȧ2

N
−m2(a3 − a2) +m2N(2a3 − 3a2 + a)

)

. (17)

As can be straightforwardly verified, the condition (15) in this case arises as the
requirement of consistency of the equations of motion for the two fields, a and N
in (17). More specifically, one can obtain (15) by taking the difference between the
time-derivative of the e.o.m. for N and the e.o.m. for a. Technically, this is so
because the second term on the r.h.s. of (17) has no factors of N in it and the
constraint arises as the direct result of the Bianchi identity of GR.

We briefly note that the homogeneous and isotropic solutions would not be for-
bidden if the mass term were not an explicit constant, but instead emerged as a
VEV of some field-dependent function; i.e., if we replaced m2 → m2(σ) in (12),
where σ is a scalar field that also has its own kinetic and potential terms. Then,
variation w.r.t. f would give rise to a constraint

∂0(m
2(σ)(a3 − a)) = 0 , (18)

that relates time evolution of the scale factor to that of the σ field, but it does not
forbid homogeneous and isotropic solutions. Hence, the absence of the homogeneous
and isotropic solutions is an intrinsic property of massive GR with an explicit mass
term, as in (12). By this property it could potentially be distinguished observation-
ally from the theory with a dynamical mass m2(σ). Moreover, for the latter theory
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D’Amico et al 2011



A No-Go?
It is possible to find exact solutions in which the metric takes 

the form ...
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But this is achieved by introducing Stuckelberg fields which carry 
the inhomgeneities meaning that these solutions are not truly 

FRW!!!

in which a(t) satisfies a Friedman type equation
D’Amico et al 2011

Gratia et al 2012
Kobayashi et al 2012

Volkov 2011
Koyama et al 2011



Two paths
Accept inhomogeneities:

D’Amico, de Rham, Dubovsky, Gabadadze, Pirtskhalava, Tolley 
`Massive Cosmologies’ 2011

Not as bad as it sounds! Vainshtein 
mechanism should guarantee 
inhomogeneities unobservable before late 
times

We shall see that very probably this is the `correct’ solution

Inhomogenities only appear on scale set by inverse graviton mass



Two paths
Or modify assumptions to allow FRW:

Open Universe solutions: Gumruckcuogli et al 2011
Anisotropic solutions: Gumruckcuogli et al 2012

                   Felice et al 2012

* Make reference metric de Sitter - AJT and Fasiello - tomorrow   
 (for decoupling limit see de Rham, Renaux-Petel 2012 (today) also 
Berg et al 2012 (today) Alberte 2011)

* Make reference metric dynamical - Bigravity/Bimetric
von Strauss et al 2011
Comelli et al 2011
Crisostomi et al 2012



de Sitter MG and bigravity
Qualitatively for the present discussion there is no distinction 

between bigravity and de Sitter Massive gravity

This is because the second metric may not directly couple to 
our observable matter (absence of ghosts) other than having 

its own cosmological constant

AND observational consistency demands its Planck Mass is 
typically much higher

Thus for suitably low energies bigravity looks like 
MG on de Sitter (or Minkowski/AdS)

For pedagogy reasons I sha! present arguments for de Sitter massive gravity



Crux of problem
Although we can obtain FRW like solutions, number of 

issues ...

The `mass’ of a graviton gets dressed by the background
Generically the mass grows with increasing 

Thus the Vainshtein mechanism is more subtle!! We must 
send                 in away that compensates growth with 

Generalized Higuchi bound implies 

m ! 0

m2
dressed(H) > 2H2

Successful Vainshtein mechanism (recovery of GR at large H) and 
Higuchi bound are incompatible for FRW solutions  

Tolley and Fasiello (to appear tomorrow) 

H

H



Generalized Higuchi bound

Previous Work: 
Higuchi 1987, Deser and Waldron 2001 (de Sitter)
Grisa, Sorbo 2009 Generalized to FRW
Berkhahn et al 2010 (Similar results to above)

Tolley and Fasiello - tomorrow

However! These authors assumed the equivalence of the 
background FRW metric and reference metric - this is 
inconsistent with known behaviour of dRGT and de Sitter/
Bigravity generalization 

Necessary to use correct nonlinear theory to obtain result!

Grisa and Sorbo obtain: m2 > 2(H2 + Ḣ)

seemingly no problem in deccelerating universe ?!?!

m2 � 2H2



Sketch of argument

to inflation[31–34]. This theory as a whole also appears to be part of a larger family of
massive theories of gravity[30] some of which first emerged in the study of AdS4/CFT3

correspondence.

2 dRGT Massive Gravity

The theory of massive gravity defined on an arbitrary reference metric fµν is just a
straightforward generalization of the theory proposed in [20]. The Lagrangian takes
the form of Einstein gravity with matter plus a potential that is a scalar function of
the two metrics

L = M2
Pl

√

− (4)g
(

(4)R + 2m2U(g, f)
)

+ LM . (2.1)

The most general potential U that has no ghosts [20] is build out of characteristic
polynomials of the eigenvalues of the tensor

Kµ
ν (g, f) = δµν −

√

gµαfαν (2.2)

so that
U(g,H) = U2 + α3U3 + α4U4, (2.3)

where the αn are free parameters, and

U2 =
(

[K]2 − [K2]
)

, (2.4)

U3 =
(

[K]3 − 3[K][K2] + 2[K3]
)

, (2.5)

U4 =
(

[K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4]
)

, (2.6)

where [. . .] represents the trace of a tensor with respect to the metric gµν . The absence
of ghost for this theory for a Minkowski background metric was shown in the decoupling
limit in [17, 18, 20], fully non-linearly beyond the decoupling limit in [21, 22], as well
as in the Stückelberg and helicity languages in [23, 24].

Varying with respect to the metric gµν we find the equations of motion

Gµν +m2Xµν = M−2
pl Tµν (2.7)

where

Xµν = −
[

Kgµν −Kµν + η

(

K2
µν −KKµν +

1

2
gµν
(

[K]2 − [K2]
)

)

(2.8)

+6ρ

(

K3
µν −KK2

µν +
1

2
Kµν

(

[K]2 − [K2]
)

−
1

6
gµν
(

[K]3 − 3[K][K2] + 2[K3]
)

)

]

.

Using the Bianchi identities, we obtain the following constraint on the metric

m2∇µXµν = 0, (2.9)

Here we have defined the coefficients α and β which are related to those of (2.3) by
α3 = −(−η + 1)/3 and α4 = −ρ/2 + (−η + 1)/12.
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Starting point

For experts U1 is removed by tadpole condition and U0 is a c.c. 
which can be absorbed into definition of matter

fµ⌫ � de Sitter spacetime metric



Friedman equation

H2 =
1

3
⇢+m2(�� �2) +

1

3
m2↵3(3�

2 � �3) +
1

3
↵4m

2�3

� =
H

H0
� 1

⇢dark energy

H0 is Hubble parameter of reference metric



Dressed Mass and Higuchi

Generalized Higuchi bound is 

� =
H

H0
� 1

m2
dressed(H) > 2H2

m2
dressed(H) = m2(1 + �) (1� �(2 + ↵3(�� 2)� ↵4�))

This is a similar polynomial to what arises in the 
Friedman equation

arises from coefficient of kinetic term for helicity zero mode

L
helicity zero

/ �m2

dressed

(m2

dressed

� 2H2)(@⇡)2



Higuchi versus Vainshtein

Higuchi

� =
H

H0
� 1

m2
dressed(H) > 2H2

m2
dressed(H) = m2(1 + �) (1� �(2 + ↵3(�� 2)� ↵4�))

Vainshtein

⇢dark energy = 3m2(�� �2) +m2↵3(3�
2 � �3) + ↵4m

2�3

d

dt
⇢dark energy ⌧ d

dt
H2

If ↵3 � ↵4 6= 0

↵3 � ↵4 = 0

↵3 = ↵4 = 1

m2
dressed ⇠ ⇢dark energy ⇠ m2

H3
0

H3

m2
dressed ⇠ ⇢dark energy ⇠ m2

H2
0

H2

m2
dressed ⇠ ⇢dark energy ⇠ m2

H0
H

(generic)



Higuchi versus Vainshtein

Remarkably       drops our of generalized bound!!!! 

Likely a direct consequence of the ghost-free form 
(action expressible with only first derivatives - coefficient of 
helicity zero mode kinetic term is just a function of first 
derivatives of metric in Stueckelberg analysis)

so the window found by Grisa and Sorbo for deccelerating 
solutions                                     is not present

Ḣ

m2 > 2(H2 + Ḣ)

m2
dressed(H)� 2H2 = m2(1 + �) (1� �(2 + ↵3(�� 2)� ↵4�))� 2H2

0 (1 + �)2 � 0



Higuchi versus Vainshtein

the qualitative form of these results goes through in 
the case of bigravity where        is dynamical 

similar statement in todays paper Berg et al - today - 
however our result more general (does not require 

close to de Sitter)

H0

Their is no regime for the de Sitter MG/bigravity spatially 
flat cosmologies which is simultaneously obervationally 
acceptable and ghost-free as long as the helicity zero 
mode is present

Partia!y massless case is not included in this statement

m2
dressed(H)� 2H2 = m2(1 + �) (1� �(2 + ↵3(�� 2)� ↵4�))� 2H2

0 (1 + �)2 � 0



Resolution?
The most likely resolution to realise something like out universe in 
Massive Gravity and Bigravity models is to return to the 
inhomogenous solutions D’Amico et al 2011

Known exact solutions are self-accelerating type and sit in different 
branches than the generic solution - as yet the general solution - the 
one with all 5 degrees of freedom propagating which is continuously 
connected with the normal Minkowski vacuum is not known

Higuchi constraint is implied by representation theory of de Sitter 
group. Introducing inhomogenity in the metric breaks this relation



Reasons to be hopeful?

We can see the presence of the FRW solutions in the famous 
decoupling limit 

de Rham et al 2010
MP ! 1

⇤

3
3 = m2MP held fixed

tion, it leads to the usual ΛCDM - like cosmological expansion of the background
in the sub-horizon approximation used here. This is clear form the fact that the
stress-tensor (24) gives rise to a de Sitter background as was shown in the previous
subsection. Hence, in the comoving coordinate system – which differs from the one
used above – the invariant de Sitter space will be the self-accelerating solution.

All this can be reiterated by performing an explicit coordinate transformation
to the comoving coordinates. This will be done in two steps. In the so-called Fermi
normal coordinates, the FRW metric can be locally written in space and for all
times, as a small perturbation over Minkowski space-time:

ds2 = −[1 − (Ḣ +H2)x2]dt2 +

[

1−
1

2
H2x2

]

dx2 =
(

ηµν + hFRW
µν

)

dxµdxν , (25)

where the corrections to the above expression are suppressed by higher powers of
H2x2. The Fermi normal coordinates, on the other hand, are related to those used in
(14) (in which the FRWmetric is a small conformal deformation of Minkowski space-
time), by an infinitesimal gauge transformation [15]. The latter does not change the
expression (24), since T π

µν is invariant under infinitesimal gauge transformations in
the decoupling limit. On the other hand, the Fermi normal coordinates can be
transformed into the standard comoving coordinates (tc,xc) as follows [15]

tc = t−
1

2
H(t)x2, xc =

x

a(t)

[

1 +
1

4
H2(t)x2

]

. (26)

The stress-tensor of a perfect fluid, Tµν = diag(ρ(tc), a2(tc)p(tc)δij), transforms under
this change of coordinates (at the leading order inH2x2) into the following expression

Tµν =

(

ρ −H(ρ+ p)xi

−H(ρ+ p)xi pδij

)

,

where all quantities in the latter expression are evaluated at time t. Note that the
off-diagonal entries of the stress-tensor for the cosmological constant vanish in the
Fermi normal coordinates, the same is true for T π

µν as well. Hence, in all coordinate
systems used the expressions for the stress-tensor on the self-accelerated solution is
given by (24).

Not surprisingly, the corresponding cosmological equations coincide with the
conventional ones for the ΛCDM model, with the cosmological constant set by the
mass of the graviton

H2 =
ρ

3M2
Pl

+
C2m2

3
, (27)

Ḣ +H2 =
ä

a
= −

1

6M2
Pl

(ρ+ 3p) +
C2m2

3
. (28)

Here ρ and p denote the energy and pressure densities of matter and/or radiation,
and C2 ≡ 6q

[

−1
2 + a2q + a3q2

]

is a constant that appears in (24).
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The generic solution form for the helicity zero mode near x=0 
which is isotropic in this limit is 

⇡ ⇠ A(t) +B(t)x2

Equations of motion fix A and B - for example for pure cc source B=constant
A = �Bt2



Reasons to be hopeful?
de Rham, Gabadadze, Heisenberg, Pirtzkhalava 2010 - decoupling 

limitThis solution is closer to the usual GR de Sitter configuration and only exists if
a22 ≥ 3a1a3. The stability of this solution can be analyzed as previously by looking
at fluctuations around this background configuration,

π =
1

2
qdS Λ

3
3 x

2 + φ , (51)

hµν = −
1

2
H2

dS x
2 ηµν + χµν , (52)

Tµν = −ληµν + τµν . (53)

To second order in fluctuations, the resulting action is then of the form

L(2) = −
1

2
χµνEαβ

µν χαβ +
6H2

dSMPl

Λ3
3

(a2 + 3a3qdS)φ!φ+
1

MPl
χµντµν . (54)

It is interesting to point out again that the helicity-0 fluctuation φ then decouples
from matter sources at quadratic order (however the coupling reappears at the cubic
order). Stability of this solution is therefore ensured if the parameters satisfy one of
the following three constrains, (setting a1 = −1/2 and λ̃ > 0)

a2 < 0 and −
2a22
3

≤ a3 <
1− 3a2λ̃− (1− 2a2λ̃)3/2

3λ̃2
, (55)

or

a2 <
1

2λ̃
and a3 >

1− 3a2λ̃+ (1− 2a2λ̃)3/2

3λ̃2
, (56)

or

a2 ≥
1

2λ̃
and a3 > −

2

3
a22 . (57)

These are consistent with the results (22) found for the self-accelerating solution in
the absence of a cosmological constant. Moreover, the requirement of stability of
helicity-1 fluctuations does not impose further bounds on the parameters (see, dis-
cussions at the end of section 3.2). Notice here that in the presence of a cosmological
constant, the accelerating solution can be stable even when a3 = 0. This branch of
solutions therefore connects with the usual de Sitter one of GR.

4.2.3 Diagonalizable action

In section 3 we have emphasized the importance of the contribution of X(3)
µν for

the stability of the self-accelerating solution. However, in the presence of a nonzero
cosmological constant, this contribution is not a priori essential for stability of either
the degravitating or the de Sitter branches. Furthermore, since the helicity-0 and
-2 modes can be diagonalized at the nonlinear level when a3 = 0, as was explicitly
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theory discussed in the previous section, the nonlinear dynamics in a generic model
of massive gravity is governed by the scale

Λ5−4α
" = MPlm

4(1−α) . (31)

In such models, it has been shown [27] that the helicity-0 (π) and -2 (h̄µν) modes
satisfy the following equations in the decoupling limit,

−Eαβ
µν h̄αβ = −

1

MPl
Tµν , (32)

3!π −
18

Λ5−4α
"

(

3!(!1−απ)2 + · · ·
)

= −
T

MPl
, (33)

where the physical metric is given by gµν = ηµν +(h̄µν +πηµν)/MPl. In the presence
of a cosmological constant, Tµν = −ληµν , the solution for the helicity-2 mode is

h̄µν = −
λ

6MPl
xβx

β ηµν , (34)

which is the usual GR solution. One can now check the condition for the existence of
a (nearly) static solution towards which the geometry can relax at late times. In the
language of the decoupling limit, this would happen if the helicity-0 mode compen-
sates the helicity-2 mode contribution πηµν = −h̄µν to maintain the geometry flat
gµν = ηµν . However the configuration π = λx2/6MPl is precisely the solution of (33)
when the higher interactions vanish, i.e. 6MPl!π = −T = 8λ. As shown in [27],
such interactions cancel for π ∼ x2 only if α < 1/2, hence implying that a generic
theory of massive gravity amended with a nonzero CC can only have a static solu-
tion when α < 1/2. In particular, in this language the DGP model [4] corresponds
to α = 1/2 (see Ref. [7], but also [39]) hence explaining why this model does not
bear static solutions with a brane tension, while promoting it to higher dimensions
corresponds to a theory with α → 0 for which the usual codimension-two conical
solutions can accommodate a tension without acceleration, [40, 41, 42, 43, 44].

The above results hold true for a generic theory of massive gravity. We now
focus the analysis of the ghostless theory [16] reviewed in section 2, which strictly
speaking are not captured by the above α parametrization. The key difference in
the ghostless case is that interactions for the helicity-0 mode are governed by the
larger coupling scale Λ3 > Λ". The form of these interactions in the ghostless theory,
as well as the specific couplings to matter, play a crucial role in accommodating a
degravitating branch of solutions, and this without being plagued by any instability
at least in the decoupling limit.

4.2 Degravitation in ghostless massive gravity

For convenience we start by recalling the decoupling limit Lagrangian of (9) coupled
to an external source

L = −
1

2
hµνEαβ

µν hαβ + hµν
3
∑

n=1

an

Λ3(n−1)
3

X(n)
µν [Π] +

1

MPl
hµνTµν . (35)
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in terms of the dimensionless quantity λ̃ = λ/Λ3
3MPl. Notice that as long as the

parameter a3 is present, Eq. (42) has always at least one real root. There is therefore
a flat solution for arbitrarily large cosmological constant.

Let us now briefly comment on the stability of the flat solution, as this has
important consequences for the relaxation mechanism behind degravitation. We
consider the field fluctuations above the static solution,

π =
1

2
q0Λ

3
3 x

2 − φ/κ , (43)

Tµν = −ληµν + τµν , (44)

where q0 is related to λ via (42) and the coupling κ is determined by

κ = 2(a1 + 2a2q0 + 3a3q
2
0) . (45)

To the leading order, the action for these fluctuations is then simply given by

L(2) = −
1

2
hµνEαβ

µν hαβ −
1

2
hµνX(1)

µν [Φ] +
1

MPl
hµντµν , (46)

with Φµν = ∂µ∂νφ. The stability of this theory is better understood when working
in the Einstein frame where the helicity-0 and -2 modes decouple. This is achieved
by performing the change of variable,

hµν = h̄µν + φηµν , (47)

which brings the action to the following form

L(2) = −
1

2
h̄µνEαβ

µν h̄αβ +
3

2
φ!φ+

1

MPl

(

h̄µν + φ ηµν
)

τµν . (48)

Stability of the static solution is therefore manifest for any region of the parameter
space for which κ is real and does not vanish. As already mentioned, if a3 "= 0 there
is always a real solution to (42), which is therefore stable for κ "= 0. Furthermore,
direct calculations to the 6th order show that the helicity-1 fluctuations will have a
positive kinetic term as long as κ/(q0 − 1) > 0. This suggests the presence of a flat
late-time attractor solution for degravitation. The special case a3 = 0 is discussed
separately below.

4.2.2 de Sitter branch

In the presence of a cosmological constant, the field equations (40) and (41) also
admit a second branch of solutions; these connect with the self-accelerating branch
presented in section 3, and we refer to them as the de Sitter solutions. The param-
eters for these solutions should satisfy

a1 + 2a2qdS + 3a3q
2
dS = 0 , (49)

H2
dS =

λ

3M2
Pl

+
2Λ3

3

MPl

(

a1qdS + a2q
2
dS + a3q

3
dS

)

. (50)
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Reasons to be hopeful?

This solution is closer to the usual GR de Sitter configuration and only exists if
a22 ≥ 3a1a3. The stability of this solution can be analyzed as previously by looking
at fluctuations around this background configuration,

π =
1

2
qdS Λ

3
3 x

2 + φ , (51)

hµν = −
1

2
H2

dS x
2 ηµν + χµν , (52)

Tµν = −ληµν + τµν . (53)

To second order in fluctuations, the resulting action is then of the form

L(2) = −
1

2
χµνEαβ

µν χαβ +
6H2

dSMPl

Λ3
3

(a2 + 3a3qdS)φ!φ+
1

MPl
χµντµν . (54)

It is interesting to point out again that the helicity-0 fluctuation φ then decouples
from matter sources at quadratic order (however the coupling reappears at the cubic
order). Stability of this solution is therefore ensured if the parameters satisfy one of
the following three constrains, (setting a1 = −1/2 and λ̃ > 0)

a2 < 0 and −
2a22
3

≤ a3 <
1− 3a2λ̃− (1− 2a2λ̃)3/2

3λ̃2
, (55)

or

a2 <
1

2λ̃
and a3 >

1− 3a2λ̃+ (1− 2a2λ̃)3/2

3λ̃2
, (56)

or

a2 ≥
1

2λ̃
and a3 > −

2

3
a22 . (57)

These are consistent with the results (22) found for the self-accelerating solution in
the absence of a cosmological constant. Moreover, the requirement of stability of
helicity-1 fluctuations does not impose further bounds on the parameters (see, dis-
cussions at the end of section 3.2). Notice here that in the presence of a cosmological
constant, the accelerating solution can be stable even when a3 = 0. This branch of
solutions therefore connects with the usual de Sitter one of GR.

4.2.3 Diagonalizable action

In section 3 we have emphasized the importance of the contribution of X(3)
µν for

the stability of the self-accelerating solution. However, in the presence of a nonzero
cosmological constant, this contribution is not a priori essential for stability of either
the degravitating or the de Sitter branches. Furthermore, since the helicity-0 and
-2 modes can be diagonalized at the nonlinear level when a3 = 0, as was explicitly
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Decoupling limit implies existence of inhomogenous 
cosmological solutions for massive gravity in Minkowski 
(dRGT) which for suitable range of parameters of free 
from Higuchi bound 

Remarkable helicity zero does not couple to matter perts - 
no vDVZ discontinuity

Absence of Higuchi bound frees up possibility for 
background Vainshtein effect - consistency with known 
cosmology



Summary
• FRW (fully homogeneous and isotropic) solutions 

are a problem in Massive Gravity and Bigravity

• Even when they exist - conflict between 
requirements of Vainshtein effect in background 
and Higuchi bound

• Generalized Higuchi bound is insensitive to 
equation of state for matter i.e.      making it more 
stringent than previously expected

• Most plausible resolution is inhomogenities - even 
in the case of bigravity - decoupling limit analysis 
already suggests OK for range of parameters

Ḣ


