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Outline

‣ Regime of interest

‣ A self-gravitating expanding dust fluid
‣  A field theory reformulation of the dynamical equations
‣  The Gamma-expansion  
‣  The eikonal approximation

‣Into the heart of darkness
‣ kernels and possible lessons for dark energy models



Regime of interest 
‣ The transition from linear to quasi-linear regime

How far beyond 0.1 h Mpc-1 can we go?



A self-gravitating 
expanding dust fluid
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A reformulation of the theory with a FT like approach
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Scoccimarro ‘97
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‣Diagrams

Note : detailed effects of baryons versus DM can be taken into account (Somogyi & 
Smith 2010; FB, Van de Rijt, Vernizzi '12) with a 4-component multiplet, for neutrinos it 
is more complicated...
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Time-flow (renormalization) equations         M. Pietroni ’08

From the field evolution equation to the 
spectra evolution equation

The closure theory Taruya, Hiramatsu,  ApJ 2008, 2009

Valageas P.,  A&A, 2007

Motion equations for correlators are derived using the Direct-Interaction (DI) approximation in 
which one separates the field expression in a DI part and a Non-DI part.  At leading order in Non-
DI >> DI, one gets a closed set of equations, 

These equations can more rigorously be derived in a large N 
expansion.

The eikonal approximation
FB, Van de Rijt, Vernizzi  2012

Methods of Field Theory

Anselmi, Pietroni  '12



The Gamma 
expansion



The key ingredients : the (multipoint) propagators
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Scoccimarro and Crocce PRD, 2005

Gab(k) = k

FB, Crocce, Scoccimarro, PRD, 2008
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‣ This suggests another scheme: to use the n-point propagators as 
the building blocks
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Sum of positive terms

‣The reconstruction of the power spectrum :

‣ Also provide the building 
blocks for higher order 
moments...

FB, Crocce, Scoccimarro, PRD, 2008

‣ re-organisation(s) of the perturbation series

Γ-expansion method



The eikonal 
approximation



The eikonal approximation :

‣ In wave propagations: it leads to geometrical optics

‣ In quantum field theory such as QED 

‣ Now in classical random field theory

wavelength is much shorter than 
any other lengths �� ⇥

p� l in

FB, Van de Rijt, Vernizzi  2011



dynamics : @
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1. Split the interaction term into 2 parts: 

2. Compute the first part using simplified form for the vertices

 It leads to a "renormalized" theory that takes into account the 
long wave modes in a nonlinear manner.

3. Taking ensemble average over ��leads to the standard results 
assuming linear growing modes and Gaussian initial conditions.

• k1 ⇤ k2 or k2 ⇤ k1 (soft domain)
• k1 ⇥ k2 (hard domain)

Impact of the long-wave modes into the short wave modes 
(of interest)
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velocity field component only

The "renormalized" theory at linear order

What is in this new term ?

A multi-component fluid analysis with adiabatic modes 
and iso-curvature/density modes 

diagonal term non-diagonal term
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The main outcome with adiabatic modes only, 
is the following :

(adiabatic) displacement field

Consequences for propagators
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‣ Re-summation can be extended to any order
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‣ Non-Gaussian initial conditions
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‣ In the large k limit we now have :

Crocce, Sefusatti, FB, 2010

‣ The Gamma-expansion is still valid.

FB, Crocce, Scoccimarro, PRD, 2008

The eikonal approximation is very powerful 

‣ Can be used In Lagrangian coordinates
FB, Valageas 2008, Matsubara, 08

‣ For any fluid content, in particular including dark matter 
and baryons (new modes appear)

FB, Van de Rijt, Vernizzi  2011

‣ The basis for the regularization schemes in which one 
can incorporate arbitrary order loops

FB et al. 2011
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A regularization scheme = how to interpolate between 
n-loop results and the large-k behavior ?

An ad-hoc solution was provided by Crocce and Scoccimarro (RPT) for the 
one-point propagator but it cannot be generalized all cases.

‣The proposed form is the following
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‣This is our proposition for regularized propagators: 
our best guess!

FB, Crocce, Scoccimarro '12



Comparison with numerical simulations at tree and 
one-loop order 
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two-point propagator 
at 1-loop order

three-point propagator at 0 and 1-loop order
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The RegPT proposition
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Into the heart of 
darkness

in PT calculation



Kernels in Pertubation theory calculations
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It comes as a reminder of impact of small scale physics (e.g. shell crossings, 
baryon physics)  

Valageas '10; Pueblas & Scoccimarro '08; Pietroni et al. '11



• Shape of kernels is key to the validity of PT calculations and 
comparison with numerical simulations

• It comes from the IR behavior of coupling functions
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• Coupling functions in dark energy models do (Sefusatti & Vernizzi 
'11) or do not (like DGP, see Scoccimarro, dilaton/chameleon field, 
see Brax & FB '11) follow this property depending on the effective 
sound speed. 
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Contribution to 2-point propagator at 1% level

contribution of loop 
contributions

Comparison with N-body 
results for the 2-point 

propagator



Conclusions
•  The evolution of perturbations can be done in the quasi linear 
with a variety of methods; the best strategies (series expansion re-
organization) are still under exploration

• The eikonal approximation scheme captures of lot of interesting 
features and it can be used in a wide variety of situations;

• First public codes implementing second-order results are to be 
available soon. See A. Taruya's talk.


