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Cosmic geometry: Expansion history constraints 
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(a) Constraints upon !M and !" in the consensus model (cosmological constant/cold dark matter model)
using baryon acoustic oscillations (BAO), cosmic microwave background (CMB), and supernovae (SNe)
measurements. (b) Constraints upon !M and constant w in the fiducial dark energy model using the same
data sets. Reproduced from Kowalski et al. (2008).

in these two models; although the mix of data used here differs from that in Table 1 (supernovae
are included in Figure 8), the resulting constraints are consistent.

Regarding Sandage’s two numbers, H0 and q0, Table 1 reflects both good agreement with and
a smaller uncertainty than the direct H0 measurement based upon the extragalactic distance scale,
H0 = 72 ± 8 km/s/Mpc (Freedman et al. 2001). However, the parameter values in Table 1 are
predicated on the correctness of the CDM paradigm for structure formation. The entries for q0

in Table 1 are derived from the other parameters using Equation 6. Direct determinations of q0

require either ultraprecise distances to objects at low redshift or precise distances to objects at
moderate redshift. The former are still beyond reach, whereas for the latter the H0/q0 expansion
is not valid.

If we go beyond the restrictive assumptions of these two models, allowing both curvature and w

to be free parameters, then the parameter values shift slightly and the errors increase, as expected.
In this case, combining WMAP, SDSS, 2dFGRS (Two-Degree-Field Galaxy Redshift Survey),
and SNe Ia data, Spergel et al. (2007) yield w = −1.08 ± 0.12 and !0 = 1.026+0.016

−0.015, whereas
WMAP + SDSS only bounds H0 to the range 61 − 84 km/s/Mpc at 95% confidence (Tegmark
et al. 2006), comparable to the accuracy of the HST Key Project measurement (Freedman et al.
2001).

Once we abandon the assumption that w = −1, there are no strong theoretical reasons for
restricting our attention to constant w. A widely used and simple form that accommodates evolu-
tion is w = w0 + (1 − a)wa (see Section 6). Future surveys with greater reach than that of present
experiments will aim to constrain models in which !M, !DE, w0, and wa are all free parame-
ters (see Section 8). We note that the current observational constraints on such models are quite
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Understanding cosmic acceleration 

Broad aim =Phenomenology  
Distinguish which sector: new gravity, new matter or Λ? 

Inhomogeneous 
universe? 

New matter? 
interactions? 

Deviations 
from GR? 

Λ?	



k2φ = −4πGQa2ρ∆ (18)

1
a

d(aθ)
dτ

= k2 (1 + R)
2

ψ (19)

k2ψ = k2Rφ− shear stresses (20)

R(a) =
2

3β(a)− 1
(21)

Q(a) = 1− 1
3β(a)

(22)

k2 [α̇ + (1 + R)Hα−Rη] = −12πGa2ρ(1 + w)σ (23)

ds2 = −a(τ)2[ (24)

ds2 = −a(τ)2[1 + 2ψ(x, t)]dτ2 + a(τ)2[1− 2φ(x, t)]dx2 (25)

Gµν = 8πGTµν (26)

f(gµν , R, Rµν) + Gµν = 8πGTmat
µν (27)

Gµν = 8πG
�
Tmat

µν + TDE
µν

�
(28)
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d4x
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1
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√
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1
16πG

(R + f2(R)) +
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d4x
√
−gLmat (30)

S =
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d4x
√
−g

1
16πG

f1(φ)R +
�

d4x
√
−gLmat (31)

S =
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d4x
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−g

1
16πG

R +
�

d4x
√
−gLmat,DE (32)

I-2

Cosmic acceleration = a modification of Einstein’s equations 

Ambitious aim = Theoretical model 
Learn something more about the underlying theory? 
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Distinguishing with expansion history 

•  Alter Friedmann and acceleration equations at late times 

e.g. f(R) gravity 

e.g. DGP gravity 

S =
�

d4x
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−g

1
16πG

R +
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d4x
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−gLmat (30)
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1
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(33)

S =
�

d4x
√
−g

1
16πG
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d5x
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−g(5) m
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p

2
R(5) +
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ä

a
= −4πG

3
(ρm + 3Pm) (39)

ä

a
= −4πG

3
(ρ + 3P + ρDE + 3PDE) (40)

stuff +
ä

a
= −4πG

3
(ρm + 3Pm) (41)

I-3
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ä

a
= −4πG

3
(ρ + 3P )

−Ḣ
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There are benefits to asking more questions… 
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Three groups of extra galactic observations  
for testing gravity 

I: Background expansion 
II: Growth, up to some 

normalization 
III: Growth directly 

CMB angular diameter 
distance 

Supernovae luminosity 
distance  

BAO angular/radial scale 

Galaxy autocorrelations 

Galaxy – ISW x-corrln 

Xray and SZ galaxy cluster 
measurements 

Ly-alpha measurements 

CMB ISW autocorrelation 

Weak lensing 
autocorrelation 

Peculiar velocity distribution/ 
bulk flows 
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Phenomenological model of modified gravity	



•  Perturbed metric 

•  Aim to describe phenomenological properties common to theories 

•  A modification to Poisson’s equation, Q  

Q≠1: can be mimicked by additional (dark energy?) perturbations, or 
modified dark matter evolution 

•  An inequality between Newton’s potentials, R 

R≠1: not easily mimicked.  
–  potential smoking gun for modified gravity? 
–  Significant stresses exceptionally hard to create in non-relativistic fluids 

e.g. DM and dark energy.  

k2φ = −4πGQa2ρ∆

ψ = Rφ

ds2 = −(1 + 2ψ)dt2 + a2(1− 2φ)dx2
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Cosmological tests of gravity 

•  Non-relativistic tracers: Galaxy positions and 
motions  
–  Measure ψ ∼ Gmat =QRGN 
–  Biasing of tracer (galaxy)  issue 

•  Relativistic tracers: Weak lensing and CMB  
–  Sensitive to (φ+ψ) ∼Glight =Q(1+R)GN and time 

derivs 
–  In theory direct tracer of potential, but still 

uncertainties 
•  stochasticity relating luminous and all 

mass rg Dekel & Lahav ’99 
•  plenty of systematics (photoz, IAs…) 

•  Complementarity of tracers key to testing 
gravity 

δg = bδm
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Complications : photometric redshifts 

•  Faster but less precise alternative to 
spectroscopic z 

•  Essential for tomography  
–  Measuring evolution on dark energy 
–  Cross-correlations between z bins 

useful for disentangling systematics 
and cosmology 

•  Sensitive to modeling  
–  galaxy distribution,  
–  photo-z statistical accuracy, 

systematic offsets and catastrophic 
errors 

 30
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Complications : Weak lensing distortions 

•  2D map on the sky of galaxy 
ellipticities 

•  Correlation in ellipticities 
measured statistically 
–  Random ellipticities not an issue 
–  Instrumental & astrophysical 

“contaminants” – shear 
calibration uncertainties 

–  Correlated alignments need to 
be modeled and disentangled 
from cosmological shear 

Disentangling dark energy and cosmic tests of gravity from weak lensing systematics 5

Survey Parameters Stage III Stage IV

Area(sq. deg.) 5000 20000√
2z0 0.8 0.9

zmin 0.001 0.001
zmax 3 3
Ng 10 35
Nph 5 10
σz0 0.07 0.05

γrms 0.23 0.35

Table 1. Summary of the photometric large scale structure sur-
vey specifications assumed for the Stage III and Stage IV survey:
survey area; median survey redshift,

√
2z0; minimum and maxi-

mum redshifts observed, zmin and zmax; number of galaxies, per
square arcminute, Ng; number of photometric redshift bins, Nph;
standard photometric redshift measurement error at z = 0, σz0,
and the r.m.s. shear measurement error, γrms.

ν(GHz) 100 143 217

fsky 0.8 0.8 0.8
θF WHM (arc min) 10.7 8.0 5.5

σT (µK) 5.4 6.0 13.1
σE(µK) - 11.4 26.7

Table 2. CMB survey specifications for a Planck-like survey. We
model this on the temperature, T , and E-mode polarisation spec-
ifications from three lowest frequency bands for the Planck HFI
instrument.

term and the mass source term must be different

PδG(k, χ) =

»

Q(χ)(R(χ) + 1)
2

–

Pδδ(k, χ), (22)

PGG(k, χ) =

»

Q(χ)(R(χ) + 1)
2

–2

Pδδ(k, χ). (23)

The growth of the dimensionless power spectrum Pδδ is it-
self dependent on modified gravity parameters Q and R, as
summarised by (7) and (8).

To obtain the lensing and galaxy position correlations in
the modified gravity scenarios we integrate the full equations
of motion using a modified version of CAMB (Lewis et al.
2000).

To support other researchers investigating the role of
modified gravity models on large scale structure observa-
tions, without having to integrate the full perturbation equa-
tions, we provide a fitting function in the Appendix for
the ratio, rfit(k, z), between a fiducial ΛCDM linear matter
power spectrum, Pδδ,ΛCDM (k, z) and the one for a modified
gravity model described in 2.1, parameterised by Q0, R0 and
s:

rfit(k, z; Q0, R0, s) ≡
Pδδ,fit(k, z; Q0, R0, s)

Pδδ,ΛCDM (k, z)
. (24)

2.3 Survey specifications

We consider the impact of including IAs on cosmological
constraints for a near-term Dark Energy Task Force (DETF)
Albrecht et al. (2006) Stage III survey, such as DES or
SuMIRe, and a longer-term Stage IV survey, such as Eu-
clid, LSST or WFIRST.

The noise for each survey is modeled as statistical errors
given by

N
εiεj

# = δij
γ2

rms

2nj
, (25)

N
ninj

# = δij
1
nj

, (26)

N
niεj

# = 0, (27)

where γrms is the root mean square uncertainty in the shear
measurement of the galaxies and nj is number of galaxies
per steradian in jth photometric redshift bin so

P

i ni = Ng .
The survey specifications assumed in our analysis for

the Stage III and IV surveys are given in Table 1.
We include complementary constraints from tempera-

ture (T) and E-mode polarisation (E) measurements from
a Planck-like CMB survey up to l = 3000. As summarised
in Table 2, we model this by considering the three lowest
frequency bands of the Planck HFI instrument, three chan-
nels for temperature data and 2 for E mode polarisation,as
described in the Planck Bluebook 7. We assume each fre-
quency channel has Gaussian beams of width θF WHM and
error in X = T, E of σX , so that the noise in channel c is
given by

NXX,c
# = (σX,cθF WHM,c)

2 e#(#+1)θ2
F WHM,c/8 ln(2), (28)

and over all channels,

NXX
# =

"

X

c

“

NXX
#,c

”

−1
#

−1

. (29)

2.4 Intrinsic Alignments

Cosmic shear describes the distortion of the image of a dis-
tant galaxy due to the bending of light from that galaxy
by gravity as it passes massive large-scale structure. For a
galaxy in the ith photo-z bin, the observed ellipticity, ε, of
the galaxy can be written as a sum of three independent
contributions: the cosmic shear γG, the intrinsic, non-lensed
shape of the galaxy, γI , and apparent ellipticity introduced
through instrumental and foreground noise, εrnd,

εi(θ) = γi
G(θ) + γi

I(θ) + εi
rnd(θ). (30)

The cosmic shear signal γG is very small, and we cannot
measure directly the intrinsic shear of any individual galaxy.
To recover the cosmic shear, therefore, one averages over a
number of galaxies on a small patch on a sky. Assuming
that their intrinsic ellipticities are distributed randomly, and
that their light passes by similar large scale structure, the
intrinsic ellipticities cancel in the two-point function, and
we are left with the cosmic shear signal.

In reality, the assumption that intrinsic ellipticities are
randomly distributed on the sky is inaccurate. There are
two strains of intrinsic alignment of galaxy ellipticities, both
arising from the same physics of galaxy formation.

The measured weak lensing signal reflects a correlation
in shapes arising from distant galaxies passing near the same
foreground gravitational lens. However, if the background

7 www.rssd.esa.int/SA/PLANCK/docs/Bluebook − ESA −
SCI(2005)1 V 2.pdf

c© 2009 RAS, MNRAS 000, 1–18

Credit: Williamson, Oluseyi, Roe 2007 
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Complications : Intrinsic alignments 

•  Significant astrophysical systematic 

•  Galaxies align in the potential gradient of their host halo 

��i�j� = �γi
Gγj

G� + �γi
Gγj

I � + �γi
Iγ

j
G� + �γi

Iγ
j
I �

Observed Cosmological 
(GG)  

Credit: Benjamin Joachimi, iCosmo 

Correlation: Intrinsic (II)  

GI shear (anti) correlation 
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≈	
  

Cross- correlations and tomography: 
break degeneracy between systematics and theory 

Photo z bin, i Photo z bin, i 

Plots of CXiYi
l and CX5Yi

l

MG	
  and	
  IA	
  have	
  different	
  z	
  
dependent	
  signatures	
  

Laszlo, Bean, Kirk, Bridle, 2012 
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≈	
  

Current constraints 

•  Multiple data 
–  WMAP CMB,  
–  SDSS LRG auto  
–  SDSS-WMAP ISW cross correlation  
–  COSMOS weak lensing,  
–  Union SN1a 

•  ISW + ISW-galaxy correlations 
drive constraints 

•  Principal degeneracy  
–  (φ+ψ)direction ~Q(1+R)/2 

•  “Figure of Merit” 
–  1/error ellipse area 
–  MG FoM ~ 0.03 

Bean & Tangmatitham 2010 
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What about future surveys? 

•  Fisher matrix analysis = Inverse covariance (error) matrix 

•  Assumed cosmology and parameterization 

•  Datasets  

•  Survey specifications 
–  near future (stage III) and end of decade (stage IV) surveys 
–  Stage III = Planck CMB + DES-like imaging + BOSS spectroscopic surveys 
–  Stage IV = Planck CMB + EUCLID-like  imaging and spectroscopy 

t = {CTT
� , CTE

� , CEE
� , CTg1

� , ..., CEg1
� , ...Cg1g1

� , Cg1g2,
� , ..., C

κNph
κNph

,

� }

Fij =
∂ta
∂pi

Cov−1
ab

∂tb
∂pj

Cov−1
ij =

p = {Ωbh
2,Ωmh2,Ωk, τ, w0, wa, Q0, Q0(1 + R0)/2, ns,∆2

R(k0),
+systematic nuisance parameters}
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Forecasting:  what you put in=what you get out 

•  Figures of merit /Fisher insightful but  

•  Model dependent – e.g. w0/wa or functions of z? 

•  Systematic errors difficult but important! 
–  Instrumental e.g. calibration uncertainties 

•  Internal cross-checks: inter-filter, concurrent & repetition ≠ redundancy 

–  Modeling: e.g. Photo z modeling errors, nonlinearity 
•  Access to ground based facilities,  
•  Training sets, simulation suites 

–  Astrophysical: e.g. IAs , Hα z distribution, galaxy bias, baryonic effects 
•  At what scale should one truncate the analysis? 
•  Analytical modeling, gridded k& z bins, simulations? 

•  Buyer beware: risky to compare FoM unless apples-for-apples 
treatment 
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Sensitivity to theory and systematics 

MG no IA 

GR no IA 

MG with IA systematic error 

GR with IA systematic error 

95% confidence contours 
w0 

wa 

Q0 

Q0 (1+R0 )/2 

w0 wa Q0 
Laszlo, Bean, Kirk, Bridle, 2012 

ΩΛ	
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Impact of cross-correlations: 
reducing systematics, breaking theory degeneracies 

Laszlo, Bean, Kirk, Bridle, MNRAS 2012 
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Assumptions about bias and IA model 

Number of k and z bins for bias 
& IA nuisance parameters 

Laszlo, Bean, Kirk, Bridle, MNRAS 2012 

z	
  

k	
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*If* you understand non-linear scales  
they could make a big difference 

Laszlo, Bean, Kirk, Bridle, MNRAS 2012 

On scales <~ a few Mpc 
•  Baryonic effects? 
•  Non-linear modeling? 
•  Screening effects? 

Include small scale 
modeling uncertainties in 
forecasts. 
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Ways to modify gravity? 

•  Scalar tensor gravity = simple models we can model effects for 

•  Active area of research, many different options, no solutions, yet 

•  Common theme: A scalar degree of freedom 

GR 

f(R) gravity 

Scalar tensor gravity 

Higher dimensional gravity e.g. DGP 
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Effective field theory of acceleration 

•  Can we tie phenomenology/data a step closer to theory? 

•  Write a general action as an expansion in derivative powers 

–  a1,a2 etc are all free functions of φ	


–  non-minimally coupled to metric in Einstein frame,  “modified gravity” 

•  What observational properties might this type of action have? 

Park, Watson, Zurek 2011 
Bloomfield & Flanagan 2012  

higher derivatives, and so it suffices for the purpose of attempting to classify general theories

of dark energy (see Appendix C).

5. Another issue that arises with respect to the higher derivative terms is the following. Is

it really necessary to include such terms in an action when trying to write down the most

general theory of gravity and a scalar field, in a derivative expansion? Weinberg [18]

suggested that perhaps a more general class of theories is generated by including these

terms and performing a reduction of order procedure on them, rather than by omitting

them. However, since it is ultimately possible to obtain a theory that is perturbatively

equivalent to the higher-derivative theory, and which has second order equations of motion,

it should be possible just to write down the action for this reduced theory. In other words, an

equivalent class of theories should be obtained simply by omitting all the higher-derivative

terms from the start. We show explicitly in Sec. 4 that this is the case for the class of

theories considered here.

6. We fix the remaining field redefinition freedom by choosing a “gauge” in field space, thus

fixing the action uniquely (see Sec. 4.2).

1.3 Results and Implications

Our final action is [Eq. (4.5) below]

S =

�
d4x

√
−g

�
m2

p

2
R− 1

2
(∇φ)2 − U(φ)

�
+ Sm[e

α(φ)gαβ ,ψm]

+ �

�
d4x

√
−g

�
a1(∇φ)4 + b2T (∇φ)2 + c1G

µν∇µφ∇νφ

+ d3
�
R2 − 4RµνRµν +RµνσρR

µνσρ
�
+ d4�

µνλρC αβ
µν Cλραβ + e1T

µνTµν + e2T
2

�
. (1.2)

Here the coefficients a1, b2 etc. are arbitrary functions of φ. The corresponding equations of

motion do not contain any higher derivative terms. This result generalizes that of Weinberg [18]

to include couplings to matter.

We can summarize our key results as follows:

• The most general action contains nine free functions of φ: U,α, a1, b2, c1, d3, d4, e1, e2, as

compared to the four functions that are needed when matter is not present [18].

• There are a variety of different forms of the final theory that can be obtained using field

redefinitions. In particular some of the matter-coupling terms in the action can be re-

expressed as terms that involve only the quintessence field and metric. Specifically, the

term T (∇φ)2 term could be eliminated in favor of �φ(∇φ)2, the (∇φ)4 could be eliminated

in favor of a term Tµν∇µφ∇νφ, or the Gµν∇µφ∇νφ term could be eliminated in favor of a

term Tµν∇µφ∇νφ (see Sec. 4.2).

• As mentioned above, one obtains the correct final action if one excludes throughout the

calculation all higher-derivative terms.
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Effective field theory of acceleration 

•  A subset of terms particularly relevant to late time evolution 
 (Work with Eva-Marie Mueller and Scott Watson) 

–  Canonical scalar field 
–  Non-minimally coupled matter 
–  A quartic term 
–  A Gauss-Bonnet (GB) term 
–  Other terms here well constrained by early time effects 
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compared to the four functions that are needed when matter is not present [18].

• There are a variety of different forms of the final theory that can be obtained using field
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•  Study attractor behavior of this action 

•  Effect on Friedmann and equations 

Effects of extensions to minimally coupled scalar 

3M
2
p H

2 = ρm(φ) + ργ +
1
2
φ̇2 + V (φ) + 24φ̇f

�(φ)H3 + 3X
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To attract or not? A matter of effective potentials 

•  Potentials with exponential or power law forms allow attractor solutions 
–  Independence to initial conditions (for better or worse e.g. f(R) 

Amendola et al 2007) 
–  Transitions from matter to accelerative era 

•  Can postulate potentials that deny attractors, and retrofit to LCDM 
background. 
–  Evades disadvantageous attractor behavior e.g. f(R)  Hu and 

Sawicki 2007 

2

and complement them in a very different range in cur-
vature. We then analyze local tests of gravity in §III
and show that solar-system tests alone are fairly easy to
evade, provided gravity behaves similarly to general rela-
tivity in the galaxy. However, if cosmological deviations
from general relativity are required to be large, the lat-
ter condition is satisfied only with extreme and testable
changes to the galactic halo. We discuss these results in
§IV.

II. f(R) COSMOLOGY

In this section, we discuss the cosmological impact of
f(R) models of the acceleration. We begin in §II A by in-
troducing a class of models that accelerate the expansion
without a true cosmological constant but nonetheless in-
cludes the phenomenology of ΛCDM as a limiting case.
We then describe the background equations of motion
(§II B) and their representation as an equation for the
scalar degree of freedom (§II C). Finally, we calculate
the expansion history (§II D) and linear power spectrum
(§II E) in our class of f(R) models.

A. Model

We consider a modification to the Einstein-Hilbert ac-
tion of the form [84]

S =

∫

d4x
√
−g

[

R + f(R)

2κ2
+ Lm

]

, (1)

where R is the Ricci scalar, which we will refer to as the
curvature, κ2 ≡ 8πG, and Lm is the matter Lagrangian.
Note that a constant f is simply a cosmological constant.
We work in the Jordan frame throughout this paper.

We choose the functional form of f(R) to satisfy cer-
tain observationally desirable properties. Firstly, the cos-
mology should mimic ΛCDM in the high-redshift regime
where it is well-tested by the CMB. Secondly, it should
accelerate the expansion at low redshift with an expan-
sion history that is close to ΛCDM, but without a true
cosmological constant. Thirdly, there should be sufficient
degrees of freedom in the parametrization to encompass
as broad a range of low-redshift phenomena as is cur-
rently observationally acceptable. Finally, for the pur-
poses of constraining small deviations from general rela-
tivity with cosmological and solar-system tests, it should
include the phenomenology of ΛCDM as a limiting case.

These requirements suggest that we take

lim
R→∞

f(R) = const. ,

lim
R→0

f(R) = 0 , (2)

which can be satisfied by a general class of broken power
law models

f(R) = −m2 c1(R/m2)n

c2(R/m2)n + 1
, (3)

R/m2

| f
(R
)| 
/m

2  

10.10.010.001 10 100 1000
0

5

10

15

n=1

n=4

|fR0|=0.01

FIG. 1: Functional form of f(R) for n = 1, 4, with normaliza-
tion parameters c1, c2 given by |fR0| = 0.01 and a matching to
ΛCDM densities (see §II D). These functions transition from
zero to a constant as R exceeds m2. The sharpness of the tran-
sition increases with n and its position increases with |fR0|.
During cosmological expansion, the background only reaches
R/m2 ∼ 40 for |fR0| " 1 and so the functional dependence
for smaller R/m2 has no impact on the phenomenology.

with n > 0, and for convenience we take the mass scale

m2 ≡
κ2ρ̄0

3
= (8315Mpc)−2

(

Ωmh2

0.13

)

, (4)

where ρ̄0 = ρ̄(ln a = 0) is the average density today. c1

and c2 are dimensionless parameters. It is useful to note
that

κ2ρ

m2
= 1.228× 1030

(

ρ

1g cm−3

) (

Ωmh2

0.13

)−1

. (5)

The sign of f(R) is chosen so that its second derivative

fRR ≡
d2f(R)

dR2
> 0 (6)

for R % m2, to ensure that, at high density, the solu-
tion is stable at high-curvature [61]. This condition also
implies that cosmological tests at high redshift remain
the same as in general relativity (GR). For example, the
physical matter density Ωmh2 inferred from the CMB us-
ing GR remains valid for the f(R) models. As such, m is
a better choice of scale than H0 since it does not vary for
f(R) models in this class. A few examples of the f(R)
functions are shown in Fig. 1.

There is no true cosmological constant introduced in
this class, unlike in the models of [85]. However, at cur-
vatures high compared with m2, f(R) may be expanded
as

lim
m2/R→0

f(R) ≈ −
c1

c2
m2 +

c1

c2
2

m2

(

m2

R

)n

. (7)

Thus the limiting case of c1/c2
2 → 0 at fixed c1/c2 is a cos-

mological constant in both cosmological and local tests
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FIG. 1: Examples of evolution of the effective equation of state, weff , in coupled scalar field dark matter models with an
exponential potential V (φ) ∝ exp(−φ/Mp) (left panel) and a power law potential V (φ) ∝ 1/φ (right panel). Cosmological
parameters are fixed to H0 = 70, Ωc = 0.25, Ωb = 0.05, and C = 0.1 (black) and C = 0.5 (red). Both models follow the
coupling dependent attractor in the matter dominated era and asymptote to coupling independent attractors at late times.
The timing of the transition between these two attractors is sensitive to both the potential and coupling parameters. For
the exponential potential the dynamical attractor leads to a negligible dependence on initial conditions, shown here through
comparing evolution with two different initial values of φi ≡ φ(a = 10−8), φi = 1Mp (full) and 10−10Mp (dashed). For the
power law potential, however, a sensitivity to initial conditions can exist in the transition era. This is accounted for in the
analysis by marginalizing over initial conditions.

As shown in Fig. 1, for the exponential potential the
attractor behavior quickly takes over, and the initial con-
ditions have no effect on the dynamical evolution. In the
case of the power law potential, however, we find there
can still remain some sensitivity to the initial value of the
scalar field during the transition between matter domi-
nated and accelerative attractors. As discussed in section
III C, we account for this in the analysis by marginalizing
over the initial value of φ.

B. Evolution of linearized cosmological
perturbations

As well as background evolution, we are also interested
in the predicted evolution of density perturbations. We
write the inhomogeneous density and scalar field as

ρc(x, τ) = ρc(τ)(1 + δc(x, τ)), (3.20a)

φ(x, τ) = φ(τ) + ϕ(x, τ). (3.20b)

We use the notation of Ref. [81] to describe the perturbed
metric in synchronous gauge in terms of two functions
η(τ) and h(τ). The four independent components of the
Einstein equation are then

2k2η −Hḣ = −a2eαρc(δ + α′ϕ) − a2V ′ϕ

−φ̇ϕ̇, (3.21a)

2k2η̇ = a2eαρcθc + k2φ̇ϕ, (3.21b)

ḧ + 2Hḣ − 2k2η = −3φ̇ϕ̇ + 3a2V ′ϕ, (3.21c)

and

6η̈ + ḧ + 2H(ḣ + 6η̇) − 2k2η = 0. (3.22)

Here k is the comoving wavevector and θc = ikjvj
c is the

gradient of the CDM peculiar velocity, vc. Also we have
specialized to units with Mp = 1. We include just the
effects of CDM and the scalar field, and neglect baryons
and radiation, for simplicity. The perturbed fluid equa-
tions are

δ̇c +
1

2
ḣ + θc = 0, (3.23)

d

dτ
(aeαθc) = ak2α′eαϕ, (3.24)

ϕ̈ + 2Hϕ̇ +
[

k2 + a2V ′′ + a2eαρc

(

α′′ + (α′)2
)]

ϕ

= −
1

2
ḣφ̇ − a2α′eαδcρc. (3.25)

There exists an extra gauge degree of freedom that
preserves synchronous gauge, given by the the coordinate
transformations

τ → τ +
c0

a
R[eik·x], (3.26)

xj → xj + kc0R[ik̂je
ik·x]

∫

dτ

a
, (3.27)

where c0 is a constant and k̂k = kj/k. Under this trans-
formation the metric and matter perturbations transform

RB, Flanagan, Laszlo, 
Trodden 2008 
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Effect on cosmological attractors 

x =
1

MpH

φ̇√
6
, y =

1
MpH

√
V√
3

, z =
1

MpH

√
ργ√
3

,

•  Express dynamical equations in terms of dimensionless parameters 

•  Find if stationary solutions exist x’=y’=z’=µ’=0 

µGB ≡
f

�
H

2

Mp
µX ≡ X

3M2
p H2

= 12βx
4

Gauss-Bonnet attractor notes - Eva-Maria Mueller I-4

Figure 1: Black solid line: λCDM , black dashed line: F(R), red dashed line: Gauss-Bonnet.

Lower panel: blue dashed line: ΩGB only, red dashed line: radiation - matter - scalar (kinetic +

potential). This plot is for λ = 4 and α = 20. Here H0 = 71km/s/Mpc and Ωm(today) = 0.27.

• In Koivisto & Mota they dont have this bump, but actually I don’t understand their matter

dominated era: Ωφ �= 0.1875 How do they get this scaling solution??

• I need y �= 0 and x �= 0 during the matter dominated era to get H0 = 71km/s/Mpc. If not,

I need to choose f0 so big that it messes up the radiation dominated era. As explained later

f0V0 needs to be around a certain value to get the GB exit at a=1. This can be achieved by

either increasing V0 or f0. But if you increase V0 you end up with Ωφ �= 0 during the matter

dominated era as in Fig.1 .

F(R)	
  

LCDM	
  

GB	
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Evolutionary attractor 

•  Matter dominated era: NMC and kinetic terms important 
–  NMC cosmic grease  w >0 
–  Quartic term adds to Hubble drag, acts to slow expansion 

•  Accelerative era:  
–  GB term gives an accelerative attractor (Koivisto and Mota 2006) 

–  In absence of GB term quartic allows acceleration for broader ranges 
of potentials with λ>2 

x =
2
3
Ceff (C, β) y = 0, z = 0, µGB = 0

x = 0, y = 1, µGB =
λ

8
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Matter era 

Paper in prep with Eva-Marie Mueller and Scott Watson 
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Accelerative era 

Paper in prep with Eva-Marie Mueller and Scott Watson 
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Impacts on geometric cosmological constraints 

Notes : EFT– Eva-Maria Mueller 22.2.2012

Constraints on beta and C

Projecting into the β = 0 plane, C varies around ±0.03. The red contours in the second diagram show a
variation of ±0.04, so a little bit bigger. It might be that I need to run the ”C only” mcmc a bit longer. At β = 1
C varies around ±0.9 which is pretty consistent with the second plot.

1

Geometric constraints  CMB + BAO + SN 

Bean, Flanagan, Laszlo,Trodden 2008 
Paper in prep with Eva-Marie Mueller and Scott Watson 

Ωm	
  

+ quartic 

w/o quartic 

Einstein	
  frame	
  (just	
  coupling	
  to	
  CDM)	
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FIG. 3: Joint 68% (dark shaded) and 95% (light shaded) constraints using combined WMAP CMB, SDSS matter power
spectrum, SDSS and 2dFGRS baryon acoustic oscillation, ‘union’ type 1a supernovae datasets and HST H0 prior for the power
law potential (blue) and exponential potential (red) for the the fractional matter density, Ωm and the effective scalar equation
of state, wφ, (left panel), and the coupling, C (right panel).

model with Ωm = 0.25, ΩΛ = 0.75 and with the same
Hubble constant as the theory model. We also use con-
straints on the expansion history from the Baryon Acous-
tic Oscillation data of the 2dFRGS and SDSS surveys
[11], based on measurements of the ratio of the sound
horizon at last scattering, rs(z∗), to the distance mea-
sure dV (z) at z = 0.2 and z = 0.35. Since the dynamical
attractor solutions, in the presence of a non-minimal cou-
pling, can alter the background evolution in the matter
dominated era, one finds that the redshift of last scat-
tering, z∗, can no longer be accurately estimated using
the fitting formula of Hu and Sugiyama [85]. Instead
we calculate the redshift of maximum visibility and use
this as the appropriate measure for the redshift of last
scattering.

In Figure 2 we show the complementary 2D marginal-
ized constraints for the exponential potential model in
light of the various cosmological datasets. The CMB
data (along with the HST prior on H0) provide the best
individual constraint on the coupling strength with 1D
marginalized constraints |C| ≤ 0.13 at the 95% confi-
dence level (c.l.). The Type 1a supernovae alone provide
only weak constraints on both the coupling and on the
total matter density in a non-minimally coupled model.
This is because the coupling allows a late time, cosmo-
logically consistent expansion with weff ≈ Ωφwφ ∼ −0.7
to be generated by a strongly phantom-like model, with
wφ % −1 and Ωφ ≈ 0, where

wφ ≡
1
2 φ̇2 − V (φ)

1
2 φ̇2 + V (φ) + (eαφ − 1)ρc

(3.36)

Ωφ ≡
1
2 φ̇2 + V (φ) + (eαφ − 1)ρc

1
2 φ̇2 + V (φ) + eαφρc + ρb + ργ

. (3.37)

These models are not consistent with CMB and LSS ob-
servations, however.

In Figure 3 we show 2D marginalized constraints for
the exponential and power law potential models from all
the cosmological datasets combined. The 1D marginal-
ized constraint on the coupling in the exponential poten-
tial case is |C| < 0.037(0.067) at the 68% (95%) con-
fidence level. This represents a significant tightening of
constraints over previous analyses, for example [86] found
|C| < 0.1 at the 98.6% level using CMB data from the
Boomerang satellite. The potential exponent, λ, is con-
strained to be |λ| < 0.95 at the 95% c.l..

In the power law potential case the 1D marginal-
ized constraint on the coupling is comparable, with
−0.026(−0.055) ≤ C ≤ 0.034(0.066) at the 68% (95%)
c.l.. Again, the constraints on the coupling strength
have improved with the increased precision and comple-
mentary variety of the cosmological data, e.g. a pre-
vious analysis with first year WMAP data alone found
C ≤ 0.085(0.159) at the 68% (95%) c.l. [87]. Within the
range investigated, −6 ≤ n ≤ 6, the power law exponent,
n, is not constrained by the data.

In both the exponential and power law potential cases
the constraints are wholly consistent with a minimally
coupled ΛCDM model (λ = 0 or n = 0, and C = 0) at
the 1σ level.

IV. COSMOLOGICAL CONSTRAINTS ON A
YUKAWA-TYPE DARK MATTER

INTERACTION

The astrophysical implications of Yukawa-like interac-
tions have been considered across a range of scales: in
the context of dark matter halos [22, 66, 67]; tidal tails
[32, 33]; cluster dynamics [38]; and large scale structure
surveys [68]. In our analysis we consider large scale cos-
mological constraints on a Yukawa coupling described in

8

FIG. 3: Joint 68% (dark shaded) and 95% (light shaded) constraints using combined WMAP CMB, SDSS matter power
spectrum, SDSS and 2dFGRS baryon acoustic oscillation, ‘union’ type 1a supernovae datasets and HST H0 prior for the power
law potential (blue) and exponential potential (red) for the the fractional matter density, Ωm and the effective scalar equation
of state, wφ, (left panel), and the coupling, C (right panel).
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wφ ≡
1
2 φ̇2 − V (φ)

1
2 φ̇2 + V (φ) + (eαφ − 1)ρc

(3.36)

Ωφ ≡
1
2 φ̇2 + V (φ) + (eαφ − 1)ρc

1
2 φ̇2 + V (φ) + eαφρc + ρb + ργ

. (3.37)

These models are not consistent with CMB and LSS ob-
servations, however.

In Figure 3 we show 2D marginalized constraints for
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ized constraint on the coupling in the exponential poten-
tial case is |C| < 0.037(0.067) at the 68% (95%) con-
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|C| < 0.1 at the 98.6% level using CMB data from the
Boomerang satellite. The potential exponent, λ, is con-
strained to be |λ| < 0.95 at the 95% c.l..
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mentary variety of the cosmological data, e.g. a pre-
vious analysis with first year WMAP data alone found
C ≤ 0.085(0.159) at the 68% (95%) c.l. [87]. Within the
range investigated, −6 ≤ n ≤ 6, the power law exponent,
n, is not constrained by the data.

In both the exponential and power law potential cases
the constraints are wholly consistent with a minimally
coupled ΛCDM model (λ = 0 or n = 0, and C = 0) at
the 1σ level.
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Concluding thoughts 

•  Upcoming datasets provide invaluable opportunity to test the origins 
of cosmic acceleration and weak field gravity on cosmic scales  
–  Complementary techniques important to break cosmological and 

systematic degeneracies 
–  Relativistic and non-relativistic LSS tracers of gravity equivalent to 

complementary geometric techniques to measure expansion history/
curvature 

•  Inclusion of systematics modeling essential to forecasting 
–  Can significantly impact predictions (beware apples vs oranges) 
–  Theory and systematics can be tightly coupled.  
–  How important are specific systematics/ algorithms to model them to a 

technique’s ability to constrain DE? 

•  Phenomenological modeling/ FoMs useful but a high pass filter on full 
info. Mapping to theory is the ultimate goal. 
–  Surveys will give us information about z and k dependence 
–  General effective field theory for DE is a first step, with interesting 

implications for both expansion history and growth history 


