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III-IVA. IR Safety for inclusive cross sections and jets

Cross sections, cut diagrams and generalized unitarity: an application and ingredient in
factorization for cross sections

• The optical theorem (total cross section ∝ imaginary part of forward scattering)

• Or for e+e−,
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• We can use this to show the Infrared safety of inclusive annihilation and decay

σ
(tot)
e+e−(q2) =

e2

q2
Imπ(q2) ,

where the function π is defined in terms of the two-point correlation function of the
relevant electroweak currents Jµ (with their couplings included) as

π(q2)(qµqν − q2gµν) = i
∫
d4x eiqx < 0| T Jµ(x)Jν(0) |0 >

• We only have to look for pinch surfaces in the forward scattering amplitude!
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• The only physical pictures for 〈JJ〉 and hence for π:

• No on-shell finite energy lines

• Power counting confirms finiteness.
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• And the method is much more general – unitarity holds point-by-point in spatial loop
momenta ~l inside the diagrams

∑

all C
GC(pi, kj, l) = 2 Im (−iG(pi, kj, l)) .

5



• This only requires doing energy integrals.

• Unitarity at fixed loop momenta then follows from the resulting time-ordered perturbation
theory relations

∑

m
G∗mGm =

A∑

m=1

A∏

j=m+1

1

Ej − Sj − iε
(2π)δ(Em − Sm)

m−1∏

i=1

1

Ei − Si + iε

= −i

−

A∏

j=1

1

Ej − Sj + iε
+

A∏

j=1

1

Ej − Sj − iε




• Exercise: derive this result using only:

i




1

x+ iε
−

1

x− iε


 = 2πδ(x)
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• Unitarity (and therefore cancellation) works at the level of the integrands of TOPT.

⇒ the sum of cut diagrams has the same set of Landau equations as total cross section.
Hence the sum at fixed loop momenta is infrared safe. For jet cross sections in e+e−

annihilations, all states pinched on-shell are automatically included.

• Apply this is physical pictures for jet production.

S
q

N!
C

q
= Im

N

⇒When we sum over states that differ by collinear rearrangements and emission/absorption
of soft partons, pinches disappear and jet cross sections are IR safe.

• And by power counting soft gluons are suppressed.
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III-IVB. Factorization in DIS

• Finiteness of e+e− jet cross sections is fine, but the challenge remains to use AF in
observables σ (cross sections, also some amplitudes) that are not infrared safe because
their physical pictures have to include one or more incoming hadrons.

• We can use IR safety if: σ has a short-distance subprocess.
We then separate IR Safe from IR: this is factorization

• IR Safe part (short-distance) is calculable in pQCD

• Infrared part – example: parton distribution – measureable and universal

• Infrared safe part – insensitive to soft gluon emission and collinear rearrangements
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• For DIS, will find a result . . .

• Just like Parton Model except in Parton Model
the infrared safe part is σLO ⇒ φ(x) normalized uniquely

• In pQCD must define parton distributions
more carefully: the factorization scheme

• Basic observation: virtual states are not truly frozen.
Some states fluctuate on scale 1/Q . . .

• Just like Parton Model except in Parton Model

the infrared safe part is σBorn ⇒ f(x) normalized uniquely

• In pQCD must define parton distributions

more carefully: the factorization scheme

• Basic observation: virtual states not truly frozen.

Some states fluctuate on scale 1/Q . . .

+

q
p p

< Q
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Short-lived states ⇒ ln(Q)
Short-lived states ⇒ ln(Q)

p

 Q

p

<< Q

(collinear

  divergence)

(ln Q)

Long-lived states ⇒ Collinear Singularity (IR)• Longer-lived states ⇒ Collinear Singularity (IR)

• How we systematize to all orders in perturbation theory . . . a taste of “all-orders” proofs
in pQCD.
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• We can generalize to all sources of mass dependence. Always
from classical processes with on-shell particles.

S

S

Collinear lines

P

q q

P

A A*

soft lines

scattered
lines

J

• This is the same “cut diagram notation”, representing the amplitude and complex con-
jugate. Adding up all cut diagrams is the same as summing diagrams of A and then
taking |A|2.

• The scattered parton line is accompanied by arbitrary numbers of longitudinally-polarized
gluons, just as in elastic scattering.
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• Again: the structure of on-shell lines in an
arbitrary cut diagram.

S

S

Collinear lines

P

q q

P

A A*

soft lines

scattered
lines

J

• The story: h splits into collinear partons, then one of them scatters, producing jets that
recede at speed of light, connected only by “infinite wavelength soft” quanta.
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• Use of the optical theorem – relate the cut diagram to forward scattering. No classical
processes are possible, because the scattered quarks must rescatter, and all interactions
after the hard scattering collapse to a “short-distance” function C, that depends only
on xp and q:

S

S

P

q

J

!N

N

= Im

Cq q q

• All long-distance logs cancels because of the inclusive sum over states.
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• The partons on each side of the short distance function C(p, q) must have the same
flavor and momentum fraction.

!

xp,axp,a

p p

Im

• Definition of parton distribution generates all the same long-distance behavior left in in
the original diagrams (quark case) after the sum over hadronic final states:

φa/h(x, µF ) =
∑

spins σ

∫ dy−

2π
e−ixp

+y− 〈p, σ|q̄(y−)γ+ P exp[−ig
∫ y−

0
A+(λ)] q(0)|p, σ〉

• This matrix element requires renormalization: thus the ‘µF ’.
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• The result: factorized DIS

F γq
2 (x,Q2) =

∫ 1

x
dξ Cγq

2



x

ξ
,
Q

µ
,
µF

µ
, αs(µ)




× φq/q(ξ, µF , αs(µ))

≡ Cγq
2



x

ξ
,
Q

µ
,
µF

µ
, αs(µ)


⊗ φq/q(ξ, µF , αs(µ))

• φq/q has ln(µF/ΛQCD) . . . with µF its independent
renormalization scale.

• C has ln(Q/µ), ln(µF/µ)

• Often pick µ = µF and often pick µF = Q. So often see:

F γq
2 (x,Q2) = Cγq

2



x

ξ
, αs(Q)


 ⊗ φq/q(ξ,Q

2)
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Demand µd/dµF = 0, The two functions in convolution have only αs(µ) in common
⇒

µ
d

dµ
φqq(x, µ

2) =
∫ 1

x

dξ

ξ
P (x/ξ, αs(µ)) φ(ξ, µ2)

µ
d

dµ
Cγq

2



x

ξ
, αs(Q)


 =

∫ 1

x

dξ

ξ
Cγq

2 (x/ξ, αs(µ)) P (ξ, µ2)

Here we’ve suppressed sum of parton types, but emphasized the analogy to the renor-
malization group.

• P is the DGLAP splitting function. Note it can be calculated from C directly, and is
hence IR safe. Some details in appendix.
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III-IVC. Factorization for 1PI cross sections in hadron-hadron scattering

• How it works, with pictures as in DIS:

• Separation of soft quanta from fragmenting partons because

soft radiation cannot resolve collinear-moving particles.

h(p)

=

h(p)

x

S

h(p)

h(p)

• Can now sum over all final states in the first factor on the RHS⇒ the all-orders cancel-
lation of soft singularities that connect initial and final states for single-particle inclusive
and other short-distance cross sections in hadron-hadron scattering:
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• The fragmentation function as an operator

DH/q(z, ζ, ζ
′) =

∑

X

∫ p+dy−

2π
e−i(p

+/z)y−〈0| q(0)
γ+

2p+
|H(p), X〉〈H(p), X|q̄(y−) |0〉

• with a gauge link W (y−, 0) between the fields.

• And then in the rest of the diagram . . .
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H

J1

2
J

S

H

J1

2
J

S

H

J1

2
J

S

= Im - -

= Im
H

J1

2
J

S

- H

J1

2
J

S

H

J1

2
J

S

-

• all terms on RHS are power-suppressed by power counting unless soft gluons don’t attach
to the final state at all. Collinear factorization arguments then have to with soft gluons
that only attach to initial-state jets. This leads us to . . .
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• III-IVD. Drell-Yan applications

• Here we can only remind ourselves of the results:

• Collinear factorization for the total cross section at pair mass Q

dσH1H2(p1, p2,M) =
∑

a,b

∫ 1

0
dξa dξbdσ̂ab→F+X (ξap1, ξbp2, Q, µ)

×φa/H1
(ξa, µ)φb/H2

(ξb, µ),

• Transverse momentum-dependent factorization at measured QT � Q

dσNN→QX

dQd2QT

=
∫
dξ1dξ2 d

2k1Td
2k2Td

2ksT

× H(ξ1p1, ξ2p2, Q,n)aā→Q+X

×Φa/N(ξ1, p1 · n, k1T ) Φā/N(ξ2, p2 · n, k2T )

× δ (QT − k1T − k2T − ksT )
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• The Φ′s: new Transverse momentum-dependent PDFs

Φa/N(ξ1, p1 · n, k1T ) =
∑

spins σ

∫ dy−

2π
e−ixp

+y− d2kT

(2π)2
eikT ·x

×〈p, σ|q̄(y−)γ+W †
n(−∞, y−)Wn(−∞, 0) q(0)|p, σ〉

where W is the gauge link starting at the field in the nµ direction:

Wn(y−) = P exp[−ig
∫ −∞
y−

n ·A(λn)]

• At b = 0, formally reduces to our operator definition of φ(ξ, µ2).

• With proper choice of gauge link direction, no separate function for soft gluons is required
(Collins)
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• III-IVE. Quote as Epilogue and Summary: From Collins, Frankfurt and Strikman (1997)

• who set out to prove factorization for exclusive electroproduction of mesons . . .

It is convenient to use light-front coordinates defined with respect to the collision axis:
vµ = (v+, v−, v⊥), with v± = (v0 ± v3)/

√
2. Then we can write

pµ =

(
p+,

m2

2p+
, 0⊥

)
,

qµ ≈
(
−xp+,

Q2

2xp+
, 0⊥

)
,

∆µ ≈
(
xp+, − ∆2

⊥ + m2x

2(1 − x)p+
,∆⊥

)
,

V µ ≈
(

∆2
⊥ + m2

V

Q2
xp+,

Q2

2xp+
,∆⊥

)
. (2)

Here, V µ is the momentum of the meson. In these equations, we have neglected small terms
in the longitudinal components, of relative size Λ2

QCD/Q2. These coordinates agree with the

ones used in Refs. [8,11], but differ from those in Refs. [1,2] by a factor of
√

2, and by a
change of the use of the + and − labels: v+

this paper = v−Ref. [1]/
√

2, and similarly for v−.

III. STATEMENT OF THEOREM

A. Theorem

The theorem we will prove is that the amplitude for the process Eq. (1) is [1]

M =
∑

i,j

∫ 1

0
dz

∫
dx1fi/p(x1, x1 − x, t, µ) Hij(Q

2x1/x, Q2, z, µ) φV
j (z, µ)

+power-suppressed corrections. (3)

Here, fi/p is just like the distribution function for partons of type i in hadron p, except that
it is a non-forward matrix element.4 We will give the definition later. The factor φV

j is
the light-cone wave function for the meson, and Hij is the hard scattering function. The
sums are over the parton types i and j that connect the hard scattering to the distribution
function and to the meson. Since the meson has non-zero flavor, the parton j is restricted
to be a quark. The factorization theorem Eq. (3) is illustrated in Fig. 1.

The above formula is correct for the production of longitudinally polarized vector mesons.
For the production of transversely polarized vector mesons or of pseudo-scalar mesons, we
have a formula of exactly the same structure, but in which the unpolarized parton density is

4 In fact, our whole paper applies to a more general case. The final-state proton in Eq. (1) may

be replaced by a general baryon: a neutron, for example. Then the exchanged object no longer has

to have vacuum quantum numbers. The index i in the factorization theorem is then to be replaced

by a pair of indices for the flavors of the two quark lines joining the parton density fi/p to the hard

scattering. Similarly, the two quark lines entering the meson may be different, and the index j is

to be replaced by a pair of indices.

4

• with generalized parton distribution

scattering function.

B. Definitions of light-cone distributions and amplitudes: longitudinal vector meson

1. Quark distribution

The distribution function fi/p and meson amplitude φV
j are defined, as usual, as matrix

elements of gauge-invariant bilocal operators on the light-cone. In the case of a quark of
flavor i, we define

fi/p(x1, x2, t, µ) =
∫ ∞

−∞

dy−

4π
e−ix2p+y−〈p′| T ψ̄(0, y−, 0T )γ+Pψ(0) |p〉, (4)

where P is a path-ordered exponential of the gluon field along the light-like line joining the
two operators for a quark of flavor i. We have defined x1 to be the fractional momentum
given by the quark to the hard scattering and −x2 to be the momentum given by the
antiquark; in the factorization theorem they obey x1 − x2 = x, with x being the usual
Bjorken variable. At first sight the right-hand-side of Eq. (4) appears to depend only on x2

and not on x1 nor on t. The dependence on the other two variables comes from the fact that
the matrix element is non-forward. The difference in momentum between the states |p〉 and
|p′〉 together with the use of a light-cone operator brings in dependence on x1 and on t. It
is necessary to take only the connected part of the matrix element.

The same definition has recently been given and discussed by Ji and Radyushkin [12–14].
As Ji points out, when t $= 0 there are in fact two separate parton densities, with different
dependence on the nucleon spin. For the purposes of our proof, it will be unnecessary to take
this into account explicitly; we can simply suppose that this and the other parton densities
have dependence on the spin state of the hadron states |p〉 and |p′〉.

The usual quark density fi/p(x, µ) is obtained by setting t = 0 and x1 = x2 = x in
Eq. (4). In addition, it would appear that one has to remove the time-ordering operation
from the operator operators in Eq. (4) to obtain the operator used for the parton densities
associated with inclusive scattering [17]. We need time-ordered operators in our present
work because we are discussing amplitudes rather than cut amplitudes. Thus if one sets
t = 0 and x1 = x2 = x in our parton distributions, one would naturally suppose that the
conventional inclusive parton densities are the discontinuities of ours.5 Relating the new
parton densities to the standard ones, even in the forward limit would therefore appear to
need dispersion relations.

In fact, the two kinds of parton density are equal, at least in the forward limit. A proof of
this not very obvious fact was given many years ago by Jaffe [18]. However, his proof applies
only to two-particle-irreducible graphs for the parton densities, a restriction we suspect to be
unnecessary. We hope to return to this issue in a later paper, particularly because there are

5 Equivalently one would say the the conventional parton densities are given by the imaginary

part of our distributions. To be precise, with our definitions, which do not possess an overall factor

of i, the discontinuity is twice the real part.

6

. . .
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=
∫

dx1dz
dν̂

2πi

1

ν̂ − ν
H(x1ν̂, Q2, z)φ(z)f(x1, x

′).

=
∫

dν̂

2πi

1

ν̂ − ν
disc M(ν̂, Q2, z), (12)

where in the last line, we have used the factorization theorem again. This equation is just
the expected dispersion relation for the hadronic amplitude.

The discontinuity of an amplitude is obtained by making a cut that puts some interme-
diate states on shell. The only possible cut of M in its factorized form Fig. 1 is one that
cuts both the hard scattering amplitude H and the parton density f . The statement that
the parton densities are the same whether the operators are unordered or are time-ordered
is equivalent to saying that the cut amplitude equals the uncut amplitude. This is consistent
with our derivation of the dispersion relation for M.

IV. REGIONS

We wish to calculate the asymptotics in a double limit: Q/m → ∞ and x → 0, but it
is the Q → ∞ limit that we will concentrate on, since that will result in the perturbatively
calculable factors in our theorem. It will also give us a more general theorem, that is
applicable at large x. In this and the next section we follow the treatment of Libby and
Sterman [10,23,24] adapted to our process.

Graphs for the process have integrals over all their loop momenta, and we wish to classify
the regions of loop momenta in a suitable way for extracting the asymptotics as Q → ∞.
To expose the powers of Q, we choose to work in the Breit frame where the virtual photon
has zero rapidity, xp+ = Q2/2xp+ = Q/

√
2. 6 In such a frame the meson V is moving very

fast in one direction, and the incoming and outgoing protons are moving very fast in the
opposite direction. The steps in the proof are as follows:

1. Scale all momenta by a factor Q/m, so that we are in effect attempting to take a
massless on-shell limit of the amplitude.

2. Use the Coleman-Norton theorem to locate all pinch-singular surfaces in the space of
loop integration momenta, in the zero-mass limit.

3. Identify the relevant regions of integration as neighborhoods of these pinch singular
surfaces.

4. The scattering amplitude is a sum of contributions, one for each pinch singular sur-
face, plus a term where all lines have virtuality of at least of order Q2. Appropriate
subtractions are made to prevent double counting.

5. Perform power counting to determine which regions give the largest power of Q.

6 None of our arguments would change if we made a finite boost. Then we would have xp+ ∼
Q2/xp+ ∼ Q.
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6. Finally, show that the contributions for the leading power of Q give the factorization
formula Eq. (3).

Any terms that do not contribute to the leading power are dropped. The factorization
formula is intended to include all logarithmic corrections to the leading power, whether they
are leading or non-leading logarithms.

A. Scaling of momenta

Following Libby and Sterman [23] we write a general momentum kµ and a general mass
m in units of the large momentum scale Q:

kµ = Qk̃µ, m = Qm̃. (13)

Since we work in the rest frame of the virtual photon, i.e., in the Breit frame, both of the
light-cone components of its momentum are of order Q. When everything is expressed in
terms of the scaled variables, k̃ and m̃, simple dimensional analysis shows that the large-Q
limit is equivalent to a zero-mass limit, m̃ → 0. Since the amplitude M is dimensionless,
we have

M(Q2; p, pV , ∆, m; µ) = M(1; p̃, p̃V , ∆̃, m̃; µ/Q), (14)

by ordinary dimensional analysis. Notice that in the limit Q → ∞

p̃µ → (p+/Q, 0, 0⊥),

q̃µ → (−xp+/Q, Q/(2xp+), 0⊥),

∆̃µ → 0,

Ṽ µ → (0, Q/(2xp+), 0⊥), (15)

so that p̃ and Ṽ become light-like vectors, cf. Eq. (2).
We consider the most basic region to be where all internal lines obey k2 >∼ Q2, and thus

the scaled momenta k̃ have virtualities of order unity, or bigger. In such a region, we can
legitimately set the mass parameters to zero, and make the external hadrons light-like. Most
importantly, we will be entitled to choose the renormalization scale µ of order Q without
obtaining any large logarithms. Consequently, in this region an expansion to low order in
powers of the small coupling αs(Q) is useful.

However, this basic region is not the only one. Indeed, it does not even provide a leading
contribution for the amplitude for our particular process. But now one observes [23] that
all other relevant regions correspond to singularities of massless Feynman graphs. They
are neighborhoods of surfaces where the loop momenta are trapped at singularities, i.e.,
of pinch-singular surfaces of the massless graphs. The conditions for a pinch singularity
are exactly the Landau conditions for a singularity of a graph.7 Only pinch singularities

7 The relevant singularities are on the physical sheet of the space of complex angular momenta,

or on its boundary. Thus it is indeed the Landau conditions that are correct.
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That about says it all.
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