Factorization of Hard Processes

George Sterman, YITP, Stony Brook
Prospects for new colliders, June 4-8, 2012
Orsay

- I. Origins of factorization: the parton model for DIS and elastic scattering
- II. Quantum field theory: finding out where perturbation theory works
- Renormalization, the running coupling and the search for infrared safety
- Landau equations, physical pictures and power counting
- Fixed-angle elastic amplitudes in ϕ^{4} : collinear singularities
- Fixed-angle elastic amplitudes in gauge theories: soft singularities and longitudinal polarizations
- Ward identities, gauge links and matrix elements
- III. Factorization and evolution
- Unitarity, infrared safety, and jets
- Factorization and evolution in DIS
- Heuristics of hadron-hadron scattering
- The nature of factorization proofs
- IV. Hadron-hadron inclusive cross sections and exclusive amplitudes
- Drell-Yan inclusive and Q_{T} cross sections: collinear and TMD factorization, Sudakov resummation
- Crossed TMD factorization and its limitations
- Factorizations for fixed-angle and deeply-virtual Compton scattering
- Generalizations: what factorizes and what doesn't?

The Context of QCD: "Fundamental Interactions"

- Electromagnetic
- + Weak Interactions \Rightarrow Electroweak
- + Strong Interactions (QCD) \Rightarrow Standard Model
$\bullet+\ldots=$ Gravity and the rest?
- QCD: A theory "off to a good start". Think of ...
$-\vec{F}_{12}=-G M_{1} M_{2} \hat{r} / R^{2} \Rightarrow$ elliptical orbits ...3-body problem ...
$-L_{Q C D}=\bar{q} \not D q-(1 / 4) F^{2} \Rightarrow$ asymptotic freedom ...confinement ...
I. The Parton Model and Deep-inelastic Scattering

IA. Nucleons to Quarks

IB. DIS: Structure Functions and Scaling

IC. Getting at the Quark Distributions

ID. Classic Parton Model Extensions:
Fragmentation and Drell-Yan

Introduce concepts and results that predate QCD, led to QCD and were incorporated and explained by QCD.

IA. From Nucleons to Quarks

- The pattern: nucleons, pions and isospin:

$$
\binom{p}{\boldsymbol{n}}
$$

- p: m=938.3 MeV, $S=1 / 2, I_{3}=1 / 2$
$-\mathrm{n}: \mathrm{m}=939.6 \mathrm{MeV}, S=1 / 2, I_{3}=-1 / 2$

$$
\begin{aligned}
& \left(\begin{array}{c}
\pi^{+} \\
\pi^{0} \\
\pi^{-}
\end{array}\right) \\
& -\pi^{ \pm}: m=139.6 \mathrm{MeV}, S=0, I_{3}= \pm 1 \\
& -\pi^{0}: m=135.0 \mathrm{MeV}, S=0, I_{3}=0
\end{aligned}
$$

- Isospin space ...
- Globe with a "north star" set by electroweak interactions:

Analog: the rotation group (more specifically, $S U(2)$).

- Explanation: π, N common substructure: quarks (Gell Mann, Zweig 1964)
- $\operatorname{spin} S=1 / 2$,
$I=1 / 2(u, d) \& I=0(s)$
with approximately equal masses (s heavier);

$$
\begin{gathered}
\left(\begin{array}{c}
u\left(Q=2 e / 3, I_{3}=1 / 2\right) \\
d\left(Q=-e / 3, I_{3}=-1 / 2\right) \\
s\left(Q=-e / 3, I_{3}=0\right)
\end{array}\right) \\
\pi^{+}=(u \bar{d}), \quad \pi^{-}=(\bar{u} d), \quad \pi^{0}=\frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d}) \\
p=(u u d), \quad n=(u d d), \quad K^{+}=(u \bar{s}) \ldots
\end{gathered}
$$

This is the quark model

- Quark model nucleon has symmetric spin/isospin wave function (return to this later)
- Early success: $\mu_{p} / \mu_{n}=-3 / 2(\operatorname{good}$ to $\%)$
- And now, six: 3 'light' $(u, d, s), 3$ 'heavy': (c, b, t)
- Of these all but t form bound states of quark model type.
- Quarks as Partons: "Seeing" Quarks.

No isolated fractional charges seen ("confinement.")

Can such a particle be detected? (SLAC 1969)

Look closer: do high energy electrons bounce off anything hard? ('Rutherford-prime')

- So look for:

"Point-like’ constituents.
The angular distribution gives information on the constituents.

Kinematics $(e+N(P) \rightarrow \ell+X)$

- $V=\gamma, Z_{0} \Rightarrow \ell=e, \mu$, "neutral current" (NC).
- $\boldsymbol{V}=\boldsymbol{W}^{-}\left(e^{-}, \nu_{e}\right), \boldsymbol{V}=\boldsymbol{W}^{+}\left(e^{+}, \bar{\nu}_{e}\right)$, or $e \rightarrow \boldsymbol{\mu}$ "charged current" (CC).
- $W^{2} \equiv(p+q)^{2} \gg m_{\text {proton }}^{2}$: Deep-inelastic scattering (DIS)

$Q^{2}=-q^{2}=-\left(k-k^{\prime}\right)^{2}$ momentum transfer.
$x \equiv \frac{Q^{2}}{2 p \cdot q}$ momentum fraction (from $p^{\prime 2}=(x p+q)^{2}=0$).
$y=\frac{p \cdot q}{p \cdot k}$ fractional energy transfer.
$W^{2}=(p+q)^{2}=\frac{Q^{2}}{x}(1-x)$ squared final-state mass of hadrons.

$$
x y=\frac{Q^{2}}{S}
$$

Parton Interpretation (Feynman 1969, 72) Look in the electron's rest frame . . .

- Surprise: scaling in inclusive deep inelastic scattering

In inclusive ep inelastic scattering
Electron sees $\star \star$'s as spin- $1 / 2$ point particles

- The "strong" force seems weak, almost irrelevant to the electron
- The "quark-parton" model: Ignore $\star \star$ interactions

```
\(-\frac{d \sigma_{\text {ep inclusive }}(Q)}{d Q^{2}}\)
    \(\sim \frac{d \sigma_{\text {ex } \rightarrow \text { et }}(Q)}{d Q^{2}} \times\) (probability to a find parton)
```

- Basic Parton Model Relation: factorization

$$
\sigma_{\mathrm{eh}}(p, q)=\sum_{\text {partons } a} \int_{0}^{1} d \xi \hat{\sigma}_{e a}^{\mathrm{el}}(\xi p, q) \phi_{a / h}(\xi)
$$

- where: $\sigma_{e h}$ is the cross section for $e(k)+h(p) \rightarrow e\left(k^{\prime}=k-q\right)+X(p+q)$
- and $\hat{\sigma}_{e a}^{\mathrm{el}}(x p, q)$ is the elastic cross section for $e(k)+a(\xi p) \rightarrow e\left(k^{\prime}-q\right)+a(\xi p+q)$ which sets $(\xi p+q)^{2}=0 \rightarrow \xi=-q^{2} / 2 p \cdot q \equiv x$.
- and $\phi_{a / h}(x)$ is the distribution of parton a in hadron h, the "probability for a parton of type a to have momentum $x p$ ". Has a meaning independent of the details of the hard scattering. The hallmark of "factorization".
- in words: Hadronic INELASTIC cross section is the sum of convolutions of partonic ELASTIC cross sections with the hadron's parton distributions.
- The nontrivial assumption: quantum mechanical incoherence of large- q scattering and the partonic distributions. Multiply probabilities without adding amplitudes.
- Heuristic justification: the binding of the nucleon involves long-time processes that do not interfere with the short-distance scattering. Later we'll see how this works in QCD.
- The familiar picture

- "QM incoherence" \Leftrightarrow no interactions between of the outgoing scattered quark and the rest.
- Two modern parton distribution sets at moderate momentum transfer (note different weightings with x):

- We'll see where these come from.
Photon exchange

$$
\begin{aligned}
A_{e+N \rightarrow e+X}\left(\lambda, \lambda^{\prime}, \sigma ; q\right)= & \bar{u}_{\lambda^{\prime}}\left(k^{\prime}\right)\left(-i e \gamma_{\mu}\right) u_{\lambda}(k) \\
& \times \frac{-i g^{\mu \mu^{\prime}}}{\boldsymbol{q}^{2}} \\
& \times\langle\boldsymbol{X}| e J_{\mu^{\prime}}^{\mathrm{EM}}(0)|p, \sigma\rangle
\end{aligned}
$$

- Historically an assuption that the photon couples to hadrons by point-like current operator. Now, built into the Standard Model.
- The cross section:

$$
\begin{aligned}
d \sigma_{\mathrm{DIS}}= & \frac{1}{2^{2}} \frac{1}{2 s} \\
& \frac{d^{3} k^{\prime}}{(2 \pi)^{3} 2 \omega_{k^{\prime}}} \sum_{X} \sum_{\lambda, \lambda^{\prime}, \sigma}|A|^{2} \\
& \times(2 \pi)^{4} \delta^{4}\left(p_{X}+k^{\prime}-p-k\right)
\end{aligned}
$$

In $|A|^{2}$, separate the known leptonic part from the "unknown" hadronic part:

- The leptonic tensor:

$$
\begin{aligned}
L^{\mu \nu} & =\frac{e^{2}}{8 \pi^{2}} \sum_{\lambda, \lambda^{\prime}}\left(\bar{u}_{\lambda^{\prime}}\left(k^{\prime}\right) \gamma^{\mu} u_{\lambda}(k)\right)^{*}\left(\bar{u}_{\lambda^{\prime}}\left(k^{\prime}\right) \gamma^{\nu} u_{\lambda}(k)\right) \\
& =\frac{e^{2}}{2 \pi^{2}}\left(\boldsymbol{k}^{\mu} \boldsymbol{k}^{\prime \nu}+\boldsymbol{k}^{\prime \mu} \boldsymbol{k}^{\nu}-g^{\mu \nu} \boldsymbol{k} \cdot \boldsymbol{k}^{\prime}\right)
\end{aligned}
$$

- Leaves us with the hadronic tensor:

$$
W_{\mu \nu}=\frac{1}{8 \pi} \sum_{\sigma, X}\langle X| J_{\mu}|p, \sigma\rangle^{*}\langle X| J_{\nu}|p, \sigma\rangle
$$

- And the cross section:

$$
2 \omega_{k^{\prime}} \frac{d \sigma}{d^{3} k^{\prime}}=\frac{1}{s\left(q^{2}\right)^{2}} L^{\mu \nu} W_{\mu \nu}
$$

- $W_{\mu \nu}$ has sixteen components, but known properties of the strong interactions constrain $W_{\mu \nu}$...
- An example: current conservation,

$$
\begin{aligned}
\partial^{\mu} J_{\mu}^{\mathrm{EM}} & (x)=0 \\
& \Rightarrow\langle X| \partial^{\mu} J_{\mu}^{\mathrm{EM}}(x)|p\rangle=0 \\
& \Rightarrow\left(p_{X}-p\right)^{\mu}\langle X| J_{\mu}^{\mathrm{EM}}(x)|p\rangle=0 \\
& \Rightarrow q^{\mu} W_{\mu \nu}=0
\end{aligned}
$$

- With parity, time-reversal, etc ...

$$
\begin{aligned}
& W_{\mu \nu}=-\left(g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right) W_{1}\left(x, Q^{2}\right) \\
& \quad+\left(p_{\mu}-q_{\mu} \frac{p \cdot \boldsymbol{q}}{q^{2}}\right)\left(p_{\nu}-q_{\nu} \frac{p \cdot q}{q^{2}}\right) W_{2}\left(x, Q^{2}\right)
\end{aligned}
$$

- Often given in terms of the dimensionless structure functions,

$$
F_{1}=W_{1} \quad F_{2}=p \cdot q W_{2}
$$

- Note that if there is no other mass scale, the F 's cannot depend on Q except indirectly through x.
- Structure functions in the Parton Model:

The Callan-Gross Relation

From the "basic parton model formula":

$$
\begin{equation*}
\frac{d \sigma_{e h}}{d^{3} k^{\prime}}=\sum_{\text {quarks } f} \int d \xi \frac{d \sigma_{e f}^{\mathrm{el}}(\xi)}{d^{3} k^{\prime}} \phi_{f / h}(\xi) \tag{1}
\end{equation*}
$$

Can treat a quark of "flavor" f just like any hadron and get

$$
\omega_{k^{\prime}} \frac{d \sigma_{e f}^{\mathrm{el}}(\xi)}{d^{3} k^{\prime}}=\frac{1}{2(\xi s) Q^{4}} L^{\mu \nu} W_{\mu \nu}^{e f}\left(k+\xi p \rightarrow k^{\prime}+p^{\prime}\right)
$$

Let the charge of f be e_{f}.
Exercise 1: Compute $W_{\mu \nu}^{e f}$ to find:

$$
\begin{aligned}
& W_{\mu \nu}^{e f}=-\left(g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right) \delta\left(1-\frac{x}{\xi}\right) \frac{e_{f}^{2}}{2} \\
& \quad+\left(\xi p_{\mu}-q_{\mu} \frac{\xi p \cdot q}{q^{2}}\right)\left(\xi p_{\nu}-q_{\nu} \frac{\xi p \cdot q}{q^{2}}\right) \delta\left(1-\frac{x}{\xi}\right) \frac{e_{f}^{2}}{\xi p \cdot q}
\end{aligned}
$$

Ex. 2: by substituting in (1), find the Callan-Gross relation,

$$
F_{2}(x)=\sum_{\text {quarks } f} e_{f}^{2} x \phi_{f / p}(x)=2 x F_{1}(x)
$$

And Ex. 3: that this relation is quite different for scalar quarks.

- The Callan-Gross relation shows the compatibility of the quark and parton models.
- In addition: parton model structure functions are independent of Q^{2}, a property called "scaling".
- With massless partons, there is no other massive scale.

Then the F 's must be Q-independent; see above.

- Approximate properties of the kinematic region explored by SLAC in late 1960's - early 1970's.
- Explore corrections to this picture in QCD "evolution".

IC. Getting at the Quark Distributions

- Relating the parton distributions to experiment
- Simplifying assumptions that illustrate the general approach.

$$
\begin{aligned}
& \phi_{u / p}=\phi_{d / n} \quad \phi_{d / p}=\phi_{u / n} \quad \text { isospin } \\
& \phi_{\bar{u} / p}=\phi_{\bar{u} / n}=\phi_{\bar{d} / p}=\phi_{\bar{d} / n} \quad \text { symmetric sea } \\
& \phi_{c / p}=\phi_{b / N}=\phi_{t / N}=0 \quad \text { no heavy quarks }
\end{aligned}
$$

- Adequate to early experiments, but no longer.
- With assumptions above, find for e, ν and $\bar{\nu}$ scattering (see appendix)

$$
\begin{aligned}
& F_{2}^{(e N)}(x)=2 x F_{1}^{(e N)}(x)=\sum_{f=u, d, s} e_{F}^{2} x \phi_{f / N}(x) \\
& F_{2}^{\left(W^{+} N\right)}=2 x\left(\sum_{D=d, s, b} \phi_{D / N}(x)+\sum_{U=u, c, t} \phi_{\bar{U} / N}(x)\right) \\
& F_{2}^{\left(W^{-} N\right)}=2 x\left(\sum_{D} \phi_{\bar{D} / N}(x)+\sum_{U} \phi_{U / N}(x)\right) \\
& F_{3}^{\left(W^{+} N\right)}=2\left(\sum_{D} \phi_{D / N}(x)-\sum_{U} \phi_{\bar{U} / N}(x)\right) \\
& F_{3}^{\left(W^{-} N\right)}=2\left(-\sum_{D} \phi_{\bar{D} / N}(x)+\sum_{U} \phi_{U / N}(x)\right)
\end{aligned}
$$

- Exercise: derive some of these for yourself.
- The distributions are actually overdetermined with these assumptions, which checks the consistency of the picture.
- Further consistency checks: Sum Rules.

$$
N_{u / p}=\int_{0}^{1} d x\left[\phi_{u / p}(x)-\phi_{\bar{u} / p}(x)\right]=2
$$

etc. for $N_{d / p}=1$.

The most famous ones make predictions for structure functions. Two examples ...

- The Adler Sum Rule:

$$
\begin{aligned}
1= & N_{u / p}-N_{d / p} \\
= & \int_{0}^{1} d x\left[\phi_{d / n}(x)-\phi_{\bar{u} / p}(x)-\left(\phi_{d / p}(x)-\phi_{\bar{u} / n}(x)\right)\right] \\
= & \int_{0}^{1} d x\left[\sum_{D} \phi_{D / n}(x)+\sum_{U} \phi_{\bar{U} / n}(x)\right] \\
& -\int_{0}^{1} d x\left[\sum_{D} \phi_{D / p}(x)+\sum_{U} \phi_{\bar{U} / p}(x)\right] \\
= & \int_{0}^{1} d x \frac{1}{2 x}\left[F_{2}^{(\nu n)}-F_{2}^{(\nu p)}\right]
\end{aligned}
$$

In the second equality, we've used isospin invariance, in the third, all the extra terms from heavy quarks $D=s, b, U=c, t$ cancel.

- And similarly, the Gross-Llewellyn-Smith Sum Rule:

$$
3=N_{u / p}+N_{d / p}=\int_{0}^{1} d x \frac{1}{2 x}\left[x F_{3}^{(\nu n)}+x F_{3}^{(\nu p)}\right]
$$

ID. Classic Parton Model Extensions:
 Fragmentation and Drell Yan

- Fragmentation functions
- "Crossing" applied to DIS: "Single-particle inclusive" (1PI) From scattering to pair annihilation.

Parton distributions become "fragmentation functions".

- Parton model relation for 1PI cross sections

$$
\sigma_{h}(P, q)=\sum_{a} \int_{0}^{1} d z \hat{\sigma}_{a}(P / z, q) D_{h / a}(z)
$$

- Heuristic justification: Formation of hadron C from parton a takes a time τ_{0} in the rest frame of a, but much longer in the CM frame - this "fragmentation" thus decouples from $\hat{\sigma}_{a}$, and is independent of q (scaling).
- Fragmentation picture suggests that hadrons are aligned along parton direction \Rightarrow jets. And this is what happens.
- For DIS:

- For $\mathrm{e}^{+} \mathrm{e}^{-}$:

- And in nucleon-nucleon collisions:

Run 178796 Event 67972991 Fri Feb 27 08:34:03 2004

- Finally: the Drell-Yan process
- In the parton model (1970).

Drell and Yan: look for the annihilation of quark pairs into virtual photons of mass $Q \ldots$ any electroweak boson in NN scattering.

$$
\begin{aligned}
& \frac{d \sigma_{N N \rightarrow \mu \bar{\mu}+X}\left(Q, p_{1}, p_{2}\right)}{d Q^{2} d \ldots} \sim \\
& \int \\
& \int \xi_{1} d \xi_{2} \sum_{a=\mathrm{q} \overline{\mathrm{q}}} \frac{d \sigma_{\mathrm{a} \overline{\mathrm{a}} \rightarrow \mu \bar{\mu}}^{\mathrm{EW}, \mathrm{Born}}\left(Q, \xi_{1} p_{1}, \xi_{2} p_{2}\right)}{d Q^{2} d \ldots} \\
& \quad \times\left(\text { probability to find parton a }\left(\xi_{1}\right) \text { in } N\right) \\
& \quad \times\left(\text { probability to find parton } \overline{\mathrm{a}}\left(\xi_{2}\right) \text { in } N\right)
\end{aligned}
$$

The probabilities are $\phi_{q / N}\left(\xi_{i}\right)$'s from DIS!

How it works (with colored quarks) ...

- The Born cross section
$\sigma^{\text {EW,Born }}$ is all from this diagram (ξ 's set to unity):

With this matrix element:
$M=e_{q} \frac{e^{2}}{Q^{2}} \boldsymbol{u}\left(k_{1}\right) \gamma_{\mu} \boldsymbol{v}\left(\boldsymbol{k}_{2}\right) \boldsymbol{v}\left(p_{2}\right) \gamma^{\mu} \boldsymbol{u}\left(\boldsymbol{p}_{1}\right)$

- First square and sum/average M. Then evaluate phase space.
- Total cross section at pair mass Q

$$
\begin{aligned}
\sigma_{\mathrm{q} \overline{\mathrm{q}} \rightarrow \mu \bar{\mu}}^{\mathrm{EW}, \operatorname{Born}}\left(x_{1} p_{1}, x_{2} p_{2}\right) & =\frac{1}{2 \hat{s}} \int \frac{d \Omega}{32 \pi^{2}} \frac{e_{q}^{2} e^{4}}{3}\left(1+\cos ^{2} \theta\right) \\
& =\frac{4 \pi \alpha^{2}}{9 Q^{2}} \sum_{q} e_{q}^{2} \equiv \sigma_{0}(M)
\end{aligned}
$$

With Q the pair mass and 3 for color average.

- And measured rapidity:

Pair mass (Q) and rapidity

$$
\eta \equiv(1 / 2) \ln \left(\frac{Q^{+}}{Q^{-}}\right)=(1 / 2) \ln \left(\frac{Q^{0}+Q^{3}}{Q^{0}-Q^{3}}\right)
$$

- ξ 's are overdetermined \rightarrow delta functions in the Born cross section

$$
\begin{aligned}
\frac{d \sigma_{N N \rightarrow \mu \bar{\mu}+X}^{(P M)}\left(Q, p_{1}, p_{2}\right)}{d Q^{2} d \eta}= & \int_{\xi_{1}, \xi_{2}} \sum_{a=q \bar{q}} \sigma_{a \bar{a} \rightarrow \mu \bar{\mu}}^{\mathrm{EW}, \operatorname{Born}}\left(\xi_{1} p_{1}, \xi_{2} p_{2}\right) \\
& \times \delta\left(Q^{2}-\xi_{1} \xi_{2} S\right) \delta\left(\eta-\frac{1}{2} \ln \left(\frac{\xi_{1}}{\xi_{2}}\right)\right) \\
& \times \phi_{a / N}\left(\xi_{1}\right) \phi_{\bar{a} / N}\left(\xi_{2}\right)
\end{aligned}
$$

- and integrating over rapidity, back to $d \sigma / d Q^{2}$,

$$
\begin{gathered}
\frac{d \sigma}{d Q^{2}}=\left(\frac{4 \pi \alpha_{\mathrm{EM}}^{2}}{9 Q^{4}}\right) \int_{0}^{1} d \xi_{1} d \xi_{2} \delta\left(\xi_{1} \xi_{2}-\tau\right) \\
\times \sum_{a} \lambda_{a}^{2} \phi_{a / N}\left(\xi_{1}\right) \phi_{\bar{a} / N}\left(\xi_{s}\right)
\end{gathered}
$$

Found by Drell and Yan in 1970 (aside from 1/3 for color).

Analog of DIS scaling in x is DY scaling in $\tau=Q^{2} / S$.

- Template for all hard inclusive hadron-hadron scattering
- Exclusive reactions: Quark counting, the valence state and geometric counting
- Parton model applied to high-energy elastic scattering (1973: Brodsky, Farrar; Matveev, Muradyan, Tavkhelidze)
- Elastic scattering is through the valence state:
- Parton picture: in c.m., wave functions are Lorentz-contracted.
- large t requires all n_{i} valence (anti-)quarks of hadron i in a region of area $1 / Q^{2}$ for both incoming hadrons.
- Likelihood is $\sim\left(\frac{1}{Q^{2}} \times \frac{1}{\pi R_{H}^{2}}\right)^{n_{H}-1}$ for each hadron.
- Geometric picture: Must be true of both incoming and outgoing states, for overlap of wave functions.
- Scaling: assume that otherwise the amplitude is a function only of the scattering angle.
- The result, at fixed s / t (c.m. scattering angle):

$$
\frac{d \sigma}{d t}=\frac{f(s / t)}{s^{2}}\left(\frac{m^{2}}{s}\right)^{\sum_{i=1}^{4}\left(n_{i}-1\right)}
$$

How it looks:

Just before

And also:

Quark counting picture just at the moment of collision for mesons

- The corresponding elastic amplitude (1979: Brodsky and Lepage, Efremov and Radyushkin)

$$
\begin{aligned}
\mathcal{M}\left(s, t ; \boldsymbol{h}_{i}\right)= & \int \prod_{i=1}^{4}[d x] \phi\left(x_{m, i}, \lambda_{m, i}, h_{i} ; \mu\right) \\
& \times M_{H}\left(\frac{x_{n, i} x_{m, j} p_{i} \cdot p_{j}}{\mu^{2}} ; \lambda_{n, i}, h_{i}\right)
\end{aligned}
$$

with factorized \& evolved valence (light-cone) wave functions $\phi\left(x_{m, i}, \lambda_{m, i}, h_{i} ; \mu\right)$, and with

$$
[d x]=d x_{1, i} d x_{2, i} d x_{3, i} \delta\left(1-\sum_{n=1}^{3} x_{n, i}\right)
$$

for helicities: h_{i} (hadron) $\lambda_{n, i}$ (quarks)

- Template for all hard exclusive hadron-hadron scattering
- Next, the quantum field theory of all this ... QCD
- Appendix I: Quarks in the Standard Model Electroweak interactions of quarks: $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)$. Their non-QCD interactions.
- Quark and lepton fields: $\mathbf{L}($ eft $)$ and \mathbf{R} (ight)
$-\psi=\psi^{(L)}+\psi^{(R)}=\frac{1}{2}\left(1-\gamma_{5}\right) \psi+\frac{1}{2}\left(1+\gamma_{5}\right) \psi ; \psi=q, \ell$
- Helicity: spin along \vec{p} ($\mathrm{R}=$ right handed) or opposite ($\mathrm{L}=$ left handed) in solutions to Dirac equation
$-\psi^{(L)}$: expanded only in L particle solutions to Dirac eqn. R antiparticle solutions
$-\psi^{(R)}$: only R particle solutions, L antiparticle
- An essential feature: L and R have different interactions in general!
- L quarks come in "weak $S U(2)$ " = "weak isospin" pairs:

$$
\begin{aligned}
\boldsymbol{q}_{i}^{(L)}= & \binom{u_{i}}{d_{i}^{\prime}=V_{i j} d j} \quad u_{i}^{(R)}, d_{i}^{(R)} \\
& \left(u, d^{\prime}\right) \quad\left(c, s^{\prime}\right) \quad\left(t, b^{\prime}\right) \\
\ell_{i}^{(L)}= & \binom{\nu_{i}}{e_{i}} \quad e_{i}^{(R)}, \nu_{i}^{(R)} \\
& \left(\nu_{e}, e\right) \quad\left(\nu_{\mu}, \mu\right) \quad\left(\nu_{\tau}, \tau\right)
\end{aligned}
$$

(We've neglected neutrino masses.)
$-V_{i j}$ is the "CKM" matrix.

- The electroweak interactions distinguish L and R.
- Weak vector bosons: electroweak gauge groups
- $\mathrm{SU}(2)$: three vector bosons B_{i} with coupling g
$-\mathrm{U}(1)$; one vector boson C with coupling g^{\prime}
- The physical bosons:

$$
\begin{aligned}
& W^{ \pm}=B_{1} \pm i B_{2} \\
& Z=-C \sin \theta_{W}+B_{3} \cos \theta_{W} \\
& \gamma \equiv A=C \cos \theta_{W}+B_{3} \sin \theta_{W}
\end{aligned}
$$

$$
\sin \theta_{W}=g^{\prime} / \sqrt{g^{2}+g^{\prime 2}} \quad M_{W}=M_{Z} / \cos \theta_{W}
$$

$$
e=g g^{\prime} / \sqrt{g^{2}+g^{\prime 2}} \quad M_{W} \sim g / \sqrt{G_{F}}
$$

- Weak isospin space: connecting u with d^{\prime}

- Only left handed fields move around this globe.
- The interactions of quarks and leptons with the photon, W, Z

$$
\begin{aligned}
\mathcal{L}_{\mathrm{EW}}^{(\text {fermion })}= & \sum_{\text {all } \psi} \bar{\psi}\left(i \not \mathscr{\boldsymbol { L }}-e \lambda_{\psi} \mathcal{A}-\left(g m_{\psi} 2 M_{W}\right) h\right) \psi \\
& -(g / \sqrt{2}) \sum_{q_{i}, e_{i}} \bar{\psi}^{(L)}\left(\sigma^{+} \not W^{+}+\sigma^{-} \not W^{-}\right) \psi^{(L)} \\
& -\left(g / 2 \cos \theta_{W}\right) \sum_{\text {all } \psi} \bar{\psi}\left(v_{f}-a_{f} \gamma_{5}\right) \not Z \psi
\end{aligned}
$$

- Interactions with W are through ψ_{L} 's only.
- Neutrino Z exchange depends on $\sin ^{2} \theta_{W}$ even at low energy.
- This observation made it clear by early 1970's that $M_{W} \sim g / \sqrt{G_{F}}$ is large \rightarrow a need for colliders.
- Coupling to the Higgs $h \propto$ mass (special status of t).
- Symmetry violations in the standard model:
$-W^{\prime}$ s interact through $\psi^{(L)}$ only, $\psi=q, \ell$.
- These are left-handed quarks \& leptons; right-handed antiquarks, antileptons.
- Parity (P) exchanges L/R; Charge conjugation (C) exchanges particles, antiparticles.
- CP combination OK $\left(L \rightarrow_{P} R \rightarrow_{C} L\right)$ if all else equal, but it's not (quite) ...

Complex phases in CKM V result in CP violation.

- Appendix II: Structure Functions and Photon Polarizations

In the \mathbf{P} rest frame can take

$$
q^{\mu}=\left(\nu ; 0,0, \sqrt{Q^{2}+\nu^{2}}\right), \quad \nu \equiv \frac{p \cdot q}{m_{p}}
$$

In this frame, the possible photon polarizations $(\epsilon \cdot q=0)$:

$$
\begin{aligned}
& \epsilon_{R}(q)=\frac{1}{\sqrt{2}}(0 ; 1,-i, 0) \\
& \epsilon_{L}(q)=\frac{1}{\sqrt{2}}(0 ; 1, i, 0) \\
& \epsilon_{\text {long }}(q)=\frac{1}{Q}\left(\sqrt{Q^{2}+\nu^{2}}, 0,0, \nu\right)
\end{aligned}
$$

- Alternative Expansion

$$
W^{\mu \nu}=\sum_{\lambda=L, R, l o n g} \epsilon_{\lambda}^{\mu *}(q) \epsilon_{\lambda}^{\nu}(q) F_{\lambda}\left(x, Q^{2}\right)
$$

- For photon exchange (Exercise 4):

$$
\begin{aligned}
F_{L, R}^{\gamma e} & =F_{1} \\
F_{\text {long }} & =\frac{F_{2}}{2 x}-F_{1}
\end{aligned}
$$

- So $F_{\text {long }}$ vanishes in the parton model by the $\mathrm{C}-\mathrm{G}$ relation.
- Generalizations: neutrinos and polarization
- Neutrinos: flavor of the "struck" quark is changed when a $W^{ \pm}$is exchanged. For W^{+}, a d is transformed into a linear combination of u, c, t, determined by CKM matrix (and momentum conservation).
- Z exchange leaves flavor unchanged but still violates parity.
- The $V \boldsymbol{h}$ structure functions for $=\boldsymbol{W}^{+}, \boldsymbol{W}^{-}, Z$:

$$
\begin{aligned}
W_{\mu \nu}^{(V h)} & -\left(g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right) W_{1}^{(V h)}\left(x, Q^{2}\right) \\
+ & \left(p_{\mu}-q_{\mu} \frac{p \cdot q}{q^{2}}\right)\left(p_{\nu}-q_{\nu} \frac{p \cdot q}{q^{2}}\right) \frac{1}{m_{h}^{2}} W_{2}\left(x, Q^{2}\right) \\
& -i \epsilon_{\mu \nu \lambda \sigma} p^{\lambda} q^{\sigma} \frac{1}{m_{h}^{2}} W_{3}^{(V h)}\left(x, Q^{2}\right)
\end{aligned}
$$

- with dimensionless structure functions:

$$
F_{1}=W_{1}, \quad F_{2}=\frac{p \cdot q}{m_{h}^{2}} W_{2}, \quad F_{3}=\frac{p \cdot q}{m_{h}^{2}} W_{3}
$$

- $F_{i}^{(\nu h)}$ gives $W^{+} h$ scattering, $F_{i}^{(\bar{\nu} h)}$ gives $W^{-} h$
- And with spin (for the photon).

$$
\begin{aligned}
& W^{\mu \nu}= \frac{1}{4 \pi} \int d^{4} z e^{i q \cdot z}\langle h(P, S)| J^{\mu}(z) J^{\nu}(0)|h(P, S)\rangle \\
&=\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) F_{1}\left(x, Q^{2}\right) \\
&+\left(P^{\mu}-q^{\mu} \frac{P \cdot q}{q^{2}}\right)\left(P^{\nu}-q^{\nu} \frac{P \cdot q}{q^{2}}\right) F_{2}\left(x, Q^{2}\right) \\
&+i m_{h} \epsilon^{\mu \nu \rho \sigma} q_{\rho}\left[\frac{S_{\sigma}}{P \cdot q} g_{1}\left(x, Q^{2}\right)+\frac{S_{\sigma}(P \cdot q)-P_{\sigma}(S \cdot q)}{(P \cdot q)^{2}} g_{2}\left(x, Q^{2}\right)\right]
\end{aligned}
$$

- Parton model structure functions:

$$
\begin{aligned}
F_{2}^{(e h)}(x) & =\sum_{f} e_{f}^{2} x \phi_{f / h}(x) \\
g_{1}^{(e h)}(x) & =\frac{1}{2} \sum_{f} e_{f}^{2}\left(\Delta \phi_{f / n}(x)+\Delta \bar{\phi}_{f / h}(x)\right)
\end{aligned}
$$

- Notation: $\Delta \phi_{f / h}=\phi_{f / h}^{+}-\phi_{f / h}^{-}$with $\phi_{f / h}^{ \pm}(x)$ probability for struck quark f to have momentum fraction x and helicity with $(+)$ or against $(-) h$'s helicity.

