Observation des raies y nucléaires et des émissions diffuses avec SPI/INTEGRAL

P. JEAN (IRAP, Université de Toulouse)

PLAN

Introduction

- Les objectifs scientifiques du spectromètre SPI
- Le spectromètre SPI
- L'analyse des données
- Résultats : observations des raies gamma nucléaires
 - 26Al
 - 60Fe
- Résultats : Annihilation des positrons galactiques
 - Observation des émissions d'annihilation
 - Origines des positrons galactiques
- Conclusions & perspectives

Les raies gamma nucléaires astrophysiques

Table 1. The menu of gamma-ray lines from radioactivities that may be accessible to gamma-ray astronomy (ordered by ascending lifetime). Theoretical nucleosynthesis yield estimates are quoted for different source types; the yields for AGB stars are split into low-mass AGBs ($< 5M_{\odot}$, left column) and high-mass AGBs ($> 5M_{\odot}$, right column). Positron emitters are marked by \dagger .

Isotope	Lifetime τ	Lines (keV) Typical yields (M_{\odot})					ds (M_{\odot})		
			A	GB	WR	SN Ia	SN Ib/c	SN II	Nova
⁵⁷ Ni	2.14 d	1378				0.02	510^{-3}	510^{-3}	
⁵⁶ Ni	$8.5 \mathrm{d}$	158, 812				0.5	0.1	0.1	
59 Fe	$64.2 \mathrm{~d}$	1099, 1292					510^{-5}	510^{-5}	
$^{7}\mathrm{Be}$	77 d	478					10^{-7}	510^{-7}	510^{-11}
$^{56}\mathrm{Co}^{\dagger}$	112 d	847, 1238				0.5	0.1	0.1	
57 Co	392 d	122				0.02	510^{-3}	510^{-3}	
$^{22}Na^{\dagger}$	$3.76 \ \mathrm{yr}$	1275				10^{-8}	10^{-6}	10^{-6}	510^{-9}
60 Co	7.61 yr	1173, 1332					10^{-5}	10^{-5}	
${}^{44}\mathrm{Ti}^{\dagger}$	87 yr	68, 78, 1157				10^{-5}	510^{-5}	510^{-5}	
$^{26}Al^{\dagger}$	10^6 yr	1809	10^{-7}	410^{-6}	10^{-4}		510^{-5}	510^{-5}	10^{-8}
60 Fe	$2.210^6~{ m yr}$	1173, 1332			10^{-10}	510^{-3}	510^{-5}	510^{-5}	

L'observation des raies gamma nucléaires apporte des contraintes sur :

- les modèles de nucléosynthèse stellaire
- la dynamique des éjecta des explosions d'étoiles
- l'évolution chimique des éléments dans la Galaxie
- la physique des éruptions solaires
- le rayonnement cosmique de basse énergie

Les raies gamma nucléaires astrophysiques

Table 1. The menu of gamma-ray lines from radioactivities that may be accessible to gamma-ray astronomy (ordered by ascending lifetime). Theoretical nucleosynthesis yield estimates are quoted for different source types; the yields for AGB stars are split into low-mass AGBs ($< 5M_{\odot}$, left column) and high-mass AGBs ($> 5M_{\odot}$, right column). Positron emitters are marked by \dagger .

Isotope	Lifetime τ	Lines (keV)	Typical yields (M_{\odot})						
			A	GB	WR	SN Ia	SN Ib/c	SN II	Nova
⁵⁷ Ni	2.14 d	1378				0.02	510^{-3}	510^{-3}	
⁵⁶ Ni	$8.5 \mathrm{d}$	158, 812				0.5	0.1	0.1	
59 Fe	$64.2 \mathrm{d}$	1099, 1292					510^{-5}	510^{-5}	
⁷ Be	77 d	478					10^{-7}	510^{-7}	510^{-11}
${}^{56}\mathrm{Co}^{\dagger}$	112 d	847, 1238				0.5	0.1	0.1	
⁵⁷ Co	392 d	122				0.02	510^{-3}	510^{-3}	
$^{22}Na^{\dagger}$	3.76 yr	1275				10^{-8}	10^{-6}	10^{-6}	510^{-9}
⁶⁰ Co	7.61 yr	1173, 1332					10^{-5}	10^{-5}	
$^{44}\mathrm{Ti}^{\dagger}$	87 yr	68, 78, 1157				10^{-5}	510^{-5}	510^{-5}	
$^{26}Al^{\dagger}$	10^6 yr	1809	10^{-7}	410^{-6}	10^{-4}		510^{-5}	510^{-5}	10^{-8}
⁶⁰ Fe	$2.210^6~\mathrm{yr}$	1173,1332			10^{-10}	510^{-3}	510^{-5}	510^{-5}	

Emission d'annihilation des positrons

OSSE+SMM+TGRS

Origine des positrons ?

- Supernovae
- Binaires X
- Pulsars
- Rayons cosmiques
- Matière noire

- ...

SPI : Le spectromètre d'INTEGRAL

ESA's <u>INTE</u>rnational <u>Gamma-Ray</u> <u>A</u>strophysics <u>Laboratory</u>

Lancé le 17 octobre 2002 depuis Baïkonour

19 detecteurs en germanium Energies : 20 keV - 8 MeV $\Delta E \approx 2$ keV à 1 MeV Champ de vue $\approx 20^{\circ}$ Résolution angulaire $\approx 2^{\circ}$

Objectifs scientifiques de SPI : nucléosynthèse, émissions diffuses, origine des positrons

- Imagerie

=> distribution spatiale des sources

- Spectroscopie

=> conditions physiques des sites émetteurs

Analyse des données de SPI

- Bruit de fond instrumental produit par les rayons cosmiques
 - activation des matériaux
 - des noyaux sont excités localement
 - des positrons sont produits localement

Spectre de bruit de fond instrumental

- \Rightarrow continuum et raies parasites
- \Rightarrow signal/bruit ~ quelques %

n+

Weidenspointner et al. (2004)

p+

Y

Analyse des données de SPI

· Déconvolution des données de SPI

Modélisation du bruit de fond :

- Traceur du bruit de fond : e.g. $R_{bruit}(t) = GEDSAT(t) et/ou ACSSAT(t)$
- Activation radioactive

Les raies gamma nucléaires

²⁶**Α|** τ ~ 1 Myr, E_γ = 1809 keV

- Détection du décalage Doppler (rotation Galactique)
- Masse d'^26 Al : (2.8±0.8) M_{\odot} dans la Galaxie \Rightarrow (1.9 ± 1.1) ccSN/siècle
- Flux asymétrique dans le quadrant central : F_{-}/F_{+} = 1.3 ± 0.2

⁶⁰Fe

 τ ~ 2.2 Myr,

- E_γ = 1173, 1332 keV
- 1ère "détection" avec RHESSI (Smith 2004)

- détection à 3σ après 3 ans d'observation SPI (Harris et al. 2005)

- mesure SPI après 3 ans d'observation (Wang et al. 2007)

En accord avec les prédictions théoriques.

Origine : SN d'étoiles massives

Combinaison des spectres => F₆₀ = (4.4±0.9) × 10⁻⁵ ph/s/cm² => F₆₀/F₂₆ = 0.148 ± 0.06

Annihilation des positrons Galactiques

Emissions d'annihilation

Processus de production des positrons

- isotopes β⁺	-> SNe, WR, novae Xp -> Xn + e ⁺ + v _e	-> E _{e+} ~ 1 MeV
- décroissance π⁺	-> interactions CR - MIS p + p -> p + n + π ⁺ & π ⁺ -> μ ⁺ -> e ⁺	-> E _{e+} ~ 10-100 MeV
- production paire e⁺e⁻	-> disques d'accrétion & jets γ + γ -> e ⁺ + e ⁻ -> magnétosphère de pulsar γ + γ -> e ⁺ + e ⁻	-> E _{e+} ≤ 1 MeV -> E _{e+} ~ 1-1000 GeV
- processus exotiques	-> e.g. matière noire, dm + dm -> e⁺ + e⁻	-> E _{e+} ~ ? MeV

Emissions d'annihilation

Richardson-Lucy image (30 iterations) Skinner et al., 2010

Emissions d'annihilation

- No point sources detected
- Analysis by model fitting method

Uncertainties in the morphology
2 bulges (~3° & ~11° FWHM) & thick disk
or

Extended halo & thin disk

```
    Annihilation rates

            (1 - 3) × 10<sup>43</sup> s<sup>-1</sup> in the bulge
            (0.8 - 0.5) × 10<sup>43</sup> s<sup>-1</sup> in the disk

    ⇒ B/D ~ 1.4 - 6: Old star population favored
```

• Asymmetry

```
Strong evidence (4\sigma)
```

```
Offset of ~1° of the wide bulge component
and/or
Asymmetric disk : F(l < 0°) > F(l > 0°)
```


Weidenspointner et al. (2008)

Emissions d'annihilation

Spectroscopie

$$S_{l}(E) = I_{n} \times G(E, \Gamma_{n}) + I_{b} \times G(E, \Gamma_{b})$$

+ $I_{3\gamma} \times O(E) + A_{c} \left(\frac{E}{511}\right)^{s}$

Param.	Measured values
In	(0.72 ± 0.12 ± 0.02) 10 ⁻³ s ⁻¹ cm ⁻²
Γ_{n}	1.32 ± 0.35 ± 0.02 keV
I _b	(0.35 ± 0.11 ± 0.02) 10 ⁻³ s ⁻¹ cm ⁻²
$\Gamma_{\sf b}$	5.36 ± 1.22 ± 0.06 keV
Ι _{3γ}	(4.23 ± 0.32 ± 0.03) 10 ⁻³ s ⁻¹ cm ⁻²
A _c	(7.17 ± 0.80 ± 0.06) 10 ⁻⁶ s ⁻¹ cm ⁻² keV ⁻¹

Spectre du bulbe Galactique χ² ~ 171.3 (d.o.f. 148) Broad line (3.2σ) ~1/3 of the 511 keV flux => detection of Ps formed in-flight

Total 511 keV flux : (1.07±0.03) 10⁻³ γ/s/cm⁻²

Ps fraction : 96.7±2.2 %

Emissions d'annihilation

Spectroscopie

$$S_{ISM}(E) = I_{e^+e^-} \times \sum_{i=1}^{5} f_i \times S_i(E, x_{gr}) + A_c \left(\frac{E}{511}\right)^s$$

f_i : contribution of phase i

Parameters	Measured values
\mathbf{f}_m (Molecular)	$0.00 \stackrel{+0.08}{-0.00} \stackrel{+0.02}{-0.00}$
f_c (Cold)	$0.00 \stackrel{+0.23}{_{-0.00}} \stackrel{+0.04}{_{-0.00}}$
\mathbf{f}_{wn} (Warm Neutral)	$0.49 \stackrel{+0.02}{-0.23} \stackrel{+0.02}{-0.04}$
\mathbf{f}_{wi} (Warm Ionized)	$0.51 \begin{array}{c} +0.03 \\ -0.02 \end{array} \begin{array}{c} +0.02 \\ -0.02 \end{array}$
\mathbf{f}_h (Hot)	$0.00 \stackrel{+0.005}{-0.00} \stackrel{+0.00}{-0.00}$
\mathbf{x}_{gr} (Grain fraction)	$0.00 \stackrel{+1.20}{_{-0.00}} \stackrel{+0.20}{_{-0.00}}$

Spectre du bulbe Galactique

 $\chi^2 \sim 176.4$ (d.o.f. 148)

Ps fraction : $93.5^{+0.3}_{-1.6} \pm 0.3\%$

In agreement with : 93±4% Kinzer et al. 2001 94±4% Harris et al. 1998 94±6% Churazov et al. 2005

Positrons annihilate in warm phases

Emissions d'annihilation

If positrons are produced in a **steady state** in the GC then their initial kinetic energy should be < 8 MeV else the inflight annihilation emission would be detected at high energy (Aharonian & Atoyan 1981, Beacom & Yuksel 2006, Sizun et al. 2007) Recently, Chernyshov et al. (2009) showed that this conditions holds when B < 0.4 mG in this region.

Origine des positrons Galactiques :

- (2 4) \times 10⁴³ e⁺/s
- B/D ~ 1 6
- annihilation dans les milieux tièdes (~8000K)

- pas d'émission d'annihilation en vol à haute énergie dans le bulbe.

========================	=======================================	==========	
Sources	Yield	Morph.	Comments
SNIa (⁵⁶ Co)	0-100%	B/D<1	Difficulty for e ⁺ to escape the ejecta
SNII, WR (²⁶ Al)	~15%	D	Could explain a fraction of the disk emission
SNII (⁴⁴ Ti)	~10%	D	Could explain a fraction of the disk emission
LMXBs (yy)	0-50%	B/D~1	Could explain the disk emission
Sgr A* burst	0-100%	В	Could explain the bulge emission
Novae (²² Na)	~1%	B/D<1	Not enough positrons
Pulsars (_{YYB})	~0.1%	D	High energy positrons & not enough positrons
Cosmic-rays (π ⁺)	~5%	D	High energy positrons & not enough positrons
Dark matter ($\chi\chi$)	?%	В	High energy positrons
SNII (⁵⁶ Co)	0%	D	Positrons cannot escape the ejecta

Est ce que la distribution de l'émission d'annihilation trace la distribution des sources ? Est ce que les positrons produits dans le disque peuvent s'annihiler dans le bulbe ? => Comment se propagent les positrons dans le MIS ?

Conclusions

• Quelques résultats principaux de SPI/INTEGRAL

- annihilation des positrons : imagerie et spectroscopie fine
- ²⁶Al : décalage doppler, région du Cyg, émission dans Sco-Cen
- découverte des raies du ⁶⁰Fe
- émission diffuse de la Galaxie (voir Bouchet et al., 2011)
- Quelques résultats attendus/espérés
 - raies gamma d'une SN Ia proche
 - raies gamma d'une nova proche
 - émission locale à 511 keV (e.g. Cygne)
 - ...

• Besoin d'un futur spectromètre gamma pour la gamme 200 keV - 10 MeV

