Understanding Gravity on Cosmic Scales

Rachel Bean Cornell University

Work in collaboration with Istvan Laszlo (Cornell) Eva-Marie Mueller (Cornell) Scott Watson (Syracuse) Donnacha Kirk & Sarah Bridle (UCL)

Cosmic geometry: Expansion history constraints **a**

Standard candles

Standard rulers

b -1.5 – -1.5 – 0.1 – 0.2 – 0.3 – 0.4 – 0.5 -1.0 –0.5 0 **SNe BAO** *w* Ω_{M} **CMB** Kowalski)2008)

Rachel Bean: Itzykson 2012 (*a*) Constraints upon !^M and !" in the consensus model (cosmological constant/cold dark matter model)

Understanding cosmic acceleration

²[(24)

√−*^gLmat* (29)

$\begin{array}{c}\n\text{Cosmic acceleration} = \text{a modification of Einstein's equations}\n\end{array}$

Broad aim =Phenomenology Distinguish which sector: new gravity, new matter or Λ? ιeποιπeποιοgy
w gravity, new ma .
די

Ambitious aim = Theoretical model Learn something more about the underlying theory?

Rachel Bean: Itzykson 2012 $2,155112$ 12
12

Distinguishing with expansion history **and** \overline{a}

• Alter Friedmann and acceleration equations at late times

$$
\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho_m + 3P_m) + stuff
$$

or

$$
stuff + \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho_m + 3P_m)
$$
?

e.g. f(R) gravity

$$
-H^{2}f_{R} + \frac{a^{2}}{6}f + \frac{3}{2}H\dot{f}_{R} + \frac{1}{2}\ddot{f}_{R} + \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P)
$$

e.g. DGP gravity

$$
-\frac{\dot{H}}{r_c}+\frac{\ddot{a}}{a}=-\frac{4\pi G}{3}(\rho+3P)
$$

There are benefits to asking more questions…

Three groups of extra galactic observations for testing gravity

CMB angular diameter distance

Supernovae luminosity distance

BAO angular/radial scale

I: Background expansion II: Growth, up to some

Galaxy autocorrelations

Galaxy – ISW x-corrln

Xray and SZ galaxy cluster measurements

Ly-alpha measurements

III: Growth directly

CMB ISW autocorrelation

Weak lensing autocorrelation

Peculiar velocity distribution/ bulk flows

Phenomenological model of modified gravity

- Perturbed metric $ds^2 = -(1 + 2\psi)dt^2 + a^2(1 2\phi)dx^2$
- Aim to describe phenomenological properties common to theories
- A modification to Poisson's equation, Q

$$
k^2 \phi = -4\pi G Q a^2 \rho \Delta
$$

Q≠1: can be mimicked by additional (dark energy?) perturbations, or modified dark matter evolution

• An inequality between Newton's potentials, R

$$
\psi = R\phi
$$

R≠1: not easily mimicked.

- potential smoking gun for modified gravity?
- Significant stresses exceptionally hard to create in non-relativistic fluids e.g. DM and dark energy.

Cosmological tests of gravity

- Non-relativistic tracers: Galaxy positions and motions
	- Measure ψ ~ G_{mat} = QRG_N
	- Biasing of tracer (galaxy) issue

$$
\delta_g = b\delta_m
$$

- Relativistic tracers: Weak lensing and CMB
	- Sensitive to (φ+ψ) ~ G_{light} =Q(1+R)G_N and time derivs
	- In theory direct tracer of potential, but still uncertainties
		- stochasticity relating luminous and all mass rg Dekel & Lahav '99
		- plenty of systematics (photoz, IAs...)
- Complementarity of tracers key to testing gravity

Complications : photometric redshifts

 4.0

- Faster but less precise alternative to spectroscopic z
- Essential for tomography
	- Measuring evolution on dark energy
	- Cross-correlations between z bins useful for disentangling systematics and cosmology
- Sensitive to modeling
	- galaxy distribution,
	- photo-z statistical accuracy, **-&3294-&.'4%&'\$.&;<'50-'-/&'-&3294-&.'-/4-'#&5&%4-&;'-/&'."3\$94-&;'64-490#.'** systematic offsets and catastrophic errors

Complications: Weak lensing distortions term and the mass source term must be different $\mathbf{I} \times \mathbf{I} \times \mathbf{R}$ c $\begin{array}{l} \hbox{Complications} \quad \text{Mock learning distribution} \end{array}$ the galaxy canonic can be written as a sum of the sum o

• 2D map on the sky of galaxy **ellipticities** power spectrum \mathbb{R}^n 2 e – 2D map on the sky of galaxy

shintinities $c\in C$ the cosmic shear \mathcal{C} shear \mathcal{C} shear \mathcal{C} shear \mathcal{C} is the intrinsic, non-lensedding intrinsic, non-lensedding intrinsic, non-lensedding intrinsic, non-lensedding intrinsic, non-lensedding intrin

$$
\epsilon^i(\theta) = \gamma_G^i(\theta) + \gamma_I^i(\theta) + \epsilon_{rnd}^i(\theta).
$$

- Correlation in ellipticities the measured statistically a finite ratio, \mathbf{r} tions, we provide a fitting function in the Appendix formula galaxy. The interior individual g power spectrum, Power spectrum, Power and the one for a model
	- Random ellipticities not an issue C
- a Instrumental & astrophysical \blacksquare "contaminants" – shear \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare calibration uncertainties and the structure structure, the structure, th \blacksquare
- Correlated alignments need to be modeled and disentangled from cosmological shear Albrecht et al. (2006) State III survey, survey, survey, such as DeS or Stage III survey, such as D clid, LSST or WFIRST or WFIRST or WFIRST. LSST or WFIRST or WFIRST. LSST or WFIRST or WFIRST OF LIG #c 2009 RAS, MNRAS 000, 1–18

Credit: Williamson, Oluseyi, Roe 2007 two strains of intrinsic alignment of intrinsic alignment of galaxy electric strainsic alignment of galaxy ele
The contribution of galaxy electric strainsic alignment of galaxy electric strainsic alignment of the contribu

Complications : Intrinsic alignments

- Significant astrophysical systematic
- Galaxies align in the potential gradient of their host halo

Cross- correlations and tomography: break degeneracy between systematics and theory

Rachel Bean: Itzykson 2012

Laszlo, Bean, Kirk, Bridle, 2012

Current constraints

- Multiple data
	- WMAP CMB,
	- SDSS LRG auto
	- SDSS-WMAP ISW cross correlation
	- COSMOS weak lensing,
	- Union SN1a
- ISW + ISW-galaxy correlations drive constraints
- Principal degeneracy
	- (φ+ψ)direction ~Q(1+R)/2
- "Figure of Merit"
	- 1/error ellipse area
	- $-$ MG FoM ~ 0.03

Bean & Tangmatitham 2010

What about future surveys?

• Fisher matrix analysis = Inverse covariance (error) matrix

$$
Cov_{ij}^{-1} = F_{ij} = \frac{\partial t_a}{\partial p_i} Cov_{ab}^{-1} \frac{\partial t_b}{\partial p_j}
$$

• Assumed cosmology and parameterization

$$
\mathbf{p} = \{\Omega_b h^2, \Omega_m h^2, \Omega_k, \tau, w_0, w_a, Q_0, Q_0 (1 + R_0)/2, n_s, \Delta_{\mathcal{R}}^2(k_0),
$$

+systematic nuisance parameters $\}$

• Datasets

$$
\mathbf{t} = \{C_{\ell}^{TT}, C_{\ell}^{TE}, C_{\ell}^{EE}, C_{\ell}^{Tg_1}, ..., C_{\ell}^{Eg_1}, ... C_{\ell}^{g_1g_1}, C_{\ell}^{g_1g_2}, ..., C_{\ell}^{\kappa_{N_{ph}}\kappa_{N_{ph}}}\}
$$

- Survey specifications
	- near future (stage III) and end of decade (stage IV) surveys
	- Stage III = Planck CMB + DES-like imaging + BOSS spectroscopic surveys
	- Stage IV = Planck CMB + EUCLID-like imaging and spectroscopy

Forecasting: what you put in=what you get out

- Figures of merit /Fisher insightful but
- Model dependent e.g. w0/wa or functions of z?
- Systematic errors difficult but important!
	- Instrumental e.g. calibration uncertainties
		- Internal cross-checks: inter-filter, concurrent & repetition ≠ redundancy
	- Modeling: e.g. Photo z modeling errors, nonlinearity
		- Access to ground based facilities,
		- Training sets, simulation suites
	- $-$ Astrophysical: e.g. IAs, H α z distribution, galaxy bias, baryonic effects
		- At what scale should one truncate the analysis?
		- Analytical modeling, gridded k& z bins, simulations?
- Buyer beware: risky to compare FoM unless apples-for-apples treatment

Sensitivity to theory and systematics

Impact of cross-correlations: reducing systematics, breaking theory degeneracies

Laszlo, Bean, Kirk, Bridle, MNRAS 2012

Assumptions about bias and IA model

If you understand non-linear scales they could make a big difference

Ways to modify gravity?

• Scalar tensor gravity = simple models we can model effects for

GR

\n
$$
S = \int d^{4}x \sqrt{-g} \frac{1}{16\pi G} R
$$
\nf(R) gravity

\n
$$
S = \int d^{4}x \sqrt{-g} \frac{1}{16\pi G} (R + f_{2}(R))
$$
\nScalar tensor gravity

\n
$$
S = \int d^{4}x \sqrt{-g} \frac{1}{16\pi G} f_{1}(\phi) R
$$
\nHigher dimensional gravity e.g. DGP

\n
$$
S = \int d^{5}x \sqrt{-g^{(5)}} \frac{1}{16\pi G^{(5)}} R^{(5)}
$$

- Active area of research, many different options, no solutions, yet α ≠
P ≠ *d* + *d*
- Common theme: A scalar degree of freedom

Effective field theory of acceleration

- Can we tie phenomenology/data a step closer to theory?
- Write a general action as an expansion in derivative powers

$$
S = \int d^4x \sqrt{-g} \left\{ \frac{m_p^2}{2} R - \frac{1}{2} (\nabla \phi)^2 - U(\phi) \right\} + S_m [e^{\alpha(\phi)} g_{\alpha\beta}, \psi_m]
$$

+ $\epsilon \int d^4x \sqrt{-g} \left\{ a_1 (\nabla \phi)^4 + b_2 T (\nabla \phi)^2 + c_1 G^{\mu\nu} \nabla_\mu \phi \nabla_\nu \phi \right\}$
+ $d_3 (R^2 - 4R^{\mu\nu} R_{\mu\nu} + R_{\mu\nu\sigma\rho} R^{\mu\nu\sigma\rho}) + d_4 \epsilon^{\mu\nu\lambda\rho} C_{\mu\nu}{}^{\alpha\beta} C_{\lambda\rho\alpha\beta} + e_1 T^{\mu\nu} T_{\mu\nu} + e_2 T^2 \right\}.$

- $-$ a₁,a₂ etc. are all free functions of φ. The corresponding equations of φ. The corresponding equations of φ.
- non-minimally coupled to metric in Einstein frame, "modified gravity" $m \geq 1$ t_{tot} is a matter.
- What observational properties might this type of action have?

Park, Watson, Zurek 2011 *•* There are a variety of different forms of the final theory that can be obtained using field r kson 2012 is a redefinitions. In particular some of the matter-coupling terms in the action can be re-coupling terms in the matter-coupling terms in the action can be re-coupling terms in the action can be re-coupling

Effective field theory of acceleration 6. We fix the remaining field redefinition freedom by choosing a "gauge" in field space, thus

• A subset of terms particularly relevant to late time evolution Work with Eva-Marie Mueller and Scott Watson) \cdot A subset of terms particularly

$$
S = \int d^4x \sqrt{-g} \left\{ \frac{m_p^2}{2} R - \frac{1}{2} (\nabla \phi)^2 - U(\phi) \right\} + S_m [e^{\alpha(\phi)} g_{\alpha\beta}, \psi_m]
$$

+ $\epsilon \int d^4x \sqrt{-g} \left\{ a_1 (\nabla \phi)^4 + b_2 T (\nabla \phi)^2 + c_1 G^{\mu\nu} \nabla_{\mu} \phi \nabla_{\nu} \phi \right\}$
+ $\left[d_3 (R^2 - 4R^{\mu\nu} R_{\mu\nu} + R_{\mu\nu\sigma\rho} R^{\mu\nu\sigma\rho}) + d_4 \epsilon^{\mu\nu\lambda\rho} C_{\mu\nu}{}^{\alpha\beta} C_{\lambda\rho\alpha\beta} + e_1 T^{\mu\nu} T_{\mu\nu} + e_2 T^2 \right\}.$

- Canonical scalar field
	- Non-minimally coupled matter
	- A quartic term
	- A Gauss-Bonnet (GB) term *•* The most general action contains nine free functions of φ: *U,* α*, a*1*, b*2*, c*1*, d*3*, d*4*, e*1*, e*2, as
		- ⁻ Other terms here well constrained by early time effects

Effects of extensions to minimally coupled scalar

• Study attractor behavior of this action

$$
S_E = \int d^4x \sqrt{-g} \left\{ \frac{M_p^2}{2} R - \frac{1}{2} (\nabla \phi)^2 - V(\phi) + X(\dot{\phi}, H) - f(\phi) R_{GB}^2 \right\} + S_m[e^{F(\phi)} g_{\mu\nu}]
$$

$$
F(\phi) \equiv \exp \left(2C \sqrt{\frac{2}{3}} \frac{\phi}{M_p} \right)
$$

$$
X(\dot{\phi}, H) \equiv \frac{\beta}{M_p^2 H^2} \dot{\phi}^4
$$

• Effect on Friedmann and equations

$$
3M_p^2H^2 = \rho_m(\phi) + \rho_\gamma + \frac{1}{2}\dot{\phi}^2 + V(\phi) + 24\dot{\phi}f'(\phi)H^3 + 3X
$$

$$
\ddot{\phi} + 3H\dot{\phi} + V' = \sqrt{\frac{2}{3}\frac{C}{M_p}\rho_m} - 24f'H^4\left(\frac{\dot{H}}{H^2} + 1\right) + \frac{X}{H\dot{\phi}}\left[-3\frac{\dot{X}}{XH} - 12\right]
$$

To attract or not? A matter of effective potentials tain observation observationally desirable properties. Firstly, the costaffract or hote A matter of effective $|$

The sign of f(R) is chosen so that its second derivative

- Potentials with exponential or power law forms allow attractor solutions α is resolutions $\begin{array}{c} \text{SUSIOL} \\ \text{SUSIOL} \end{array}$
	- Independence to initial conditions (for better or worse e.g. f(R) Amendola et al 2007) implies that cosmological tests at \mathbf{r}
	- Transitions from matter to accelerative era

- Can postulate potentials that deny attractors, and retrofit to LCDM exponential potential v (φ) «Mp) (left panel) and a power law power law power law power law power law power law $\overline{}$ als that deny attractors, and retrofit to LC Fig. 1: Examples of eight production of the effective equation of state in coupled scalar field data field data $p_{\rm c}$ = 70, Q = 70, Q = 0.1 (black) and C $=0.5$ (red). Both models follow the 0.1 (black) and C $=0.5$
	- Evades disadvantageous attractor behavior e.g. f(R) Hu and sawicki 2007 initial the dynamical the dynamical attractor leads to a negligible dependence on initial conditions, shown here through \sim The timing of the transition between these two attractors is sensitive to both the potential and coupling parameters. For comparing evolution with two different initial values of ϕ ϕ = 1Mp (full) and 10-10Mp (dashed). For the 1Mp (full) and 10-8, ϕ

$$
f(R) = -m^2 \frac{c_1 (R/m^2)^n}{c_2 (R/m^2)^n + 1},
$$

Rachel Bean: Itzykson 2012 As shown in Fig. 1, for the exponential potential the

Effect on cosmological attractors

• Express dynamical equations in terms of dimensionless parameters

$$
x = \frac{1}{M_p H} \frac{\dot{\phi}}{\sqrt{6}}, \quad y = \frac{1}{M_p H} \frac{\sqrt{V}}{\sqrt{3}}, \quad z = \frac{1}{M_p H} \frac{\sqrt{\rho_\gamma}}{\sqrt{3}},
$$

$$
\mu_X \equiv \frac{X}{3M_p^2 H^2} = 12\beta x^4 \qquad \mu_{GB} \equiv \frac{f'H^2}{M_p}
$$

• Find if stationary solutions exist $x'=y'=z'=u'=0$

Evolutionary attractor

- Matter dominated era: NMC and kinetic terms important
	- NMC cosmic grease w >0
	- Quartic term adds to Hubble drag, acts to slow expansion

$$
x = \frac{2}{3}C_{eff}(C, \beta)
$$
 $y = 0, z = 0, \mu_{GB} = 0$

- Accelerative era:
	- GB term gives an accelerative attractor (Koivisto and Mota 2006)

$$
x = 0, y = 1, \mu_{GB} = \frac{\lambda}{8}
$$

– In absence of GB term quartic allows acceleration for broader ranges of potentials with λ>2

Matter era

Accelerative era

Impacts on geometric cosmological constraints 8

this as the appropriate measure for the redshift of last

−0.026 ≤ 0.036 < Paper in prep with Eva-Marie Mueller and Scott Watson c. Again, the constraints on the coupling strength strength

Concluding thoughts

- Upcoming datasets provide invaluable opportunity to test the origins of cosmic acceleration and weak field gravity on cosmic scales
	- Complementary techniques important to break cosmological and systematic degeneracies
	- Relativistic and non-relativistic LSS tracers of gravity equivalent to complementary geometric techniques to measure expansion history/ curvature
- Inclusion of systematics modeling essential to forecasting
	- Can significantly impact predictions (beware apples vs oranges)
	- Theory and systematics can be tightly coupled.
	- How important are specific systematics/ algorithms to model them to a technique's ability to constrain DE?
- Phenomenological modeling/ FoMs useful but a high pass filter on full info. Mapping to theory is the ultimate goal.
	- Surveys will give us information about z and k dependence
	- General effective field theory for DE is a first step, with interesting implications for both expansion history and growth history