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Q: What is the matter content of the Universe today?

Assuming homogeinity-isotropy and GR

Gµν = 8πGTµν
cosmological and astrophysical observations dictate the matter content of

the Universe today:
A: -Only a 4% of matter has been discovered in the laboratory. We hope
to see more at LHC. But even then...
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Q: What is the matter content of the Universe today?

Assuming homogeinity-isotropy and GR

Gµν = 8πGTµν
cosmological and astrophysical observations dictate the matter content of

the Universe today:
A: -Only a 4% of matter has been discovered in the laboratory. We hope
to see more at LHC. But even then...
If we assume only ordinary sources of matter (DM included) there
is disagreement between local, astrophysical and cosmological data.
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Universe is accelerating → Enter the cosmological constant

Easiest way out: Assume a tiny cosmological constant ρΛ = Λ
8πG = (10−3eV )4,

ie modify Einstein’s equation by,

Gµν + Λgµν = 8πGTµν

Cosmological constant introduces
√

Λ and generates a cosmological
horizon
√

Λ is as tiny as the inverse size of the Universe today, r0 = H−10

Note that Solar system scales
Cosmological Scales ∼

10 A.U.
H−1
0

= 10−14

But things get worse...

Theoretically, the size of the Universe would not even include the moon!
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Self-tuning

Universe is accelerating → Enter the cosmological constant

Easiest way out: Assume a tiny cosmological constant ρΛ = Λ
8πG = (10−3eV )4,

ie modify Einstein’s equation by,

Gµν + Λgµν = 8πGTµν

Cosmological constant introduces
√

Λ and generates a cosmological
horizon
√

Λ is as tiny as the inverse size of the Universe today, r0 = H−10

Note that Solar system scales
Cosmological Scales ∼

10 A.U.
H−1
0

= 10−14

But things get worse...

Theoretically, the size of the Universe would not even include the moon!

Cosmological constant problem
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Cosmological constant problem, [S Weinberg Rev. Mod. Phys. 1989]

Cosmological constant behaves as vacuum energy which according to the
strong equivalence principle gravitates,

Vacuum energy fluctuations are at the UV cutoff of the QFT
Λvac/8πG ∼ m4

Pl ...

Vacuum potential energy from spontaneous symmetry breaking
ΛEW ∼ (200GeV )4

Bare gravitational cosmological constant Λbare

Λobs ∼ Λvac + Λpot+Λbare

Enormous Fine-tuning inbetween theoretical and observational value
Why such a discrepancy between theory and observation? Weinberg

no-go theorem big CC
Why is Λobs so small and not exactly zero? small cc

Why do we observe it now ?
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Self-Tuning: general idea

Question: What if we break Poincaré invariance at the level of the scalar field?
Keep gµν = ηµν locally but allow for φ 6= constant.
Can we have a portion of flat spacetime whatever the value of the cosmological
constant and without fine-tuning any of the parameters of the theory?
Toy model theory of self-adjusting scalar field.

Solving this problem classically means that vacuum energy does not
gravitate and we break SEP not EEP.
Beyond leading order O(Λ4), radiative corrections O(Λ6/MPl2) may spoil
self-tuning.

We need:
1 A cosmological background
2 A sufficiently general theory to work with
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A general scalar tensor theory

Consider φ and gµν as gravitational DoF.
Consider L = L(gµν , gµν,i1 , ..., gµν,i1...ip , φ, φ,i1 , ..., φ,i1...iq )
with p, q ≥ 2 but finite
L has higher than second derivatives

What is the most general scalar-tensor theory giving second order field
equations?

Similar to Lovelock’s theorem but for the presence of higher derivatives in L.
Here second order field equations in principle protect vacua from ghost
instabilities.
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The Horndeski action [Horndeski 1974, Int. J. Theor. Phys.], [Deffayet et al.]

L = κ1(φ, ρ)δijk
µνσ∇µ∇iφR νσ

jk − 4
3κ1,ρ(φ, ρ)δijk

µνσ∇µ∇iφ∇ν∇jφ∇σ∇kφ

+κ3(φ, ρ)δijk
µνσ∇iφ∇µφR νσ

jk − 4κ3,ρ(φ, ρ)δijk
µνσ∇iφ∇µφ∇ν∇jφ∇σ∇kφ

+F (φ, ρ)δij
µνR µν

ij − 4F (φ, ρ),ρδ
ij
µν∇iφ∇µφ∇ν∇jφ

−3[2F (φ, ρ),φ + ρκ8(φ, ρ)]∇µ∇µφ+ 2κ8(φ, ρ)δij
µν∇iφ∇µφ∇ν∇jφ

+κ9(φ, ρ),

ρ = ∇µφ∇µφ,

where κi (φ, ρ), i = 1, 3, 8, 9 are 4 arbitrary functions of the scalar field φ and
its kinetic term denoted as ρ and

F,ρ = κ1,φ − κ3 − 2ρκ3,ρ

δ
i1...ih
j1...jh = h!δi1

[j1
...δ

ih
jh ]

Field equations are second order in metric gµν and φ and theory is unique.
Most general galileon theory
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Cosmological field equations

Consider cosmological background:

1 Assume, ds2 = −dt2 + a2(t)
[

dr2
1−kr2 + r 2(dθ2 + sin2 θ dφ2)

]
, φ = φ(t)

2 Modified Friedmann eq (with some matter source).

H(a, ȧ, φ, φ̇) = −ρm

Third order polynomial in H = ȧ
a with coeffs depending on the Horndeski

functionals. Up to first derivatives present.
3 Scalar eq.

E(a, ȧ, ä, φ, φ̇, φ̈) = 0
φ̈f (φ, φ̇, a, ȧ) + g(φ, φ̇, a, ȧ, ä) = 0

Linear in φ̈ and ä.
Also have 2nd Friedmann equation or usual energy conservation.
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E(a, ȧ, ä, φ, φ̇, φ̈) = 0
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H(a, ȧ, φ, φ̇) = −ρm

Third order polynomial in H = ȧ
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Main Assumptions

Vacuum energy does not gravitate.
Assume that ρm = ρΛ, a piecewise discontinuous step function of time t.
Discontinuous points, t = t?, are phase transitions which are point like
and arbitrary in time.

x = time, and y = ρΛ.
Assume that spacetime is flat or a flat portion for all t
H2 + κ

a2 = 0, with κ = 0, or κ = −1 Milne spacetime (a(t) = t)
φ not constant but in principle a function of time t!
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The self tuning filter

Mathematical regularity imposed by a distributional source
1 We are going to set H2 + κ

a2=0, with ρ(Λ) piecewise discontinuous. Then
2

H(a, φ, φ̇) = −ρΛ

a(t), ȧ and φ(t) are continuous whereas φ̇ is discontinuous at t = t?.
H has to depend on φ̇

3 Scalar eq. on shell is

E(a, φ, φ̇, φ̈) = φ̈f (φ, φ̇, a) + g(φ, φ̇, a) = 0
Since t = t? is arbitrary we finally get φ̈Λf (a) + g(a) = 0

4 Hence on shell, E has no dependance on φ. φ fixed by Friedmann eq.
5 In the presence of matter cosmology must be non trivial. Hence E must

depend on ä
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C. Charmousis Modified gravity and the cosmological constant problemBased on arxiv:1106.2000 [hep-th] published in PRL and hep-th/1112.4866 PRD



Introduction-motivation
Horndeski’s theory

The self-tuning filter
The Fab Four
Conclusions

The self tuning filter

Mathematical regularity imposed by a distributional source
1 We are going to set H2 + κ

a2=0, with ρ(Λ) piecewise discontinuous. Then
2

H(a, φ, φ̇) = −ρΛ
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a(t), ȧ and φ(t) are continuous whereas φ̇ is discontinuous at t = t?.
H has to depend on φ̇

3 Scalar eq. on shell is

E(a, φ, φ̇, φ̈) = φ̈f (φ, φ̇, a) + g(φ, φ̇, a) = 0
Since t = t? is arbitrary we finally get φ̈Λf (a) + g(a) = 0

4 Hence on shell, E has no dependance on φ. φ fixed by Friedmann eq.
5 In the presence of matter cosmology must be non trivial. Hence E must

depend on ä
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Applying self-tuning filter to cosmological Horndesky

Using the form of Horndeski cosmological equations:
We obtain

κ1 =
1
8

Vringo
′(φ)

(
1 +

1
2
ln |ρ|
)

+
1
4

Vpaul (φ)ρ−
1
12

B(φ)

κ3 =
1
16

Vringo
′′(φ) ln |ρ| +

1
12

V ′paul (φ)ρ−
1
12

B′(φ) + p(φ)−
1
2

Vjohn(φ)(1− ln |ρ|)

κ8 = 2p′(φ) + V ′john(φ) ln |ρ| − λ(φ)

κ9 = c0 +
1
2

V ′′george (φ)ρ + λ
′(φ)ρ2

F = −
1
12

Vgeorge (φ)− p(φ)ρ−
1
2

Vjohn(φ)ρ ln |ρ|
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All ρ dependance integrated out.
Free functions Vfab4, c0 cosmological constant ,B, p, λ
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Relevant and irelevant terms
Remember the Horndeski action

L = κ1(φ, ρ)δijk
µνσ∇µ∇iφR νσ

jk − 4
3κ1,ρ(φ, ρ)δijk

µνσ∇µ∇iφ∇ν∇jφ∇σ∇kφ

+κ3(φ, ρ)δijk
µνσ∇iφ∇µφR νσ

jk − 4κ3,ρ(φ, ρ)δijk
µνσ∇iφ∇µφ∇ν∇jφ∇σ∇kφ

+F (φ, ρ)δij
µνR µν

ij − 4F (φ, ρ),ρδ
ij
µν∇iφ∇µφ∇ν∇jφ

−3[2F (φ, ρ),φ + ρκ8(φρ)]∇µ∇µφ+ 2κ8δij
µν∇iφ∇µφ∇ν∇jφ

+κ9(φ, ρ)

The self-tuning filter gave,

κ1 =
1
8V ′ringo(φ)

(
1 +

1
2 ln |ρ|

)
+

1
4Vpaul (φ)ρ

κ3 =
1
16V ′′ringo(φ) ln |ρ|+ 1

12V ′paul (φ)ρ− 1
2Vjohn(φ)(1− ln |ρ|)

κ8 = V ′john(φ) ln |ρ|

κ9 =
1
2V ′′george(φ)ρ

F = − 1
12Vgeorge(φ)− 1

2Vjohn(φ)ρ ln |ρ|

Are these terms recognisable geometric quantities?

1 Switch-on individually each term in the Langrangian then,
2 Use Langrangian and integrate by parts, use Ricci identities, or,
3 Recognise equations of motion
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Introduction-motivation
Horndeski’s theory

The self-tuning filter
The Fab Four
Conclusions

George is easy

Start with LGeorge

Set everybody else to zero

κ9 =
1
2V ′′georgeρ, F = − 1

12Vgeorge

Lgeorge = −1
6Vgeorge(φ)R +

1
2∇µ

[
V ′george∂

µφ
]
. ∼= −

1
6Vgeorge(φ)R

Einstein-Hilbert non-minimally coupled with a free scalar field
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The Fab Four
Conclusions

EoM help for Ringo and John
Switch on only VRingo in EoM. We find,

K1 =
1
16

V ′ringo , K3 =
1
16

V ′′ringo

The equation of motion reads,

E ik
ringo =

√
−gK1(φ, ρ)δ

aijk
λµνσ

gλb∇µ∇iφR νσ
jk + K3(φ, ρ)δ

aijk
λµνσ

gλb∇iφ∇
µ
φR νσ

jk

=

√
−g(∗R∗)ijkl

(
4K1∇l∇jφ + 4K3∇lφ∇jφ

)
While at the same time we have,

δ

[∫
M

d4x
√
−g V (φ)Ĝ

]
=

∫
M

d4x
√
−g δg ij

[
4(∗R∗)ikjl∇

l∇k V (φ)
]

+ δφ[∂φV (φ)Ĝ]

Hence LRingo = VRingo (φ)Ĝ

Similarly LJohn = VjohnGij∇iφ∇jφ.
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]
=

∫
M

d4x
√
−g δg ij

[
4(∗R∗)ikjl∇

l∇k V (φ)
]

+ δφ[∂φV (φ)Ĝ]
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All three LGeorge ,LRingo ,LJohn are KK Lovelock densities
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The double dual tensor
In 4 dimensions we can define a dual of the curvature tensor
by dualising each pair of indices
Double Dual (∗R∗)

(∗R∗)µνσλ = −1
4ε

ij
µν Rijkl ε

kl
σλ = 1

4δ
ijkl
µνσλ Rijkl

1 Same index properties as R-tensor
2 Divergence free:

∇i (∗R∗) i
jkl = 0

3 Simple trace is Einstein
(∗R∗)ik

jk = −G i
j ,
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Paul

Last term is not recognisable. However, numerous Padilla tricks bring it
to the form,

Lpaul =
√
−gVPaul (φ)

[
Rµναβ∇µφ∇αφ∇ν∇βφ+

+Gµν(∇µφ∇αφ− gµα(∇φ)2)∇α∇νφ
+Rµν(∇µ∇αφ− gµα�φ)∇αφ∇νφ]

Therefore

Lpaul =
√
−gVpaul (φ)(∗R∗)µναβ∇µφ∇αφ∇ν∇βφ

Also a higher KK Lovelock density [K V Akoleyen]
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Fab 4

Putting it all together
from Horndeski s general action,

L = κ1(φ, ρ)δijk
µνσ∇

µ∇iφR νσ
jk −

4
3
κ1,ρ(φ, ρ)δijk

µνσ∇
µ∇iφ∇

ν∇jφ∇
σ∇kφ

+κ3(φ, ρ)δijk
µνσ∇iφ∇

µ
φR νσ

jk − 4κ3,ρ(φ, ρ)δijk
µνσ∇iφ∇

µ
φ∇ν∇jφ∇

σ∇kφ

+F (φ, ρ)δij
µνR µν

ij − 4F (φ, ρ),ρδ
ij
µν∇iφ∇

µ
φ∇ν∇jφ

−3[2F (φ, ρ),φ + ρκ8(φ ρ)]∇µ∇µφ + 2κ8δ
ij
µν∇iφ∇

µ
φ∇ν∇jφ

+κ9(φ, ρ)
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Fab 4

Putting it all together
from Horndeski s general action, Self-tuning filter

Ljohn =
√
−gVjohn(φ)Gµν∇µφ∇νφ

Lpaul =
√
−gVpaul (φ)(∗R∗)µναβ∇µφ∇αφ∇ν∇βφ

Lgeorge =
√
−gVgeorge(φ)R

Lringo =
√
−gVringo(φ)Ĝ

All are scalar-tensor interaction terms. No kinetic or potential scalar terms
All related to Lovelock densities via KK reduction.
divergence freedom keeps order of PDE s down.
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Cosmology equations and self tuning

Friedmann equation reads H = −ρΛ

Hjohn = 3Vjohn(φ)φ̇2
(

H2 +
κ

a2
)

+ 6Vjohn(φ)φ̇2H2

Hpaul = − 9Vpaul (φ)φ̇3H
(

H2 +
κ

a2
)
− 6Vpaul (φ)φ̇3H3

Hgeorge = −6Vgeorge(φ)

[(
H2 +

κ

a2
)

+ Hφ̇
V ′george

Vgeorge

]
Hringo = − 24V ′ringo(φ)φ̇H

(
H2 +

κ

a2
)

First find self tuning vacuum setting H2 + κ
a2 = 0

Algebraic equation with respect to φ̇. Hence φ is a function of time t
with discontinuous first derivatives at t = t∗
Ringo cannot self-tune without a little help from his friends.
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Cosmology equations and self tuning

Scalar equation, Eφ = Ejohn + Epaul + Egeorge + Eringo = 0

Ejohn = 6 d
dt
[
a3Vjohn(φ)φ̇∆2

]
− 3a3V ′john(φ)φ̇2∆2

Epaul = −9 d
dt
[
a3Vpaul (φ)φ̇2H∆2

]
+ 3a3V ′paul (φ)φ̇3H∆2

Egeorge = −6 d
dt
[
a3V ′george(φ)∆1

]
+ 6a3V ′′george(φ)φ̇∆1 + 6a3V ′george(φ)∆2

1

Eringo = −24V ′ringo(φ)
d
dt

[
a3
(
κ

a2 ∆1 +
1
3∆3

)]
where

∆n = Hn −
(√
−κ
a

)n

which vanishes on shell as it should
For non trivial cosmology need

{Vjohn,Vpaul ,Vgeorge ,Vringo} 6= {0, 0, constant, constant}
C. Charmousis Modified gravity and the cosmological constant problemBased on arxiv:1106.2000 [hep-th] published in PRL and hep-th/1112.4866 PRD
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Conclusions

Starting from a general scalar tensor theory (Horndeski)
We have filtered out the theory with self-tuning properties
Theory has enchanting geometrical properties which we need to
understand
Still have 4 free functions which parametrise the theory. These need to be
fixed by cosmology, stability and local constraints.

Many questions unanswered:
1 What is the Fab 4 cosmology? In other words for which of the potentials

do we get usual Hot Big Bang cosmology?
2 Usually to escape solar system constraints we take refuge in Veinshtein of

chameleon mechanisms...
3 Maybe we can do better by redoing solar system tests from scratch for

the self-tuned background in the spirit of [gr-qc/08014339]

4 Black hole solutions of such theories could really help. Also self tuning in
different backgrounds.

C. Charmousis Modified gravity and the cosmological constant problemBased on arxiv:1106.2000 [hep-th] published in PRL and hep-th/1112.4866 PRD
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Sketch of proof
Consider gravity action including all contributions of cosmological constant in
the scalar potential term V ,

S[π, gµν ] =

∫
d4x
√
−gR + L(π, gµν , ∂m,V )

Assume gµν = ηµν , π = constant. Then
On-shell L0 = −V0

√
−g where L0 = L(ηµν , constant,Λ)

with EoM,
∂L
∂gµν |0

= ∂L
∂π |0 = 0

scalar EoM is related to the trace of gravity equation
Then Lagrangian has remnant symmetry,
δgµν = εgµν and δπ = −ε
and hence
L =
√
−ĝL(ĝµν , ∂) with ĝµν = eπgµν

All dependance in π has dropped out.
So,on-shell for vacuum we have
∂L
∂gµν |0

= 1
2gµνL0

Hence V0(Λ) = 0 and thus the cosmological constant is fine tuned
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−ĝL(ĝµν , ∂) with ĝµν = eπgµν
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All dependance in π has dropped out.
So,on-shell for vacuum we have
∂L
∂gµν |0

= 1
2gµνL0

Hence V0(Λ) = 0 and thus the cosmological constant is fine tuned



Introduction-motivation
Horndeski’s theory

The self-tuning filter
The Fab Four
Conclusions

George is easy

Start with LGeorge

Set everybody else to zero

κ9 =
1
2V ′′georgeρ, F = − 1

12Vgeorge

Lgeorge = −1
6Vgeorge(φ)R +

1
2∇µ

[
V ′george∂

µφ
]
. ∼= −

1
6Vgeorge(φ)R

Einstein-Hilbert non-minimally coupled with a free scalar field
The remaining terms need more work.
Back to classical GR

C. Charmousis Modified gravity and the cosmological constant problemBased on arxiv:1106.2000 [hep-th] published in PRL and hep-th/1112.4866 PRD
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The double dual tensor and Lovelock theory
In 4 dimensions we can define a dual of the curvature tensor
by dualising each pair of indices
Double Dual (∗R∗)

(∗R∗)µνσλ = −
1
4
ε

ij
µν Rijkl ε

kl
σλ = 1

4 δ
ijkl
µνσλ

Rijkl

1 Same index properties as R-tensor
2 Divergence free:

∇i (∗R∗) i
jkl = 0

3 Simple trace is Einstein
(∗R∗)ik

jk = −G i
j ,

4 Hence
1
4 δ

ijk
µνσ R µν

jk = −G i
µ

5
(∗R∗)µναβ = Rµναβ + 2Rν[αgβ]µ − 2Rµ[αgβ]ν + Rgµ[αgβ]ν

,

6 Finally the 2nd order Lovelock tensor originating from variation of Ĝ is:

Hij = (∗R∗)i
klmRjklm −

1
4

gij Ĝ .
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Hij = (∗R∗)i
klmRjklm −

1
4

gij Ĝ .



The double dual tensor and Lovelock theory
In 4 dimensions we can define a dual of the curvature tensor
by dualising each pair of indices
Double Dual (∗R∗)

(∗R∗)µνσλ = −
1
4
ε

ij
µν Rijkl ε

kl
σλ = 1

4 δ
ijkl
µνσλ

Rijkl

1 Same index properties as R-tensor
2 Divergence free:

∇i (∗R∗) i
jkl = 0

3 Simple trace is Einstein
(∗R∗)ik

jk = −G i
j ,

4 Hence
1
4 δ

ijk
µνσ R µν

jk = −G i
µ

5
(∗R∗)µναβ = Rµναβ + 2Rν[αgβ]µ − 2Rµ[αgβ]ν + Rgµ[αgβ]ν

,

6 Finally the 2nd order Lovelock tensor originating from variation of Ĝ is:

Hij = (∗R∗)i
klmRjklm −

1
4

gij Ĝ .

In D = 4 Hij = 0 hence (∗R∗)i
klmRjklm = 1

4 gij Ĝ
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With a little help from my friends
Switch on only VRingo in EoM. We find,

K1 =
1
16

V ′ringo , K3 =
1
16

V ′′ringo

The equation of motion reads,

E ik
ringo =

√
−gK1(φ, ρ)δ

aijk
λµνσ

gλb∇µ∇iφR νσ
jk + K3(φ, ρ)δ

aijk
λµνσ

gλb∇iφ∇
µ
φR νσ

jk

=

√
−g(∗R∗)ijkl

(
4K1∇l∇jφ + 4K3∇lφ∇jφ

)
While at the same time we have,

δ

[∫
M

d4x
√
−g V (φ)Ĝ

]
=

∫
M

d4x
√
−g δg ij

[
4(∗R∗)ikjl∇

l∇k V (φ)
]

+ δφ[∂φV (φ)Ĝ]

Hence LRingo = VRingo (φ)Ĝ

Similarly LJohn = VjohnGij∇iφ∇jφ.
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Similarly LJohn = VjohnGij∇iφ∇jφ.

C. Charmousis Modified gravity and the cosmological constant problemBased on arxiv:1106.2000 [hep-th] published in PRL and hep-th/1112.4866 PRD



Introduction-motivation
Horndeski’s theory

The self-tuning filter
The Fab Four
Conclusions

With a little help from my friends
Switch on only VRingo in EoM. We find,

K1 =
1
16

V ′ringo , K3 =
1
16

V ′′ringo

The equation of motion reads,

E ik
ringo =

√
−gK1(φ, ρ)δ

aijk
λµνσ

gλb∇µ∇iφR νσ
jk + K3(φ, ρ)δ

aijk
λµνσ

gλb∇iφ∇
µ
φR νσ

jk

=

√
−g(∗R∗)ijkl

(
4K1∇l∇jφ + 4K3∇lφ∇jφ

)
While at the same time we have,

δ

[∫
M

d4x
√
−g V (φ)Ĝ
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All three LGeorge ,LRingo ,LJohn are KK Lovelock densities
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Paul

Last term is not recognisable. However, numerous Padilla tricks bring it
to the form,

Lpaul =
√
−gVPaul (φ)

[
Rµναβ∇µφ∇αφ∇ν∇βφ+

+Gµν(∇µφ∇αφ− gµα(∇φ)2)∇α∇νφ
+Rµν(∇µ∇αφ− gµα�φ)∇αφ∇νφ]

Therefore

Lpaul =
√
−gVpaul (φ)(∗R∗)µναβ∇µφ∇αφ∇ν∇βφ
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