

Dark Energy with the Euclid Space Mission

Y. Mellier On behalf of the Euclid Consortium

http://www.euclid-ec.org

Objective of the Euclid Mission

The ESA Euclid mission: scientific objectives

- Understand the origin of the Universe's accelerating expansion;
- Derive properties + nature of dark energy (DE), test gravity (MG)
- Distinguish DE, MG, DM effects...
- ... Decisively by:
 - using at least 2 independent but complementary probes
 - tracking their observational signatures on the
 - geometry of the Universe:
 - Weak Lensing (WL), Galaxy Clustering (GC),
 - cosmic history of structure formation:
 - WL, Redshift-Space Distortion, Clusters of Galaxies
 - <u>controlling systematic residuals</u> to a very high level of accuracy.

Consortium

Distinguishing effect *decisively*

Parameterising our ignorance:

- DE equation of state: $P/\rho = w$ and $w(a) = w_p + w_a(a_p-a)$
- Growth rate of structure formation controlled by gravity: $f \sim \Omega^{\gamma}$, with $\gamma = 0.55$ for general relativity ... if different, then GR not valid

- 1. Nature of the apparent acceleration
 - Distinguish effects of Λ and dynamical dark energy \rightarrow Measure $w(a) \rightarrow$ slices in redshift
 - From Euclid data alone, get $FoM=1/(\Delta w_a x \Delta w_p) > 400$: if data consistent with Λ , and FoM > 400 then :
 - \rightarrow Λ favoured with odds of more than 100:1 = a "decisive" statistical evidence.
- 2. Effects of gravity on cosmological scales
 - Probe growth of structure \rightarrow slices in redshift ,
 - Separately constrain the metrics potentials (Ψ, Φ) as function of both scale and time
 - Distinguish effects of GR from MG models with very high confidence level:
 - \rightarrow absolute 1- σ precision of 0.02 on the growth index, γ , from Euclid data alone.

(1. + 2.) set the primary objectives of Euclid \rightarrow how can Euclid achieve this?

WL and GC: optimal primary probes for Euclid consortium

• Weak Lensing (WL), wide field:

3-D cosmic shear measurements (tomography) over 0<z<2

→ probes distrib. of matter (D+L), expansion history, growth factor , Ψ + Φ .

 \rightarrow shapes+distance of galaxies: shear amplitude, and bin the universe into slices. For 0<z<2 photo-z sufficient, but with optical and NIR data.

• Galaxy Clustering (GC), wide field:

3-D position measurements over 0<z<2

- \rightarrow probes clustering history of galaxies induced by gravity, Ψ , γ , H(z).
- \rightarrow 3-D distribution of galaxies, but spectroscopic redshifts needed.

• GC and WL:

use the same survey (minimise complexity and cost) use different data, complementary physical effects \rightarrow different systematics

• CG and WL are *P*(*k*,z) explorers:

both probe power spectra \rightarrow can be used also to probe dark matter (neutrino) and inflation (non-Gaussianity and f_{NL})

The Euclid Machine

The Euclid Mission: baseline and options

SURVEYS In ~5.5 years									
	Area (deg2)	Description							
Wide Survey	15,000 deg ²	Step and stare with 4 dither pointings per step.							
Deep Survey	40 deg ²	In at least 2 patches of $> 10 \text{ deg}^2$ 2 magnitudes deeper than wide survey							
PAYLOAD									
Telescope		1.2 m Korsch, 3 mirror anastigmat, f=24.5 m							
Instrument	VIS	NISP							
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$	$0.763 \times 0.722 \text{ deg}^2$							
Capability	Visual Imaging	NIR Imaging Photometry			NIR Spectroscopy				
Wavelength range	550– 900 nm	Y (920- 1146nm),	J (1146-1372 nm)	H (1372- 2000nm)	1100-2000 nm				
Sensitivity	24.5 mag 10σ extended source Shapes + Photo-z	24 mag 5σ point source z of $n = 1.5 \times 10^{-10}$	24 mag 5σ point source 9 galaxies ?	24 mag 5σ point source z of n	3 10 ⁻¹⁶ erg cm-2 s-1 3.5σ unresolved line flux =5x10 ⁷ galaxies				
Detector	36 arrays	16 arrays							
Technology	4k×4k CCD	2k×2k NIR sensitive HgCdTe detectors							
Pixel Size Spectral resolution	0.1 arcsec	0.3 arcsec			0.3 arcsec R=250				
Possibility to propose other surveys: SN and/or μ -lens surveys, Milky Way ?									
Ref: Euclid RB_arXiv:1110.3193									

Euclid

Euclid:optimised for shape measurementsonsortium M51

SDSS @ z=0.1

Euclid @ z=0.1

Euclid @ z=0.7

 \bullet Euclid images of z~1 galaxies: same resolution as SDSS images at z~0.05 and at least 3 magnitudes deeper.

• Space imaging of Euclid will outperform any other surveys of weak lensing.

Third Euclid probe: Clusters of galaxies consortium

- Clusters of galaxies: probe of peaks in density distribution
 - number density of high mass, high redshift clusters very sensitive to
 - any primordial non-Gaussianity and
 - deviations from standard DE models
- Euclid data =
 - 60,000 clusters with a S/N>3 between 0.2 < z < 2 (obtained for free).
 - more than 10^4 of these will be at z>1.
 - ~ 5000 giant gravitational arcs
 - \rightarrow very accurate masses for the whole sample of clusters (WL)
 - \rightarrow dark matter density profiles on scales >100 kpc
 - \rightarrow direct constraints on numerical simulations.
 - \rightarrow 300000 strong galaxy lensing + 5000 giant arcs
 - \rightarrow test of CDM : probe substructure and small scale density profile.

Cluster with Euclid VIS+NIS imaging

Euclid combined VIS+Y+J+H images of a simulated cluster

Telescope and instruments

Main requirements to design the mission Consortium

	Wide survey	Deep survey				
Survey						
size	15000 deg ²	40 deg ² N/S				
VIS imaging						
Depth	$n_{gal} > 30/arcmin^2$ $\rightarrow M_{AB} = 24.5$ $\rightarrow ~0.9$	M _{AB} = 26.5				
PSF size knowledge	σ[R ²]/R ² <10 ⁻³					
Multiplicative bias in shape	σ[m]<2x10 ⁻³					
Additive bias in shape	σ[c]<5x10 ⁻⁴					
Ellipticity RMS	σ[e]<2x10 ⁻⁴					
NIP photometry						
Depth	24 M _{AB}	26 M _{AB}				
NIS spectroscopy						
Flux limit (erg/cm ² /s)	3 10 ⁻¹⁶	5 10 ⁻¹⁷				
Completness	> 45 %	>99%				
Purity	>80%	>99%				
Confusion	2 rotations	>12 rotations				

• WL and WL systematics

$$\gamma^{obs} = (1+m) \times \gamma^{true} + c$$
$$C_l^{true} \approx \left[1 + 2\langle m \rangle\right] \times C_l^{obs} + \langle c \rangle^2$$

$$\rightarrow \left(\begin{array}{cc} m < 2 \times 10^{-3} : & \text{multiplicative bias} \\ \sigma_{sys}^2 \approx \left\langle c^2 \right\rangle < 10^{-7} : & \text{additive bias} \end{array}\right)$$

- \rightarrow Small PSF
- \rightarrow Knowledge of the PSF size
- \rightarrow Knowledge of distortion
- \rightarrow Stability in time
- → External visible photometry for photo-z accurary: 0.05x(1+z)
- GC and GC systematics
 - \rightarrow Catastrophic z < 10%
 - \rightarrow <z>/(1+z)<0.002
 - \rightarrow Understand selection \rightarrow Deep field
 - Completeness
 - Purity

Current optical design

Telescope:

1.2 m Korsch , 3 mirror an astigmat, with a 0.45 deg. off-axis field , f=24.5m Optically corrected and unvignetted FoV : 0.79 x1.16 deg²

VIS and NISP: share the same FoV (0.54 deg²) Dichroic beam splitter at exit pupil : Visible and Near Infrared observations in parallel

Euclid

Euclid

Consortium

Telescope and payload module

Euclid Consortium

Note: pointing error in spacecraft x,y direction = 25mas over 600 s.

Reference: Laureijs et al 2012. SPIE.

FGS FPA = Fine Guidance Focal Plane Array: mounted on the VIS FPA and part of the Attitude and Control Orbit System (AOCS)

Euclid

Itzykson, IPhT-CEA Saclay

June 18-20, 2012

VIS Instrument

- large area imager a 'shape measurement machine'
- 36 4kx4k CCDs with 12 micron pixels
- 0.1 arcsec pixels on sky
- bandpass 550-900 nm -
- limiting magnitude for wide survey of magAB = 24.5 for 10σ (extended)
- data volume 520Gbit/day

Itzykson, IPhT-CEA Saclay

June 18-20, 2012

NISP instrument

Euclid Consortium

Performances:

- Survey,
- Images, and observables
- Cosmology

NISP+VIS field observing sequence

Optimal sky coverage for a fixed-length survey collegestivitium

• With 15,000 deg² for for GC and WL: optimisation for a fixed time survey.

• Allows Euclid to do WL and GC simultaneously on the same area.

Euclid Deep+Wide surveys feasible in 5.5 years consortium

NISP Performance: images/spectra/redshifts

Euclid Consortium

Shows can meet the required n(z), completeness and purity

True vs. measured redshift

All performances have been verified at image simulation level

Itzykson, IPhT-CEA Saclay

VIS performance:imaging

Euclid Consortium

A 4kx4k view of the Euclid sky

VIS image: cuts made to highlight artefacts

Charge Transfer
Inefficiency (CTI) of CCDs
increases due to cosmic
rays.

Can be corrected to the required level of accuracy.

• EC analysis: CTI has NO impact on the P(*k*) and the cosmology core program

Euclid

Euclid WL GC: DM and GC reconstructed P(k) Consortium

• Percentage difference [*expected* – *measured*] power spectrum: recovered to 1%.

V_{eff} ≈ 19 h⁻³ Gpc³ ≈ 75x larger than SDSS
Redshifts 0<z<2

• Percentage difference [*expected* – *measured*] power spectrum: recovered to 1%.

Ref: Euclid RB arXiv:1110.3193

Itzykson, IPhT-CEA Saclay

Biasing and Growth rate

Euclid Consortium

Euclid Cosmo predicted performances

 $1{-}\sigma,~2{-}\sigma$ marginalised probability regions for constant γ and w

Reference = green regions Optimistic = blue long-dashed ellipses Pessimistic= black short-dashed ellipses

Amendola et al arXiv:1206.1225

1–\sigma, 2– σ marginalised probability regions for $~\gamma_0~$ and γ_1

Reference = yellow regions Optimistic = green long-dashed ellipses Pessimistic= black doted ellipses

Euclid combined: Cosmo predicted performances^{Euclid}

Errors marginalised over all other parameters.

Ref: Euclid RB arXiv:1110.3193

confidence contours in the $(w_{\rm p}, w_{\rm a})$.

Predicted FoM of the Euclid mission

	Modified Gravity	Dark Matter	Initial Conditions	Dark Energy		
Parameter	γ	m _v /eV	f _{NL}	w _p	W _a	FoM
Euclid primary (WL+GC)	0.010	0.027	5.5	0.015	0.150	430
Euclid All	0.009	0.020	2.0	0.013	0.048	1540
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	4020
Current (2009)	0.200	0.580	100	0.100	1.500	~10
Improvement Factor	30	30	50	>10	>40	>400

Ref: Euclid RB arXiv:1110.3193 More detailled forecasts given in Amendola et al arXiv:1206.1225

Euclid

Organisation, data and schedule

June 18-20, 2012

Euclid and Euclid Consortium organisations

EC:~950 members, 110 Labs

- 13 European countries
- Austria, Denmark, France, Finland, Germany, Italy, Netherlands, Norway, Portugal, Romania, Spain, Switzerland, UK
 - + Contributions from Berkeley labs.
- Discussions: US/NASA , Canada/CSA, Belgium, Sweden

EC contribution: $\sim 1/3$ of the cost of the mission

Itzykson, IPhT-CEA Saclay

June 18-20, 2012

•

Euclid/SGS flow and Organisation Units

- Total: ~ < 2PB of Euclid data (~ 10⁶ images) + >10 PB of external data.
- Data volume for simulations may be much larger

- ESA Mission Operation Center
- ESA Science Operation Center
- Science Working Groups: 13 SWGs
 - Science objectives
 - Requirements: pipeline products
 - Requirements: pipeline performances
 - Verify that the requirements are met
 - Final science analyses

Organisation Units: 10 OUs

- Algorithmic definition of the processing
- Validating the implementation
- \rightarrow OU scientists are from the SWGs

Science Data Centers: 8 SDCs

- Implementing pipelines
- Procuring local H/W and S/W resources
- SDC-DEV: algorithms \rightarrow robust codes
- SDC-PROD:integration on local

infrastructure, production runs of pipelines

Euclid

Consortium

Data products and releases

- First release Level Q (Quick) data release: 14 months after the start of the survey (TBC)
- First complete data release: 26 months after the start of the survey
- Then yearly releases

Schedule

- October 4, 2011
- Spring 2012
- June 20, 2012 ?
- July 2012
- November 2012
- December 2012
- June 2013
- Q1 2014
- Q3/Q4 2017
- Q2 2020
- <(L+6 months)
- L+7 yrs
- L+9 yrs

- : Euclid selected as ESA M2 Cosmic Vision
- : Completion of the Definition phase (A/B1)
- : Adoption for the Implem. Phase (B2/C/D/E1)
 - ITT release for PLM
- : KO PLM contract
- : ITT release for SVM
- : KO SVM contract
- : Instrument PDR
- Flight Model delivery
- : Launch (L)
- : Start Routine Phase
- : End of Nominal Mission
- : End of Active Archive Phase

Euclid

Consortium

Summary: Euclid

- ESA has selected the only space mission designed to understand the origin of the accelerating universe;
- Put Europe at the forefront of one of the most fascinating question of physics/cosmology of the next decades;
- Euclid will provide:
 - tight constraints over the broadest range of DE; MG models ever explored,
 - unrivalled legacy value of VIS/NISP images and spectra;
- Extensive simulations have demonstrated it is feasible;
- Entering in implementation phase. Stay tuned until 2020...